Abstract

Plasmonic dimers that made from two subwavelength particles have drawn much attention in the recent years, which are quite promising in local field enhancement, sensing, high frequency conductance probing and electron tunneling. In this work, we experimentally investigate the mode transition effect of different plasmonic resonances in double-ring dimers when introducing conductive junction at the dimer gap in the terahertz regime. Without the junction, the dimers support a single dipolar bonding dimer plasmonic (BDP) mode. With the junction of a high conductance, two new resonance modes—a screened BDP (SBDP) mode and a charge transfer plasmonic (CTP) mode emerge. Such effect is proved to be unrelated to the shape of the rings, whether circular, square or triangular. However, the resonance statuses of the specific modes are different. Furthermore, we also experimentally study the controllable mode resonance behavior as the conductivity of the junction gradually changes by using superconducting material, and meanwhile numerically investigate the active mode transition behavior as well as the threshold effect. These results show great potential in applications of plasmonic sensing, spectral modulating and optical switching.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable multiband plasmonic response of indium antimonide touching microrings in the terahertz range

Maryam Moridsadat, Saeed Golmohammadi, and Hamed Baghban
Appl. Opt. 57(16) 4368-4375 (2018)

Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity

Arindam Dasgupta and G. V. Pavan Kumar
Appl. Opt. 51(11) 1688-1693 (2012)

Effects of symmetry breaking on plasmon resonance in a noncoaxial nanotube and nanotube dimer

Haiqing Xu, Hongjian Li, Zhimin Liu, Suxia Xie, Xin Zhou, Xiao Peng, and Xiuke Xu
J. Opt. Soc. Am. A 28(8) 1662-1667 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  4. S. Zhang, Y. Xiong, G. Bartal, X. Yin, and X. Zhang, “Magnetized Plasma for Reconfigurable Subdiffraction Imaging,” Phys. Rev. Lett. 106(24), 243901 (2011).
    [Crossref] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  7. J. Li and J. B. Pendry, “Hiding Under the Carpet: a New Strategy for Cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [Crossref] [PubMed]
  8. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  9. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
    [Crossref]
  10. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  11. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  12. W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
    [Crossref] [PubMed]
  13. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
    [Crossref]
  14. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime,” Nano Lett. 4(9), 1627–1631 (2004).
    [Crossref]
  15. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
    [Crossref] [PubMed]
  16. Y.-F. Chau, M. W. Chen, H.-H. Yeh, F.-L. Wu, H.-Y. Li, and D. P. Tsai, “Highly enhanced surface plasmon resonance in a coupled silver nanodumbbell,” Appl. Phys., A Mater. Sci. Process. 104(3), 801–805 (2011).
    [Crossref]
  17. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
    [Crossref] [PubMed]
  18. O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities,” Nano Lett. 10(8), 3090–3095 (2010).
    [Crossref] [PubMed]
  19. O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13(8), 083013 (2011).
    [Crossref]
  20. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [Crossref]
  21. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [Crossref] [PubMed]
  22. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: a Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced inFrared Absorption,” ACS Nano 2(4), 707–718 (2008).
    [Crossref] [PubMed]
  23. D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, “Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions,” Nano Lett. 8(3), 919–924 (2008).
    [Crossref] [PubMed]
  24. W. Yue, Y. Yang, Z. Wang, J. Han, A. Syed, L. Chen, K. Wong, and X. Wang, “Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes,” J. Phys. D Appl. Phys. 45(42), 425401 (2012).
    [Crossref]
  25. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
    [Crossref] [PubMed]
  26. L. Wu, H. Duan, P. Bai, M. Bosman, J. K. W. Yang, and E. Li, “Fowler-Nordheim Tunneling Induced Charge Transfer Plasmons Between Nearly Touching Nanoparticles,” ACS Nano 7(1), 707–716 (2013).
    [Crossref] [PubMed]
  27. S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
    [Crossref] [PubMed]
  28. M. Beck, M. Klammer, S. Lang, P. Leiderer, V. V. Kabanov, G. N. Gol’tsman, and J. Demsar, “Energy-Gap Dynamics of Superconducting NbN Thin Films Studied by Time-Resolved Terahertz Spectroscopy,” Phys. Rev. Lett. 107(17), 177007 (2011).
    [Crossref] [PubMed]
  29. C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
    [Crossref]
  30. H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
    [Crossref] [PubMed]
  31. J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
    [Crossref] [PubMed]
  32. W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
    [Crossref] [PubMed]

