Abstract

We developed a multiple-field-of-view multiple-scattering polarization lidar (MFMSPL) to study the microphysics of optically thick clouds. Designed to measure enhanced backscattering and depolarization ratio comparable to space-borne lidar, the system consists of four sets of parallel and perpendicular channels mounted with different zenith angles. Depolarization ratios from water clouds were large as observed by MFMSPL compared to those observed by conventional lidar. Cloud top heights and depolarization ratios tended to be larger for outer MFMSPL channels than for vertically pointing channels. Co-located 95 GHz cloud radar and MFMSPL observations showed reasonable agreement at the observed cloud top height.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Physical model for multiple scattered space-borne lidar returns from clouds

Kaori Sato, Hajime Okamoto, and Hiroshi Ishimoto
Opt. Express 26(6) A301-A319 (2018)

Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement

Songhua Wu, Xiaoquan Song, Bingyi Liu, Guangyao Dai, Jintao Liu, Kailin Zhang, Shengguang Qin, Dengxin Hua, Fei Gao, and Liping Liu
Opt. Express 23(26) 33870-33892 (2015)

Effect of multiple scattering on depolarization measurements with spaceborne lidars

Susanne Reichardt and Jens Reichardt
Appl. Opt. 42(18) 3620-3633 (2003)

References

  • View by:
  • |
  • |
  • |

  1. K. Sassen and H. Zhao, “Lidar multiple-scattering in water droplet clouds: toward an improved treatment,” Opt. Rev. 2(5), 394–400 (1995).
    [Crossref]
  2. D. M. Winker, W. H. Hunt, and M. J. McGill, “Initial performance assessment of CALIOP,” Geophys. Res. Lett. 34(19L19803), L19803 (2007).
    [Crossref]
  3. J. E. Yorks, D. L. Hlavka, M. A. Vaughan, M. J. McGill, W. D. Hart, S. Rodier, and R. Kuehn, “Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties,” J. Geophys. Res. 116(D19), D19207 (2011).
    [Crossref]
  4. K. Sassen, “The polarization lidar technique for cloud research: A review and current assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991).
    [Crossref]
  5. Y. Hu, “Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination,” Geophys. Res. Lett. 34(11), L11812 (2007).
    [Crossref]
  6. R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).
    [Crossref]
  7. N. I. Polonsky, S. P. Love, and A. B. Davis, “Wide-Angle Imaging Lidar development at the ARM Southern Great Plains site: Intercomparison of cloud property retrievals,” J. Atmos. Ocean. Technol. 22(6), 628–648 (2005).
    [Crossref]
  8. A. B. Davis, “Multiple-scattering lidar from both sides of the clouds: Addressing internal structure,” J. Geophys. Res. 113(D14), D14S10 (2008).
    [Crossref]
  9. R. F. Caharan, M. McGill, and J. Kolansinski, “THOR-cloud thickness from offbeam lidar returns,” J. Atmos. Ocean. Technol. 22(6), 605–627 (2005).
    [Crossref]
  10. L. R. Bissonnette and D. L. Hutt, “Multiple scattering lidar,” Appl. Opt. 29(34), 5045–5046 (1990).
    [Crossref] [PubMed]
  11. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41(30), 6307–6324 (2002).
    [Crossref] [PubMed]
  12. G. Roy, L. Bissonnette, C. Bastille, and G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation,” Appl. Opt. 38(24), 5202–5211 (1999).
    [Crossref] [PubMed]
  13. H. Okamoto, K. Sato, T. Makino, T. Nishizawa, N. Sugimoto, Y. Jin, and A. Shimizu, “Depolarization ratio of clouds measured by multiple-field of view multiple-scattering polarization lidar,” EPJ Web of Conferences 119, 11007 (2016).
    [Crossref]
  14. J. Yamaguchi, T. Takano, T. Nakajima, T. Takamura, H. Kumagai, and Y. Ohno, Y. nakanishi, K. Akita, Y. Kawamura, H. Abe, K. Futaba, and S. Yokote, “Sensitivity of FMCW 95GHz cloud radar for high clouds,” 2006 Asia-Pacific Microwave Conference, Yokohama (2006).
    [Crossref]
  15. H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transf. 72(4), 467–483 (2002).
    [Crossref]
  16. A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
    [Crossref]
  17. H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
    [Crossref]
  18. H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
    [Crossref]
  19. H. Okamoto, K. Sato, and Y. Hagihara, “Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals,” J. Geophys. Res. 115(D22), D22209 (2010).
    [Crossref]
  20. Y. Hagihara, H. Okamoto, and R. Yoshida, “Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution,” J. Geophys. Res. 115, D00H33 (2010).
    [Crossref]
  21. K. Sato and H. Okamoto, "Refinement of global ice microphysics using spaceborne active sensors," J. Geophys. Res. 116, D20202 (2011).
  22. X. Cao, G. Roy, R. Bernier, and N. Roy, “Comparison of the relationships between lidar integrated backscattered light and accumulated depolarization ratios for linear and circular polarization for water droplets, fog-oil, and dust,” Appl. Opt. 48(21), 4130–4141 (2009).
    [Crossref] [PubMed]

