Abstract

A 2090 nm injection-seeded Q-switched Ho:YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD is demonstrated in this paper. Single-frequency operation of Q-switched Ho:YAG ceramic laser is achieved by injection seeding technique. The maximum output energy of the single-frequency Q-switched Ho:YAG ceramic laser is 14.76 mJ, with a pulse width of 121.6 ns and a repetition rate of 200 Hz. The half-width of the pulse spectrum measured by heterodyne technique is 3.84 MHz. The fluctuation of the center frequency of the pulsed laser is 1.49 MHz (RMS) in 1 hour. As far as we know, this is the first time to report a single-frequency, injection-seeded Ho:YAG ceramic pulsed laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-energy, stable single-frequency Ho:YAG ceramic amplifier system

Yixuan Zhang, Chunqing Gao, Qing Wang, QuanXin Na, Mingwei Gao, Meng Zhang, Qing Ye, YuJia Wang, and Jian Zhang
Appl. Opt. 56(34) 9531-9535 (2017)

Single-frequency operation of diode-pumped 2 μm Q-switched Tm:YAG laser injection seeded by monolithic nonplanar ring laser

Chunqing Gao, Zhifeng Lin, Mingwei Gao, Yunshan Zhang, Lingni Zhu, Ran Wang, and Yan Zheng
Appl. Opt. 49(15) 2841-2844 (2010)

1  kHz single-frequency 2.09  μm Ho:YAG ring laser

Quanxin Na, Chunqing Gao, Qing Wang, Yixuan Zhang, Mingwei Gao, Meng Zhang, and Yujia Wang
Appl. Opt. 56(25) 7075-7078 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Koch, J. P. Deyst, and M. E. Storm, “Single-frequency lasing of monolithic Ho,Tm:YLF,” Opt. Lett. 18(15), 1235–1237 (1993).
    [Crossref] [PubMed]
  2. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
    [Crossref] [PubMed]
  3. S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications, ” Proc. SPIE 5653, 175 (2005).
  4. Y. Bai, J. Yu, M. Petros, P. Petzar, B. Trieu, H. Lee, and U. Singh, “High repetition rate and frequency stabilized Ho:YLF laser for CO2 differential absorption lidar,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) Optical Society of America (2009), paper WB22.
  5. C. Gao, Z. Lin, M. Gao, Y. Zhang, L. Zhu, R. Wang, and Y. Zheng, “Single-frequency operation of diode-pumped 2 microm Q-switched Tm:YAG laser injection seeded by monolithic nonplanar ring laser,” Appl. Opt. 49(15), 2841–2844 (2010).
    [Crossref] [PubMed]
  6. T. Y. Dai, Y. L. Ju, X. M. Duan, W. Liu, B. Q. Yao, and Y. Z. Wang, “Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3, laser at 2,118 nm,” Appl. Phys. B 111(1), 89–92 (2013).
    [Crossref]
  7. P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro, and E. P. Chicklis, “50-mJ, Q-switched, 2.09-microm holmium laser resonantly pumped by a diode-pumped 1.9-microm thulium laser,” Opt. Lett. 28(12), 1016–1018 (2003).
    [Crossref] [PubMed]
  8. T. Y. Dai, Y. L. Ju, B. Q. Yao, Y. J. Shen, W. Wang, and Y. Z. Wang, “Single-frequency, Q-switched Ho:YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho:YAG laser,” Opt. Lett. 37(11), 1850–1852 (2012).
    [Crossref] [PubMed]
  9. W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
    [Crossref]
  10. L. Wang, C. Gao, M. Gao, Y. Li, F. Yue, J. Zhang, and D. Tang, “A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality,” Opt. Express 22(1), 254–261 (2014).
    [Crossref] [PubMed]
  11. Y. Li, Y. Zhang, Q. Na, C. Gao, M. Gao, Q. Wang, and J. Zhang, “34 mJ Ho:YAG ceramic master oscillator and power amplifier laser at 2097 nm,” Appl. Opt. 55(11), 2853–2857 (2016).
    [Crossref] [PubMed]
  12. S. W. Henderson, E. H. Yuen, and E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11(11), 715–717 (1986).
    [Crossref] [PubMed]
  13. M. Petros, J. Yu, S. Chen, U. N. Singh, B. M. Walsh, Y. Bai, and N. P. Barnes, “Diode pumped 135 mJ Ho:Tm:LuLF Oscillator,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 315.
  14. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
    [Crossref]
  15. Z. Lin, X. Wang, F. Kallmeyer, H. J. Eichler, and C. Gao, “Single frequency operation of a tunable injection-seeded Nd:GSAG Q-switched laser around 942nm,” Opt. Express 18(6), 6131–6136 (2010).
    [Crossref] [PubMed]

