Abstract

High-speed optical interconnects drive the need for compact microring resonators (MRRs) with wide free spectral ranges (FSRs). A silicon-on-insulator MRR based filter with bent contra-directional couplers that exhibits an FSR-free response, at both the drop and through ports, while achieving a compact footprint is both theoretically and experimentally demonstrated. Also, using bent contra-directional couplers in the couping regions of MRRs allowed us to achieve larger side-mode suppressions than MRRs with straight CDCs. The fabricated filter has a minimum suppression ratio of more than 15 dB, a 3dB-bandwidth of ~23 GHz, an extinction ratio of ~18 dB, and a drop-port insertion loss of ~1 dB. High-speed data transmission through our filter is also demonstrated at data rates of 12.5 Gbps, 20 Gbps, and 28 Gbps.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bandwidth-tunable, FSR-free, microring-based, SOI filter with integrated contra-directional couplers

Ajay Mistry, Mustafa Hammood, Hossam Shoman, Lukas Chrostowski, and Nicolas A. F. Jaeger
Opt. Lett. 43(24) 6041-6044 (2018)

Submicron-resonator-based add-drop optical filter with an ultra-large free spectral range

Dajian Liu, Chong Zhang, Di Liang, and Daoxin Dai
Opt. Express 27(2) 416-422 (2019)

Polarization-selective microring resonators

Ying Tan, Sitao Chen, and Daoxin Dai
Opt. Express 25(4) 4106-4119 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, I. Shubin, and X. Zhou, “Optical interconnects: recent advances and future challenges,” Opt. Express 23, 3717–3720 (2015).
    [Crossref] [PubMed]
  2. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. Nelson, D. Albonesi, E. Friedman, and P. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron. 12, 1699–1705 (2006).
    [Crossref]
  3. X. Zheng and A. V. Krishnamoorthy, “A WDM CMOS photonic platform for chip-to-chip optical interconnects,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4O.3.
  4. P. P. Absil, P. Verheyen, P. D. Heyn, M. Pantouvaki, G. Lepage, J. D. Coster, and J. V. Campenhout, “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s,” Opt. Express 23, 9369–9378 (2015).
    [Crossref] [PubMed]
  5. R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. F. Jaeger, “Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21, 9103–9112 (2013).
    [Crossref] [PubMed]
  6. M. Watts, T. Barwicz, M. Popovic, P. Rakich, L. Socci, E. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.
  7. W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100, 121118 (2012).
    [Crossref]
  8. P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. D. L. Rue, “Microring resonator with wavelength selective coupling in SOI,” in IEEE 8th International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.
  9. R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5, 2202511 (2013).
    [Crossref]
  10. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
    [Crossref] [PubMed]
  11. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
    [Crossref] [PubMed]
  12. N. Eid, H. Jayatilleka, M. Caverley, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Wide FSR silicon-on-insulator microring resonator with bent couplers,” in IEEE 12th International Conference on Group IV Photonics (IEEE, 2015), pp. 96–97.
  13. P. Chen, S. Chen, X. Guan, Y. Shi, and D. Dai, “High-order microring resonators with bent couplers for a box-like filter response,” Opt. Lett. 39, 6304–6307 (2014).
    [Crossref] [PubMed]
  14. J. Xie, L. Zhou, X. Sun, Z. Zou, L. Lu, H. Zhu, X. Li, and J. Chen, “Selective excitation of microring resonances using a pulley-coupling structure,” Appl. Opt. 53, 878–884 (2014).
    [Crossref] [PubMed]
  15. R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23, 10573–10588 (2015).
    [Crossref] [PubMed]
  16. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06 (2011).
    [Crossref]
  17. A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234, 211–216 (2004).
    [Crossref]
  18. R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Silicon quadruple series-coupled Vernier racetrack resonators: Experimental signal quality,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.8.
  19. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007), Chap. 12.

2015 (3)

2014 (2)

2013 (4)

2012 (1)

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100, 121118 (2012).
[Crossref]

2011 (1)

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06 (2011).
[Crossref]

2006 (1)

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. Nelson, D. Albonesi, E. Friedman, and P. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron. 12, 1699–1705 (2006).
[Crossref]

2004 (1)

A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234, 211–216 (2004).
[Crossref]

Absil, P. P.