2011 (2)

J. E. Yorks, D. L. Hlavka, M. A. Vaughan, M. J. McGill, W. D. Hart, S. Rodier, and R. Kuehn, “Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties,” J. Geophys. Res. 116(D19), D19207 (2011).
[Crossref]

K. Sato and H. Okamoto, "Refinement of global ice microphysics using spaceborne active sensors," J. Geophys. Res. 116, D20202 (2011).

2010 (3)

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).
[Crossref]

H. Okamoto, K. Sato, and Y. Hagihara, “Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals,” J. Geophys. Res. 115(D22), D22209 (2010).
[Crossref]

Y. Hagihara, H. Okamoto, and R. Yoshida, “Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution,” J. Geophys. Res. 115, D00H33 (2010).
[Crossref]

2009 (1)

2008 (2)

H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
[Crossref]

A. B. Davis, “Multiple-scattering lidar from both sides of the clouds: Addressing internal structure,” J. Geophys. Res. 113(D14), D14S10 (2008).
[Crossref]

2007 (3)

D. M. Winker, W. H. Hunt, and M. J. McGill, “Initial performance assessment of CALIOP,” Geophys. Res. Lett. 34(19L19803), L19803 (2007).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

Y. Hu, “Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination,” Geophys. Res. Lett. 34(11), L11812 (2007).
[Crossref]

2005 (2)

R. F. Caharan, M. McGill, and J. Kolansinski, “THOR-cloud thickness from offbeam lidar returns,” J. Atmos. Ocean. Technol. 22(6), 605–627 (2005).
[Crossref]

N. I. Polonsky, S. P. Love, and A. B. Davis, “Wide-Angle Imaging Lidar development at the ARM Southern Great Plains site: Intercomparison of cloud property retrievals,” J. Atmos. Ocean. Technol. 22(6), 628–648 (2005).
[Crossref]

2004 (1)

A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
[Crossref]

2002 (2)

H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transf. 72(4), 467–483 (2002).
[Crossref]

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41(30), 6307–6324 (2002).
[Crossref] [PubMed]

1999 (1)

1995 (1)

K. Sassen and H. Zhao, “Lidar multiple-scattering in water droplet clouds: toward an improved treatment,” Opt. Rev. 2(5), 394–400 (1995).
[Crossref]

1991 (1)

K. Sassen, “The polarization lidar technique for cloud research: A review and current assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991).
[Crossref]

1990 (1)

Aoki, K.

A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
[Crossref]

Arao, K.

A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
[Crossref]

Bastille, C.

Bernier, R.

Bissonnette, L.

Bissonnette, L. R.

Caharan, R. F.

R. F. Caharan, M. McGill, and J. Kolansinski, “THOR-cloud thickness from offbeam lidar returns,” J. Atmos. Ocean. Technol. 22(6), 605–627 (2005).
[Crossref]

Cao, X.

Cober, S. G.

Davis, A. B.