2016 (1)

2014 (1)

2013 (1)

T. Y. Dai, Y. L. Ju, X. M. Duan, W. Liu, B. Q. Yao, and Y. Z. Wang, “Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3, laser at 2,118 nm,” Appl. Phys. B 111(1), 89–92 (2013).
[Crossref]

2012 (1)

2010 (3)

2005 (1)

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications, ” Proc. SPIE 5653, 175 (2005).

2003 (1)

2000 (1)

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

1993 (1)

1991 (1)

1986 (1)

Bai, Y. X.

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications, ” Proc. SPIE 5653, 175 (2005).

Budni, P. A.

P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro, and E. P. Chicklis, “50-mJ, Q-switched, 2.09-microm holmium laser resonantly pumped by a diode-pumped 1.9-microm thulium laser,” Opt. Lett. 28(12), 1016–1018 (2003).
[Crossref] [PubMed]

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Castro, R. T.

Chen, S. S.

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications, ” Proc. SPIE 5653, 175 (2005).

Cheng, X. J.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Chicklis, E. P.

P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro, and E. P. Chicklis, “50-mJ, Q-switched, 2.09-microm holmium laser resonantly pumped by a diode-pumped 1.9-microm thulium laser,” Opt. Lett. 28(12), 1016–1018 (2003).
[Crossref] [PubMed]

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Dai, T. Y.

T. Y. Dai, Y. L. Ju, X. M. Duan, W. Liu, B. Q. Yao, and Y. Z. Wang, “Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3, laser at 2,118 nm,” Appl. Phys. B 111(1), 89–92 (2013).
[Crossref]

T. Y. Dai, Y. L. Ju, B. Q. Yao, Y. J. Shen, W. Wang, and Y. Z. Wang, “Single-frequency, Q-switched Ho:YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho:YAG laser,” Opt. Lett. 37(11), 1850–1852 (2012).
[Crossref] [PubMed]

Deyst, J. P.

Duan, X. M.

T. Y. Dai, Y. L. Ju, X. M. Duan, W. Liu, B. Q. Yao, and Y. Z. Wang, “Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3, laser at 2,118 nm,” Appl. Phys. B 111(1), 89–92 (2013).
[Crossref]

Eichler, H. J.

Fry, E. S.

Gao, C.

Gao, M.

Gustafson, E. J.

Hale, C. P.

Henderson, S. W.

Huffaker, A. V.

Ibach, C. R.

Jiang, B. X.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Ju, Y. L.

T. Y. Dai, Y. L. Ju, X. M. Duan, W. Liu, B. Q. Yao, and Y. Z. Wang, “Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3, laser at 2,118 nm,” Appl. Phys. B 111(1), 89–92 (2013).
[Crossref]

T. Y. Dai, Y. L. Ju, B. Q. Yao, Y. J. Shen, W. Wang, and Y. Z. Wang, “Single-frequency, Q-switched Ho:YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho:YAG laser,” Opt. Lett. 37(11), 1850–1852 (2012).
[Crossref] [PubMed]

Kallmeyer, F.

Kavaya, M. J.

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications, ” Proc. SPIE 5653, 175 (2005).

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
[Crossref] [PubMed]

Koch, G. J.

Lemons, M. L.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Li, J.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Li, Y.

Lin, Z.

Liu, W.

T. Y. Dai, Y. L. Ju, X. M. Duan, W. Liu, B. Q. Yao, and Y. Z. Wang, “Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3, laser at 2,118 nm,” Appl. Phys. B 111(1), 89–92 (2013).
[Crossref]

Liu, W. B.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Magee, J. R.