2016 (1)

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

2014 (1)

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

2013 (2)

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
[Crossref]

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. W. Yang, and E. Li, “Fowler-Nordheim Tunneling Induced Charge Transfer Plasmons Between Nearly Touching Nanoparticles,” ACS Nano 7(1), 707–716 (2013).
[Crossref] [PubMed]

2012 (3)

W. Yue, Y. Yang, Z. Wang, J. Han, A. Syed, L. Chen, K. Wong, and X. Wang, “Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes,” J. Phys. D Appl. Phys. 45(42), 425401 (2012).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

2011 (6)

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
[Crossref] [PubMed]

S. Zhang, Y. Xiong, G. Bartal, X. Yin, and X. Zhang, “Magnetized Plasma for Reconfigurable Subdiffraction Imaging,” Phys. Rev. Lett. 106(24), 243901 (2011).
[Crossref] [PubMed]

M. Beck, M. Klammer, S. Lang, P. Leiderer, V. V. Kabanov, G. N. Gol’tsman, and J. Demsar, “Energy-Gap Dynamics of Superconducting NbN Thin Films Studied by Time-Resolved Terahertz Spectroscopy,” Phys. Rev. Lett. 107(17), 177007 (2011).
[Crossref] [PubMed]

Y.-F. Chau, M. W. Chen, H.-H. Yeh, F.-L. Wu, H.-Y. Li, and D. P. Tsai, “Highly enhanced surface plasmon resonance in a coupled silver nanodumbbell,” Appl. Phys., A Mater. Sci. Process. 104(3), 801–805 (2011).
[Crossref]

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13(8), 083013 (2011).
[Crossref]

2010 (2)

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities,” Nano Lett. 10(8), 3090–3095 (2010).
[Crossref] [PubMed]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

2009 (2)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

2008 (5)

J. Li and J. B. Pendry, “Hiding Under the Carpet: a New Strategy for Cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: a Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced inFrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, “Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions,” Nano Lett. 8(3), 919–924 (2008).
[Crossref] [PubMed]

2006 (3)

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

2004 (2)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1999 (1)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Aizpurua, J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13(8), 083013 (2011).
[Crossref]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities,” Nano Lett. 10(8), 3090–3095 (2010).
[Crossref] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: a Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced inFrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
[Crossref] [PubMed]

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

Averitt, R. D.

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Bai, P.

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. W. Yang, and E. Li, “Fowler-Nordheim Tunneling Induced Charge Transfer Plasmons Between Nearly Touching Nanoparticles,” ACS Nano 7(1), 707–716 (2013).
[Crossref] [PubMed]

Bartal, G.

S. Zhang, Y. Xiong, G. Bartal, X. Yin, and X. Zhang, “Magnetized Plasma for Reconfigurable Subdiffraction Imaging,” Phys. Rev. Lett. 106(24), 243901 (2011).
[Crossref] [PubMed]

Baumberg, J. J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Beck, M.

M. Beck, M. Klammer, S. Lang, P. Leiderer, V. V. Kabanov, G. N. Gol’tsman, and J. Demsar, “Energy-Gap Dynamics of Superconducting NbN Thin Films Studied by Time-Resolved Terahertz Spectroscopy,” Phys. Rev. Lett. 107(17), 177007 (2011).
[Crossref] [PubMed]

Bingham, C. M.

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Borisov, A. G.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities,” Nano Lett. 10(8), 3090–3095 (2010).
[Crossref] [PubMed]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Bosman, M.

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. W. Yang, and E. Li, “Fowler-Nordheim Tunneling Induced Charge Transfer Plasmons Between Nearly Touching Nanoparticles,” ACS Nano 7(1), 707–716 (2013).
[Crossref] [PubMed]

Bourouina, T.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: a Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced inFrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Bryant, G. W.