A. B. Davis, “Multiple-scattering lidar from both sides of the clouds: Addressing internal structure,” J. Geophys. Res. 113(D14), D14S10 (2008).
[Crossref]

N. I. Polonsky, S. P. Love, and A. B. Davis, “Wide-Angle Imaging Lidar development at the ARM Southern Great Plains site: Intercomparison of cloud property retrievals,” J. Atmos. Ocean. Technol. 22(6), 628–648 (2005).
[Crossref]

Emori, S.

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

Hagihara, Y.

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).
[Crossref]

H. Okamoto, K. Sato, and Y. Hagihara, “Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals,” J. Geophys. Res. 115(D22), D22209 (2010).
[Crossref]

Y. Hagihara, H. Okamoto, and R. Yoshida, “Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution,” J. Geophys. Res. 115, D00H33 (2010).
[Crossref]

Hart, W. D.

J. E. Yorks, D. L. Hlavka, M. A. Vaughan, M. J. McGill, W. D. Hart, S. Rodier, and R. Kuehn, “Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties,” J. Geophys. Res. 116(D19), D19207 (2011).
[Crossref]

Hlavka, D. L.

J. E. Yorks, D. L. Hlavka, M. A. Vaughan, M. J. McGill, W. D. Hart, S. Rodier, and R. Kuehn, “Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties,” J. Geophys. Res. 116(D19), D19207 (2011).
[Crossref]

Hu, Y.

Y. Hu, “Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination,” Geophys. Res. Lett. 34(11), L11812 (2007).
[Crossref]

Hunt, W. H.

D. M. Winker, W. H. Hunt, and M. J. McGill, “Initial performance assessment of CALIOP,” Geophys. Res. Lett. 34(19L19803), L19803 (2007).
[Crossref]

Hutt, D. L.

Isaac, G. A.

Ishimoto, H.

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).
[Crossref]

H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transf. 72(4), 467–483 (2002).
[Crossref]

Kagawa, N.

A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
[Crossref]

Kamei, A.

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

Kolansinski, J.

R. F. Caharan, M. McGill, and J. Kolansinski, “THOR-cloud thickness from offbeam lidar returns,” J. Atmos. Ocean. Technol. 22(6), 605–627 (2005).
[Crossref]

Kuehn, R.

J. E. Yorks, D. L. Hlavka, M. A. Vaughan, M. J. McGill, W. D. Hart, S. Rodier, and R. Kuehn, “Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties,” J. Geophys. Res. 116(D19), D19207 (2011).
[Crossref]

Kumagai, H.

H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

J. Yamaguchi, T. Takano, T. Nakajima, T. Takamura, H. Kumagai, and Y. Ohno, Y. nakanishi, K. Akita, Y. Kawamura, H. Abe, K. Futaba, and S. Yokote, “Sensitivity of FMCW 95GHz cloud radar for high clouds,” 2006 Asia-Pacific Microwave Conference, Yokohama (2006).
[Crossref]

Kuroiwa, H.

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

Love, S. P.

N. I. Polonsky, S. P. Love, and A. B. Davis, “Wide-Angle Imaging Lidar development at the ARM Southern Great Plains site: Intercomparison of cloud property retrievals,” J. Atmos. Ocean. Technol. 22(6), 628–648 (2005).
[Crossref]

Masuda, K.

H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transf. 72(4), 467–483 (2002).
[Crossref]

Matsui, I.

H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
[Crossref]

McGill, M.

R. F. Caharan, M. McGill, and J. Kolansinski, “THOR-cloud thickness from offbeam lidar returns,” J. Atmos. Ocean. Technol. 22(6), 605–627 (2005).
[Crossref]

McGill, M. J.

J. E. Yorks, D. L. Hlavka, M. A. Vaughan, M. J. McGill, W. D. Hart, S. Rodier, and R. Kuehn, “Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties,” J. Geophys. Res. 116(D19), D19207 (2011).
[Crossref]

D. M. Winker, W. H. Hunt, and M. J. McGill, “Initial performance assessment of CALIOP,” Geophys. Res. Lett. 34(19L19803), L19803 (2007).
[Crossref]

Murayama, T.