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06 (2011).
[Crossref]

Albonesi, D.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. Nelson, D. Albonesi, E. Friedman, and P. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron. 12, 1699–1705 (2006).
[Crossref]

Baehr-Jones, T.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref] [PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06 (2011).
[Crossref]

Barwicz, T.

M. Watts, T. Barwicz, M. Popovic, P. Rakich, L. Socci, E. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.

Bassi, P.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. D. L. Rue, “Microring resonator with wavelength selective coupling in SOI,” in IEEE 8th International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Boeck, R.

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23, 10573–10588 (2015).
[Crossref] [PubMed]

R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. F. Jaeger, “Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21, 9103–9112 (2013).
[Crossref] [PubMed]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5, 2202511 (2013).
[Crossref]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Silicon quadruple series-coupled Vernier racetrack resonators: Experimental signal quality,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.8.

Bojko, R. J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06 (2011).
[Crossref]

Campenhout, J. V.

Caverley, M.

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23, 10573–10588 (2015).
[Crossref] [PubMed]

N. Eid, H. Jayatilleka, M. Caverley, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Wide FSR silicon-on-insulator microring resonator with bent couplers,” in IEEE 12th International Conference on Group IV Photonics (IEEE, 2015), pp. 96–97.

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Silicon quadruple series-coupled Vernier racetrack resonators: Experimental signal quality,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.8.

Chen, G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. Nelson, D. Albonesi, E. Friedman, and P. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron. 12, 1699–1705 (2006).
[Crossref]

Chen, H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. Nelson, D. Albonesi, E. Friedman, and P. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron. 12, 1699–1705 (2006).
[Crossref]

Chen, J.

Chen, P.

Chen, S.

Chrostowski, L.

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23, 10573–10588 (2015).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref] [PubMed]

R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. F. Jaeger, “Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21, 9103–9112 (2013).
[Crossref] [PubMed]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5, 2202511 (2013).
[Crossref]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref] [PubMed]

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100, 121118 (2012).
[Crossref]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Silicon quadruple series-coupled Vernier racetrack resonators: Experimental signal quality,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.8.

N. Eid, H. Jayatilleka, M. Caverley, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Wide FSR silicon-on-insulator microring resonator with bent couplers,” in IEEE 12th International Conference on Group IV Photonics (IEEE, 2015), pp. 96–97.

Coster, J. D.

Cusmai, G.

A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234, 211–216 (2004).
[Crossref]

Dai, D.

Eid, N.

N. Eid, H. Jayatilleka, M. Caverley, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Wide FSR silicon-on-insulator microring resonator with bent couplers,” in IEEE 12th International Conference on Group IV Photonics (IEEE, 2015), pp. 96–97.

Fard, S. T.

Fauchet, P.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. Nelson, D. Albonesi, E. Friedman, and P. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron. 12, 1699–1705 (2006).
[Crossref]

Flueckiger, J.

Friedman, E.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. Nelson, D. Albonesi, E. Friedman, and P. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron. 12, 1699–1705 (2006).
[Crossref]

Gnan, M.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. D. L. Rue, “Microring resonator with wavelength selective coupling in SOI,” in IEEE 8th International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Greenberg, M.

Guan, X.

Haurylau, M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. Nelson, D. Albonesi, E. Friedman, and P. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron. 12, 1699–1705 (2006).
[Crossref]

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06 (2011).
[Crossref]

Heyn, P. D.

Hochberg, M.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref] [PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06 (2011).
[Crossref]

Ippen, E.

M. Watts, T. Barwicz, M. Popovic, P. Rakich, L. Socci, E. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.

Jaeger, N. A. F.

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23, 10573–10588 (2015).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref] [PubMed]

R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. F. Jaeger, “Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21, 9103–9112 (2013).
[Crossref] [PubMed]

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5, 2202511 (2013).
[Crossref]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref] [PubMed]

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100, 121118 (2012).
[Crossref]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Silicon quadruple series-coupled Vernier racetrack resonators: Experimental signal quality,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.8.

N. Eid, H. Jayatilleka, M. Caverley, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Wide FSR silicon-on-insulator microring resonator with bent couplers,” in IEEE 12th International Conference on Group IV Photonics (IEEE, 2015), pp. 96–97.

Jayatilleka, H.

N. Eid, H. Jayatilleka, M. Caverley, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Wide FSR silicon-on-insulator microring resonator with bent couplers,” in IEEE 12th International Conference on Group IV Photonics (IEEE, 2015), pp. 96–97.

Kaertner, F.