Mosto, J. R.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Na, Q.

Pan, Y. B.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Petros, M.

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications, ” Proc. SPIE 5653, 175 (2005).

Setzler, S. D.

Shen, Y. J.

Singh, U. N.

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications, ” Proc. SPIE 5653, 175 (2005).

Storm, M. E.

Tang, D.

Wang, L.

L. Wang, C. Gao, M. Gao, Y. Li, F. Yue, J. Zhang, and D. Tang, “A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality,” Opt. Express 22(1), 254–261 (2014).
[Crossref] [PubMed]

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Wang, Q.

Wang, R.

Wang, W.

Wang, X.

Wang, Y. Z.

T. Y. Dai, Y. L. Ju, X. M. Duan, W. Liu, B. Q. Yao, and Y. Z. Wang, “Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3, laser at 2,118 nm,” Appl. Phys. B 111(1), 89–92 (2013).
[Crossref]

T. Y. Dai, Y. L. Ju, B. Q. Yao, Y. J. Shen, W. Wang, and Y. Z. Wang, “Single-frequency, Q-switched Ho:YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho:YAG laser,” Opt. Lett. 37(11), 1850–1852 (2012).
[Crossref] [PubMed]

Xu, J. Q.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Yao, B. Q.

T. Y. Dai, Y. L. Ju, X. M. Duan, W. Liu, B. Q. Yao, and Y. Z. Wang, “Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3, laser at 2,118 nm,” Appl. Phys. B 111(1), 89–92 (2013).
[Crossref]

T. Y. Dai, Y. L. Ju, B. Q. Yao, Y. J. Shen, W. Wang, and Y. Z. Wang, “Single-frequency, Q-switched Ho:YAG laser at room temperature injection-seeded by two F-P etalons-restricted Tm, Ho:YAG laser,” Opt. Lett. 37(11), 1850–1852 (2012).
[Crossref] [PubMed]

Yu, J. R.

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications, ” Proc. SPIE 5653, 175 (2005).

Yue, F.

Yuen, E. H.

Zhang, J.

Zhang, W. X.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Zhang, Y.

Zheng, Y.

Zhou, J.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Zhu, L.

Appl. Opt. (2)

Appl. Phys. B (1)

T. Y. Dai, Y. L. Ju, X. M. Duan, W. Liu, B. Q. Yao, and Y. Z. Wang, “Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3, laser at 2,118 nm,” Appl. Phys. B 111(1), 89–92 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

J. Alloys Compd. (1)

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Proc. SPIE (1)

S. S. Chen, J. R. Yu, M. Petros, Y. X. Bai, U. N. Singh, and M. J. Kavaya, “Joule-level double-pulsed Ho:Tm:LuLF Master-Oscillator-Power-Amplifier (MOPA) for potential spaceborne lidar applications, ” Proc. SPIE 5653, 175 (2005).

Other (2)

Y. Bai, J. Yu, M. Petros, P. Petzar, B. Trieu, H. Lee, and U. Singh, “High repetition rate and frequency stabilized Ho:YLF laser for CO2 differential absorption lidar,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) Optical Society of America (2009), paper WB22.

M. Petros, J. Yu, S. Chen, U. N. Singh, B. M. Walsh, Y. Bai, and N. P. Barnes, “Diode pumped 135 mJ Ho:Tm:LuLF Oscillator,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 315.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of the injection-seeded Q-switched Ho:YAG ceramic laser pumped by a 1.9 μm LD.
Fig. 2
Fig. 2 Output energy and pulse width of the Q-switched Ho:YAG ceramic lasers versus the pulse repetition rate.
Fig. 3
Fig. 3 (a). Output energy and pulse width of the single-frequency Ho:YAG ceramic laser versus the pump power at a pulse repetition rate of 200 Hz (b). The build-up time of the Q-switched Ho:YAG laser versus the pump power (with and without injection-seeding).
Fig. 4
Fig. 4 Beam quality of the injection seeded Q-switched laser.
Fig. 5
Fig. 5 (a). Heterodyne beating signal of the injection-seeded laser pulse (b). Spectrum analysis of the injection seeded laser pulse

Metrics