A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
[Crossref]

Nakajima, T.

H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

J. Yamaguchi, T. Takano, T. Nakajima, T. Takamura, H. Kumagai, and Y. Ohno, Y. nakanishi, K. Akita, Y. Kawamura, H. Abe, K. Futaba, and S. Yokote, “Sensitivity of FMCW 95GHz cloud radar for high clouds,” 2006 Asia-Pacific Microwave Conference, Yokohama (2006).
[Crossref]

Nishizawa, T.

H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

Ohno, Y.

H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
[Crossref]

J. Yamaguchi, T. Takano, T. Nakajima, T. Takamura, H. Kumagai, and Y. Ohno, Y. nakanishi, K. Akita, Y. Kawamura, H. Abe, K. Futaba, and S. Yokote, “Sensitivity of FMCW 95GHz cloud radar for high clouds,” 2006 Asia-Pacific Microwave Conference, Yokohama (2006).
[Crossref]

Okamoto, H.

K. Sato and H. Okamoto, "Refinement of global ice microphysics using spaceborne active sensors," J. Geophys. Res. 116, D20202 (2011).

H. Okamoto, K. Sato, and Y. Hagihara, “Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals,” J. Geophys. Res. 115(D22), D22209 (2010).
[Crossref]

Y. Hagihara, H. Okamoto, and R. Yoshida, “Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution,” J. Geophys. Res. 115, D00H33 (2010).
[Crossref]

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

Polonsky, N. I.

N. I. Polonsky, S. P. Love, and A. B. Davis, “Wide-Angle Imaging Lidar development at the ARM Southern Great Plains site: Intercomparison of cloud property retrievals,” J. Atmos. Ocean. Technol. 22(6), 628–648 (2005).
[Crossref]

Poutier, L.

Rodier, S.

J. E. Yorks, D. L. Hlavka, M. A. Vaughan, M. J. McGill, W. D. Hart, S. Rodier, and R. Kuehn, “Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties,” J. Geophys. Res. 116(D19), D19207 (2011).
[Crossref]

Roy, G.

Roy, N.

Sassen, K.

K. Sassen and H. Zhao, “Lidar multiple-scattering in water droplet clouds: toward an improved treatment,” Opt. Rev. 2(5), 394–400 (1995).
[Crossref]

K. Sassen, “The polarization lidar technique for cloud research: A review and current assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991).
[Crossref]

Sato, K.

K. Sato and H. Okamoto, "Refinement of global ice microphysics using spaceborne active sensors," J. Geophys. Res. 116, D20202 (2011).

H. Okamoto, K. Sato, and Y. Hagihara, “Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals,” J. Geophys. Res. 115(D22), D22209 (2010).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
[Crossref]

Shimizu, A.

H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
[Crossref]

Sugimoto, N.

H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
[Crossref]

Takamura, T.

J. Yamaguchi, T. Takano, T. Nakajima, T. Takamura, H. Kumagai, and Y. Ohno, Y. nakanishi, K. Akita, Y. Kawamura, H. Abe, K. Futaba, and S. Yokote, “Sensitivity of FMCW 95GHz cloud radar for high clouds,” 2006 Asia-Pacific Microwave Conference, Yokohama (2006).
[Crossref]

Takano, T.

J. Yamaguchi, T. Takano, T. Nakajima, T. Takamura, H. Kumagai, and Y. Ohno, Y. nakanishi, K. Akita, Y. Kawamura, H. Abe, K. Futaba, and S. Yokote, “Sensitivity of FMCW 95GHz cloud radar for high clouds,” 2006 Asia-Pacific Microwave Conference, Yokohama (2006).
[Crossref]

Takemura, T.

H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

Uchiyama, A.

A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
[Crossref]

Uno, I.

A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
[Crossref]

Vallée, G.

Vaughan, M. A.

J. E. Yorks, D. L. Hlavka, M. A. Vaughan, M. J. McGill, W. D. Hart, S. Rodier, and R. Kuehn, “Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties,” J. Geophys. Res. 116(D19), D19207 (2011).
[Crossref]

Winker, D. M.