Cao, C.

Chau, Y.-F.

Y.-F. Chau, M. W. Chen, H.-H. Yeh, F.-L. Wu, H.-Y. Li, and D. P. Tsai, “Highly enhanced surface plasmon resonance in a coupled silver nanodumbbell,” Appl. Phys., A Mater. Sci. Process. 104(3), 801–805 (2011).
[Crossref]

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Chen, J.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
[Crossref]

J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
[Crossref] [PubMed]

Chen, L.

W. Yue, Y. Yang, Z. Wang, J. Han, A. Syed, L. Chen, K. Wong, and X. Wang, “Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes,” J. Phys. D Appl. Phys. 45(42), 425401 (2012).
[Crossref]

Chen, M. W.

Y.-F. Chau, M. W. Chen, H.-H. Yeh, F.-L. Wu, H.-Y. Li, and D. P. Tsai, “Highly enhanced surface plasmon resonance in a coupled silver nanodumbbell,” Appl. Phys., A Mater. Sci. Process. 104(3), 801–805 (2011).
[Crossref]

Ciszek, J. W.

D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, “Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions,” Nano Lett. 8(3), 919–924 (2008).
[Crossref] [PubMed]

Crozier, K. B.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dai, H.

Demsar, J.

M. Beck, M. Klammer, S. Lang, P. Leiderer, V. V. Kabanov, G. N. Gol’tsman, and J. Demsar, “Energy-Gap Dynamics of Superconducting NbN Thin Films Studied by Time-Resolved Terahertz Spectroscopy,” Phys. Rev. Lett. 107(17), 177007 (2011).
[Crossref] [PubMed]

Duan, H.

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. W. Yang, and E. Li, “Fowler-Nordheim Tunneling Induced Charge Transfer Plasmons Between Nearly Touching Nanoparticles,” ACS Nano 7(1), 707–716 (2013).
[Crossref] [PubMed]

Esteban, R.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

García De Abajo, F. J.

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Gol’tsman, G. N.

M. Beck, M. Klammer, S. Lang, P. Leiderer, V. V. Kabanov, G. N. Gol’tsman, and J. Demsar, “Energy-Gap Dynamics of Superconducting NbN Thin Films Studied by Time-Resolved Terahertz Spectroscopy,” Phys. Rev. Lett. 107(17), 177007 (2011).
[Crossref] [PubMed]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Guo, H. C.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Halas, N. J.

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities,” Nano Lett. 10(8), 3090–3095 (2010).
[Crossref] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: a Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced inFrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, “Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions,” Nano Lett. 8(3), 919–924 (2008).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Han, J.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

W. Yue, Y. Yang, Z. Wang, J. Han, A. Syed, L. Chen, K. Wong, and X. Wang, “Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes,” J. Phys. D Appl. Phys. 45(42), 425401 (2012).
[Crossref]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Jia, Q. X.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Jin, B.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
[Crossref]

J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kabanov, V. V.

M. Beck, M. Klammer, S. Lang, P. Leiderer, V. V. Kabanov, G. N. Gol’tsman, and J. Demsar, “Energy-Gap Dynamics of Superconducting NbN Thin Films Studied by Time-Resolved Terahertz Spectroscopy,” Phys. Rev. Lett. 107(17), 177007 (2011).
[Crossref] [PubMed]

Käll, M.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Kang, L.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
[Crossref]

J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
[Crossref] [PubMed]

Kawayama, I.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
[Crossref]

Klammer, M.

M. Beck, M. Klammer, S. Lang, P. Leiderer, V. V. Kabanov, G. N. Gol’tsman, and J. Demsar, “Energy-Gap Dynamics of Superconducting NbN Thin Films Studied by Time-Resolved Terahertz Spectroscopy,” Phys. Rev. Lett. 107(17), 177007 (2011).
[Crossref] [PubMed]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: a Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced inFrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Kwong, D. L.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Landy, N. I.

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Lang, S.