M. Watts, T. Barwicz, M. Popovic, P. Rakich, L. Socci, E. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.

Krishnamoorthy, A. V.

X. Zheng and A. V. Krishnamoorthy, “A WDM CMOS photonic platform for chip-to-chip optical interconnects,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4O.3.

Lepage, G.

Li, J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06 (2011).
[Crossref]

Li, X.

Li, Z.

Lin, C.

Liu, Y.

Lu, L.

Martinelli, M.

A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234, 211–216 (2004).
[Crossref]

Melloni, A.

A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234, 211–216 (2004).
[Crossref]

Nelson, N.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. Nelson, D. Albonesi, E. Friedman, and P. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron. 12, 1699–1705 (2006).
[Crossref]

Orlandi, P.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. D. L. Rue, “Microring resonator with wavelength selective coupling in SOI,” in IEEE 8th International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Pantouvaki, M.

Popovic, M.

M. Watts, T. Barwicz, M. Popovic, P. Rakich, L. Socci, E. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.

Rakich, P.

M. Watts, T. Barwicz, M. Popovic, P. Rakich, L. Socci, E. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.

Rue, R. D. L.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. D. L. Rue, “Microring resonator with wavelength selective coupling in SOI,” in IEEE 8th International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Samarelli, A.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. D. L. Rue, “Microring resonator with wavelength selective coupling in SOI,” in IEEE 8th International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Shekhar, S.

N. Eid, H. Jayatilleka, M. Caverley, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Wide FSR silicon-on-insulator microring resonator with bent couplers,” in IEEE 12th International Conference on Group IV Photonics (IEEE, 2015), pp. 96–97.

Shi, W.

Shi, Y.

Shubin, I.

Siano, R.

A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234, 211–216 (2004).
[Crossref]

Smith, H. I.

M. Watts, T. Barwicz, M. Popovic, P. Rakich, L. Socci, E. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.

Socci, L.

M. Watts, T. Barwicz, M. Popovic, P. Rakich, L. Socci, E. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.

Sorel, M.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. D. L. Rue, “Microring resonator with wavelength selective coupling in SOI,” in IEEE 8th International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Strain, M. J.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. D. L. Rue, “Microring resonator with wavelength selective coupling in SOI,” in IEEE 8th International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Sun, X.

Velha, P.

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. D. L. Rue, “Microring resonator with wavelength selective coupling in SOI,” in IEEE 8th International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

Verheyen, P.

Wang, X.

Wang, Y.

Watts, M.

M. Watts, T. Barwicz, M. Popovic, P. Rakich, L. Socci, E. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.

Xie, J.

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007), Chap. 12.

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007), Chap. 12.

Yun, H.

Zhang, J.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. Nelson, D. Albonesi, E. Friedman, and P. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron. 12, 1699–1705 (2006).
[Crossref]

Zhang, W.

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100, 121118 (2012).
[Crossref]

Zheng, X.

X. Zheng and A. V. Krishnamoorthy, “A WDM CMOS photonic platform for chip-to-chip optical interconnects,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4O.3.

Zhou, L.

Zhou, X.

Zhu, H.

Zou, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, and N. A. F. Jaeger, “Grating-coupled silicon microring resonators,” Appl. Phys. Lett. 100, 121118 (2012).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. Nelson, D. Albonesi, E. Friedman, and P. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron. 12, 1699–1705 (2006).
[Crossref]

IEEE Photon. J. (1)

R. Boeck, W. Shi, L. Chrostowski, and N. A. F. Jaeger, “FSR-eliminated Vernier racetrack resonators using grating-assisted couplers,” IEEE Photon. J. 5, 2202511 (2013).
[Crossref]

J. Vac. Sci. Technol. B (1)

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B 29, 06 (2011).
[Crossref]

Opt. Commun. (1)

A. Melloni, M. Martinelli, G. Cusmai, and R. Siano, “Experimental evaluation of ring resonator filters impact on the bit error rate in non return to zero transmission systems,” Opt. Commun. 234, 211–216 (2004).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Other (6)

P. Orlandi, P. Velha, M. Gnan, P. Bassi, A. Samarelli, M. Sorel, M. J. Strain, and R. D. L. Rue, “Microring resonator with wavelength selective coupling in SOI,” in IEEE 8th International Conference on Group IV Photonics (IEEE, 2011), pp. 281–283.