D. M. Winker, W. H. Hunt, and M. J. McGill, “Initial performance assessment of CALIOP,” Geophys. Res. Lett. 34(19L19803), L19803 (2007).
[Crossref]

Yamaguchi, J.

J. Yamaguchi, T. Takano, T. Nakajima, T. Takamura, H. Kumagai, and Y. Ohno, Y. nakanishi, K. Akita, Y. Kawamura, H. Abe, K. Futaba, and S. Yokote, “Sensitivity of FMCW 95GHz cloud radar for high clouds,” 2006 Asia-Pacific Microwave Conference, Yokohama (2006).
[Crossref]

Yamazaki, A.

A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
[Crossref]

Yorks, J. E.

J. E. Yorks, D. L. Hlavka, M. A. Vaughan, M. J. McGill, W. D. Hart, S. Rodier, and R. Kuehn, “Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties,” J. Geophys. Res. 116(D19), D19207 (2011).
[Crossref]

Yoshida, R.

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).
[Crossref]

Y. Hagihara, H. Okamoto, and R. Yoshida, “Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution,” J. Geophys. Res. 115, D00H33 (2010).
[Crossref]

Zhao, H.

K. Sassen and H. Zhao, “Lidar multiple-scattering in water droplet clouds: toward an improved treatment,” Opt. Rev. 2(5), 394–400 (1995).
[Crossref]

Appl. Opt. (4)

Bull. Am. Meteorol. Soc. (1)

K. Sassen, “The polarization lidar technique for cloud research: A review and current assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991).
[Crossref]

Geophys. Res. Lett. (2)

Y. Hu, “Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination,” Geophys. Res. Lett. 34(11), L11812 (2007).
[Crossref]

D. M. Winker, W. H. Hunt, and M. J. McGill, “Initial performance assessment of CALIOP,” Geophys. Res. Lett. 34(19L19803), L19803 (2007).
[Crossref]

J. Atmos. Ocean. Technol. (2)

N. I. Polonsky, S. P. Love, and A. B. Davis, “Wide-Angle Imaging Lidar development at the ARM Southern Great Plains site: Intercomparison of cloud property retrievals,” J. Atmos. Ocean. Technol. 22(6), 628–648 (2005).
[Crossref]

R. F. Caharan, M. McGill, and J. Kolansinski, “THOR-cloud thickness from offbeam lidar returns,” J. Atmos. Ocean. Technol. 22(6), 605–627 (2005).
[Crossref]

J. Geophys. Res. (9)

A. B. Davis, “Multiple-scattering lidar from both sides of the clouds: Addressing internal structure,” J. Geophys. Res. 113(D14), D14S10 (2008).
[Crossref]

J. E. Yorks, D. L. Hlavka, M. A. Vaughan, M. J. McGill, W. D. Hart, S. Rodier, and R. Kuehn, “Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties,” J. Geophys. Res. 116(D19), D19207 (2011).
[Crossref]

R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115, D00H32 (2010).
[Crossref]

A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polartization lidars in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), D19S17 (2004).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, H. Kumagai, H. Kuroiwa, N. Sugimoto, I. Matsui, A. Shimizu, S. Emori, A. Kamei, and T. Nakajima, “Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai,” J. Geophys. Res. 112(D8), D08216 (2007).
[Crossref]

H. Okamoto, T. Nishizawa, T. Takemura, K. Sato, H. Kumagai, Y. Ohno, N. Sugimoto, A. Shimizu, I. Matsui, and T. Nakajima, “Vertical cloud properties in the tropical western Padific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar,” J. Geophys. Res. 113(D24), D24213 (2008).
[Crossref]

H. Okamoto, K. Sato, and Y. Hagihara, “Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals,” J. Geophys. Res. 115(D22), D22209 (2010).
[Crossref]

Y. Hagihara, H. Okamoto, and R. Yoshida, “Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution,” J. Geophys. Res. 115, D00H33 (2010).
[Crossref]

K. Sato and H. Okamoto, "Refinement of global ice microphysics using spaceborne active sensors," J. Geophys. Res. 116, D20202 (2011).