M. Beck, M. Klammer, S. Lang, P. Leiderer, V. V. Kabanov, G. N. Gol’tsman, and J. Demsar, “Energy-Gap Dynamics of Superconducting NbN Thin Films Studied by Time-Resolved Terahertz Spectroscopy,” Phys. Rev. Lett. 107(17), 177007 (2011).
[Crossref] [PubMed]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: a Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced inFrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Lederer, F.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Leiderer, P.

M. Beck, M. Klammer, S. Lang, P. Leiderer, V. V. Kabanov, G. N. Gol’tsman, and J. Demsar, “Energy-Gap Dynamics of Superconducting NbN Thin Films Studied by Time-Resolved Terahertz Spectroscopy,” Phys. Rev. Lett. 107(17), 177007 (2011).
[Crossref] [PubMed]

Lezec, H. J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Li, E.

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. W. Yang, and E. Li, “Fowler-Nordheim Tunneling Induced Charge Transfer Plasmons Between Nearly Touching Nanoparticles,” ACS Nano 7(1), 707–716 (2013).
[Crossref] [PubMed]

Li, H.-Y.

Y.-F. Chau, M. W. Chen, H.-H. Yeh, F.-L. Wu, H.-Y. Li, and D. P. Tsai, “Highly enhanced surface plasmon resonance in a coupled silver nanodumbbell,” Appl. Phys., A Mater. Sci. Process. 104(3), 801–805 (2011).
[Crossref]

Li, J.

J. Li and J. B. Pendry, “Hiding Under the Carpet: a New Strategy for Cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Liu, A. Q.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Lo, G. Q.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Mei, T.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Murakami, H.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
[Crossref]

Natelson, D.

D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, “Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions,” Nano Lett. 8(3), 919–924 (2008).
[Crossref] [PubMed]

Nijhuis, C. A.

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

Nordlander, P.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities,” Nano Lett. 10(8), 3090–3095 (2010).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: a Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced inFrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, “Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions,” Nano Lett. 8(3), 919–924 (2008).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

O’Hara, J. F.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Padilla, W. J.

Pendry, J. B.

J. Li and J. B. Pendry, “Hiding Under the Carpet: a New Strategy for Cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pérez-González, O.

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13(8), 083013 (2011).
[Crossref]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities,” Nano Lett. 10(8), 3090–3095 (2010).
[Crossref] [PubMed]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Rockstuhl, C.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Romero, I.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Syed, A.

W. Yue, Y. Yang, Z. Wang, J. Han, A. Syed, L. Chen, K. Wong, and X. Wang, “Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes,” J. Phys. D Appl. Phys. 45(42), 425401 (2012).
[Crossref]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Tan, S. F.

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

Tanoto, H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Tao, H.

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Teng, J. H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Tonouchi, M.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
[Crossref]

Tour, J. M.

D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, “Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions,” Nano Lett. 8(3), 919–924 (2008).
[Crossref] [PubMed]

Trugman, S. A.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Tsai, D. P.

Y.-F. Chau, M. W. Chen, H.-H. Yeh, F.-L. Wu, H.-Y. Li, and D. P. Tsai, “Highly enhanced surface plasmon resonance in a coupled silver nanodumbbell,” Appl. Phys., A Mater. Sci. Process. 104(3), 801–805 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: a Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced inFrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: a Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced inFrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Wang, X.

W. Yue, Y. Yang, Z. Wang, J. Han, A. Syed, L. Chen, K. Wong, and X. Wang, “Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes,” J. Phys. D Appl. Phys. 45(42), 425401 (2012).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Z.

W. Yue, Y. Yang, Z. Wang, J. Han, A. Syed, L. Chen, K. Wong, and X. Wang, “Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes,” J. Phys. D Appl. Phys. 45(42), 425401 (2012).
[Crossref]

Ward, D. R.

D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, “Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions,” Nano Lett. 8(3), 919–924 (2008).
[Crossref] [PubMed]

Wong, K.

W. Yue, Y. Yang, Z. Wang, J. Han, A. Syed, L. Chen, K. Wong, and X. Wang, “Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes,” J. Phys. D Appl. Phys. 45(42), 425401 (2012).
[Crossref]

Wu, F.-L.