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Silicon quadruple series-coupled Vernier racetrack resonators: Experimental signal quality,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.8.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007), Chap. 12.

M. Watts, T. Barwicz, M. Popovic, P. Rakich, L. Socci, E. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.

X. Zheng and A. V. Krishnamoorthy, “A WDM CMOS photonic platform for chip-to-chip optical interconnects,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4O.3.

N. Eid, H. Jayatilleka, M. Caverley, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Wide FSR silicon-on-insulator microring resonator with bent couplers,” in IEEE 12th International Conference on Group IV Photonics (IEEE, 2015), pp. 96–97.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of an MRR filter with bent CDCs, as well as an inset illustrating some of the CDCs’ design parameters. The dark blue traces are the corrugated waveguides (gratings) of the CDCs.
Fig. 2
Fig. 2 Schematic of an MRR with straight CDCs.
Fig. 3
Fig. 3 A CDC’s spectral response (dashed trace) and an MRR’s response (solid trace) when Δλnull = 2FSR.
Fig. 4
Fig. 4 (a) Plots of γ required to achieve maximum suppression versus Lrt for MRRs with straight CDCs and MRRs with bent CDCs. (b) Plots of Kc, in dB, versus Lrt for MRRs with straight CDC and MRRs with bent CDCs at γ = 87%. (c) The CDC’s and the MRR’s spectral responses when Δλnull > 2FSR.
Fig. 5
Fig. 5 Plots of the MRR’s coverage with the CDCs (Lc/πR) versus R at various κo values.
Fig. 6
Fig. 6 A plot of Kc, in dB, versus R at κo = 8000 m−1.
Fig. 7
Fig. 7 Theoretical spectral responses of (a) the power coupling for our bent CDC, |κc|2, at the drop port and the power transmission, |tc|2, at the through port, and (b) MRR our filter with bent CDCs transmission at the drop port, Tdrop, and at through port, Tthru. (c) A plot of the theoretical chromatic dispersion at the drop-port for a ±0.1 nm (~25 GHz) window around 1537.2 nm.
Fig. 8
Fig. 8 Microscopic image of our MRR filter with metal heaters; the inset shows a scanning electron microscope (SEM) image of a portion of a bent CDC.
Fig. 9
Fig. 9 (a) Spectral responses of our MRR filter at the drop and through ports. (b) The responses relative to 1540.3 nm, after normalizing them with respect to the grating couplers’ responses.
Fig. 10
Fig. 10 (a) Drop-port responses at various total tuning powers. (b) Chromatic dispersion at the drop port in a ±0.1 nm (~25 GHz) relative to 1540.3 nm.
Fig. 11
Fig. 11 Drop-port spectral responses from the measured data and from E ¯ d r o p calculated using fitted κo and α values relative to 1540.3 nm, as well as the theoretical drop-port response obtained in section 4 relative to 1537.2 nm.
Fig. 12
Fig. 12 Eye diagrams of NRZ data at the input of our filter at 1540.3 nm for data rates of (a) 12.5 Gbps, (b) 20 Gbps, and (c) 28 Gbps as well as at the drop port (output) for data rates of (d) 12.5 Gbps, (e) 20 Gbps, and (f) 28 Gbps. Eye diagrams of NRZ data at 1533.1 nm at the input of our filter for data rates of (g) 12.5 Gbps, (h) 20 Gbps, and (i) 28 Gbps as well as at the through port (output) for data rates of (j) 12.5 Gbps, (k) 20 Gbps, and (l) 28 Gbps.

Tables (1)

Tables Icon

Table 1 Summary of the as-designed, measured, and fitted results of our MRR filter with bent CDCs and its comparison with the results of an MRR with straight CDCs demonstrated in [7].

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ λ n u l l = 2 λ 2 π ( n g R + n g B ) κ o 2 + ( π L c ) 2
FSR = λ 2 L r t n g R ,
R s t = n g R + n g B n g R 2 κ o 2 + ( π L c ) 2 L c π
L c = 2 π ( n g R + n g B n g R R ) 2 ( 2 κ o ) 2
Λ = λ D ( R + W R 2 + g 2 ) n B ( R + W B 2 + g + W R 2 ) + n R R
E ¯ d r o p = κ c 2 χ 1 t c 2 χ R 2 χ
E ¯ t h r u = t c χ B ( 1 t c 2 χ R 2 χ ) + κ c 2 t c χ R χ 1 t c 2 χ R 2 χ

Metrics