J. Quant. Spectrosc. Radiat. Transf. (1)

H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transf. 72(4), 467–483 (2002).
[Crossref]

Opt. Rev. (1)

K. Sassen and H. Zhao, “Lidar multiple-scattering in water droplet clouds: toward an improved treatment,” Opt. Rev. 2(5), 394–400 (1995).
[Crossref]

Other (2)

H. Okamoto, K. Sato, T. Makino, T. Nishizawa, N. Sugimoto, Y. Jin, and A. Shimizu, “Depolarization ratio of clouds measured by multiple-field of view multiple-scattering polarization lidar,” EPJ Web of Conferences 119, 11007 (2016).
[Crossref]

J. Yamaguchi, T. Takano, T. Nakajima, T. Takamura, H. Kumagai, and Y. Ohno, Y. nakanishi, K. Akita, Y. Kawamura, H. Abe, K. Futaba, and S. Yokote, “Sensitivity of FMCW 95GHz cloud radar for high clouds,” 2006 Asia-Pacific Microwave Conference, Yokohama (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Outline of the multiple-field-of-view multiple-scattering polarization lidar (MFMSPL).
Fig. 2
Fig. 2 MFMSPL installed at the National Institute of Environmental Studies (NIES), Tsukuba, Japan.
Fig. 3
Fig. 3 Apparent backscattering coefficient at 532 nm for four parallel polarization channels of the Multiple-field-of-view Multiple-scattering Polarization Lidar (MFMSPL) and that for NIES lidar. Vertical axis denotes cloud altitude (m). Data were observed on 5 March, 2015, 3:53–24:00 UTC. (a) Channel 1 corresponds to a vertical pointing channel with a 10 mrad field of view (FOV). Channels 2, 3, and 4 were tilted at 10 mrad (b), 20 mrad (c), and 30 mrad (d) from the vertical direction, respectively. (e) β for the parallel polarization channel of the NIES lidar.
Fig. 4
Fig. 4 Same as Fig. 2 but for depolarization ratio. (a) For on-beam channel, (b) for 10 mrad, (c) for 20 mrad, (d) for 30 mrad, and (e) for NIES lidar.
Fig. 5
Fig. 5 Co-located observations of 95 GHz cloud radar FALCON-1 and the MFMSPL (a) Time-height plot of radar signals by the FALCON-1, (b) attenuated backscattering coefficient for 0 mrad detected by channel 1 (c) same as (b) but for 10 mrad by channel3, (d) same as (b) but for 20 mrad by channel 5. Magenta circles indicated the apparent cloud top height detected by cloud radar.
Fig. 6
Fig. 6 Same as Fig. 5 but for the two-layer cloud case. (a) Time-height plot of radar signals by FALCON-1, (b) attenuated backscattering coefficient for 0 mrad detected by channel 1 (c) same as (b) but for 10 mrad by channel 3, (d) same as (b) but for 20 mrad by channel 5.
Fig. 7
Fig. 7 Same as Fig. 6 but for depolarization ratio (a) for 0 mrad by the combination of channels 1 and 2, (b) for tile angle of 10 mrad by channels 3 and 4, and (c) for 20 mrad by channels 5 and 6.
Fig. 8
Fig. 8 (a) Simulated total attenuated backscattering coefficient βatt by Backward Monte Carlo simulation. CH1 and CH2, CH3 and CH4, CH5 and CH6, and CH7 and CH8 are mounted at tilt angle of 0mrad, 10mrad, 20mrad, 30mrad to the vertical direction. (b) Same as (a) but for depolarization ratio.

Tables (1)

Tables Icon

Table 1 MFMSPL system specifications.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ(0)= β att (Ch.2)/ β att (Ch.1), δ(10)= β att (Ch.4)/ β att (Ch.3), δ(20)= β att (Ch.6)/ β att (Ch.5), and δ(30)= β att (Ch.8)/ β att (Ch.7),

Metrics