Y.-F. Chau, M. W. Chen, H.-H. Yeh, F.-L. Wu, H.-Y. Li, and D. P. Tsai, “Highly enhanced surface plasmon resonance in a coupled silver nanodumbbell,” Appl. Phys., A Mater. Sci. Process. 104(3), 801–805 (2011).
[Crossref]

Wu, J.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
[Crossref]

J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
[Crossref] [PubMed]

Wu, L.

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. W. Yang, and E. Li, “Fowler-Nordheim Tunneling Induced Charge Transfer Plasmons Between Nearly Touching Nanoparticles,” ACS Nano 7(1), 707–716 (2013).
[Crossref] [PubMed]

Wu, P.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
[Crossref]

J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
[Crossref] [PubMed]

Wu, Y.

D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, “Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions,” Nano Lett. 8(3), 919–924 (2008).
[Crossref] [PubMed]

Xiong, Y.

S. Zhang, Y. Xiong, G. Bartal, X. Yin, and X. Zhang, “Magnetized Plasma for Reconfigurable Subdiffraction Imaging,” Phys. Rev. Lett. 106(24), 243901 (2011).
[Crossref] [PubMed]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Xu, W.

Xue, Y.

Yang, H.

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Yang, J. K. W.

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. W. Yang, and E. Li, “Fowler-Nordheim Tunneling Induced Charge Transfer Plasmons Between Nearly Touching Nanoparticles,” ACS Nano 7(1), 707–716 (2013).
[Crossref] [PubMed]

Yang, Y.

W. Yue, Y. Yang, Z. Wang, J. Han, A. Syed, L. Chen, K. Wong, and X. Wang, “Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes,” J. Phys. D Appl. Phys. 45(42), 425401 (2012).
[Crossref]

Yeh, H.-H.

Y.-F. Chau, M. W. Chen, H.-H. Yeh, F.-L. Wu, H.-Y. Li, and D. P. Tsai, “Highly enhanced surface plasmon resonance in a coupled silver nanodumbbell,” Appl. Phys., A Mater. Sci. Process. 104(3), 801–805 (2011).
[Crossref]

Yin, X.

S. Zhang, Y. Xiong, G. Bartal, X. Yin, and X. Zhang, “Magnetized Plasma for Reconfigurable Subdiffraction Imaging,” Phys. Rev. Lett. 106(24), 243901 (2011).
[Crossref] [PubMed]

Yue, W.

W. Yue, Y. Yang, Z. Wang, J. Han, A. Syed, L. Chen, K. Wong, and X. Wang, “Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes,” J. Phys. D Appl. Phys. 45(42), 425401 (2012).
[Crossref]

Zabala, N.

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13(8), 083013 (2011).
[Crossref]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities,” Nano Lett. 10(8), 3090–3095 (2010).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
[Crossref]

J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
[Crossref] [PubMed]

Zhang, L.

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

S. Zhang, Y. Xiong, G. Bartal, X. Yin, and X. Zhang, “Magnetized Plasma for Reconfigurable Subdiffraction Imaging,” Phys. Rev. Lett. 106(24), 243901 (2011).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

S. Zhang, Y. Xiong, G. Bartal, X. Yin, and X. Zhang, “Magnetized Plasma for Reconfigurable Subdiffraction Imaging,” Phys. Rev. Lett. 106(24), 243901 (2011).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhang, X. H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Zhang, X. M.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Zhu, W. M.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

ACS Nano (2)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: a Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced inFrared Absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

L. Wu, H. Duan, P. Bai, M. Bosman, J. K. W. Yang, and E. Li, “Fowler-Nordheim Tunneling Induced Charge Transfer Plasmons Between Nearly Touching Nanoparticles,” ACS Nano 7(1), 707–716 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable Magnetic Metamaterials Using Micromachining Processes,” Adv. Mater. 23(15), 1792–1796 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, “Terahertz nonlinear superconducting metamaterials,” Appl. Phys. Lett. 102(8), 081121 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y.-F. Chau, M. W. Chen, H.-H. Yeh, F.-L. Wu, H.-Y. Li, and D. P. Tsai, “Highly enhanced surface plasmon resonance in a coupled silver nanodumbbell,” Appl. Phys., A Mater. Sci. Process. 104(3), 801–805 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

W. Yue, Y. Yang, Z. Wang, J. Han, A. Syed, L. Chen, K. Wong, and X. Wang, “Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes,” J. Phys. D Appl. Phys. 45(42), 425401 (2012).
[Crossref]

Nano Lett. (6)

D. R. Ward, N. J. Halas, J. W. Ciszek, J. M. Tour, Y. Wu, P. Nordlander, and D. Natelson, “Simultaneous Measurements of Electronic Conduction and Raman Response in Molecular Junctions,” Nano Lett. 8(3), 919–924 (2008).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities,” Nano Lett. 10(8), 3090–3095 (2010).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime,” Nano Lett. 4(9), 1627–1631 (2004).
[Crossref]

Nat. Commun. (3)

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys. 13(8), 083013 (2011).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Phys. Rev. Lett. (7)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

J. Li and J. B. Pendry, “Hiding Under the Carpet: a New Strategy for Cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

S. Zhang, Y. Xiong, G. Bartal, X. Yin, and X. Zhang, “Magnetized Plasma for Reconfigurable Subdiffraction Imaging,” Phys. Rev. Lett. 106(24), 243901 (2011).
[Crossref] [PubMed]

H.-T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the Resonance in High-Temperature Superconducting Terahertz Metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

M. Beck, M. Klammer, S. Lang, P. Leiderer, V. V. Kabanov, G. N. Gol’tsman, and J. Demsar, “Energy-Gap Dynamics of Superconducting NbN Thin Films Studied by Time-Resolved Terahertz Spectroscopy,” Phys. Rev. Lett. 107(17), 177007 (2011).
[Crossref] [PubMed]

Science (5)

S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, “Quantum Plasmon Resonances Controlled By Molecular Tunnel Junctions,” Science 343(6178), 1496–1499 (2014).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) and (b) Schematic views of the unit cells of the DCR dimer and DCRJ dimer, respectively. (c) and (d) Microscopic images of the fabricated DCR and DCRJ dimers, respectively. Scale bar: 100 μm.
Fig. 2
Fig. 2 (a) Measured amplitude transmission spectra of the DCR dimers (blue) and DCRJ dimers (red), respectively. (b) The corresponding simulated results.
Fig. 3
Fig. 3 (a) Simulated surface electric field distribution at f0 of the DCR dimers. (b) and (c) Simulated surface electric field distributions at f1 and f2 of the DCRJ dimers, respectively.
Fig. 4
Fig. 4 (a) Microscopy images of the DSRJ dimers (upper row) and DTRJ dimers (lower row), respectively. Scale bar: 100um. Measured (b) and Simulated (c) amplitude transmission spectra of the DSR and DSRJ dimers (upper row), and the DTR and DTRJ dimers (lower row), respectively.
Fig. 5
Fig. 5 (a, b, c) Simulated surface electric field distributions at the resonances of the DSR dimers and DSRJ dimers, respectively. (d, e, f) Simulated surface electric field distributions at the resonances of the DTR dimers and DTRJ dimers, respectively.
Fig. 6
Fig. 6 (a) The microscopy image of a DCRNJ dimer. (b) Measured transmission spectra of the DCRNJ dimers under various temperature (solid lines) and measured transmission spectrum of the DCR dimers for comparison (dash line).
Fig. 7
Fig. 7 Measured real part (a) and imaginary part (b) of the complex conductivity of the NbN film at different temperature. (c) Calculated real part (red) and imaginary part (blue) of the effective surface impedance of the NbN film at f0, f1 and f2 as a function of temperature, respectively. (d) Simulated transmission spectra of the DCRNJ dimers under different conductance of the NbN junction for finding the threshold.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Z s,eff = R s,eff +j X s,eff = jω μ 0 σ( ω ) coth( t jω μ 0 σ( ω ) )

Metrics