Abstract

Distributed Brillouin fiber sensors typically rely on the reconstruction of the steady-state Brillouin gain spectrum (BGS), through spectral scanning of the frequency offset between the pump and signal waves. In this work, we propose and demonstrate an alternative approach, in which the local Brillouin frequency shift (BFS) is extracted from temporal transient analysis of the step response of the amplified signal wave. Measurements are taken at only two arbitrary frequency offsets between pump and signal. No spectral scanning and no prior knowledge of a reference BGS are necessary. The principle is supported by analytic and numeric solutions of the differential equations of stimulated Brillouin scattering. The BFS of a 2 meters-long fiber under test was measured with 1 MHz accuracy and a dynamic range of 200 MHz. Transient measurements were also performed in a Brillouin optical correlation domain analysis (B-OCDA) experiment with 4 cm resolution, standard deviation of 2.4 MHz and 100 MHz dynamic range. A 4 cm-wide hot-spot was properly identified in the measurements. Multiple correlation peaks could be addressed in a single flight of a pump pulse. The results represent the first B-OCDA that is free of spectral scanning. This new measurement concept may be applicable to random-access distributed and dynamic monitoring of sound and vibration.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Double-pulse pair Brillouin optical correlation-domain analysis

Orel Shlomi, Eyal Preter, Dexin Ba, Yosef London, Yair Antman, and Avi Zadok
Opt. Express 24(23) 26867-26876 (2016)

High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis

David Elooz, Yair Antman, Nadav Levanon, and Avi Zadok
Opt. Express 22(6) 6453-6463 (2014)

Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission

Raphael Cohen, Yosef London, Yair Antman, and Avi Zadok
Opt. Express 22(10) 12070-12078 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  2. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990).
    [Crossref]
  3. M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
    [Crossref] [PubMed]
  4. A. Motil, A. Bergman, and M. Tur, “[INVITED] State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
    [Crossref]
  5. I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
    [Crossref]
  6. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  7. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [Crossref] [PubMed]
  8. A. Voskoboinik, D. Rogawski, H. Huang, Y. Peled, A. E. Willner, and M. Tur, “Frequency-domain analysis of dynamically applied strain using sweep-free Brillouin time-domain analyzer and sloped-assisted FBG sensing,” Opt. Express 20(26), B581–B586 (2012).
    [Crossref] [PubMed]
  9. J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20(24), 26942–26949 (2012).
    [Crossref] [PubMed]
  10. A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
    [Crossref]
  11. A. Voskoboinik, A. E. Willner, and M. Tur, “Extending the dynamic range of sweep-free Brillouin optical time-domain analyzer,” J. Lightwave Technol. 33(14), 2978–2985 (2015).
    [Crossref]
  12. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique -proposal, experiment and simulation,” IEICE T. Electorn E83-C(3), 405–412 (2000).
  13. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
    [Crossref]
  14. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [Crossref] [PubMed]
  15. Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin optical correlation domain analysis addressing 440,000 resolution points,” J. Lightwave Technol.34, in press, (2016).
  16. A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
    [Crossref]
  17. C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
    [Crossref]
  18. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
    [Crossref] [PubMed]
  19. D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
    [Crossref] [PubMed]
  20. E. Preter and A. Zadok, “Scanning-free characterization of local Brillouin spectra based on transient analysis,” Proc. SPIE 9763, 97631M (2016).
    [Crossref]
  21. E. Preter, O. Shlomi, Y. London, Y. Antman, and A. Zadok, “Spectral scanning-free measurement of Brillouin frequency shift using transient analysis,” Proc. SPIE 9916, 9916 (2016).
  22. Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
    [Crossref] [PubMed]
  23. Y. Wan, S. Afshar V, L. Zou, L. Chen, and X. Bao, “Subpeaks in the Brillouin loss spectra of distributed fiber-optic sensors,” Opt. Lett. 30(10), 1099–1101 (2005).
    [Crossref] [PubMed]
  24. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [Crossref] [PubMed]
  25. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  26. A. Ben-Amram, Y. Stern, Y. London, Y. Antman, and A. Zadok, “Stable closed-loop fiber-optic delay of arbitrary radio-frequency waveforms,” Opt. Express 23(22), 28244–28257 (2015).
    [Crossref] [PubMed]
  27. A. Motil, R. Davidi, A. Bergman, Y. Botsev, M. Hahami, and M. Tur, “Distributed and dynamic monitoring of 4km/sec waves using a Brillouin fiber optic strain sensor,” Proc. SPIE 8794, 879434 (2013).
    [Crossref]
  28. J. Urricelqui, F. Lopez-Fernandino, M. Sagues, and A. Loayssa, “Polarization diversity scheme for BOTDA sensors based on a double orthogonal pump interaction,” J. Lightwave Technol. 33(12), 2633–2638 (2015).
    [Crossref]
  29. A. López-Gil, A. Domínguez-López, S. Martín-López, and M. González-Herráez, “Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands,” Proc. SPIE 9157, 91573U (2014).

2016 (4)

A. Motil, A. Bergman, and M. Tur, “[INVITED] State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

E. Preter and A. Zadok, “Scanning-free characterization of local Brillouin spectra based on transient analysis,” Proc. SPIE 9763, 97631M (2016).
[Crossref]

E. Preter, O. Shlomi, Y. London, Y. Antman, and A. Zadok, “Spectral scanning-free measurement of Brillouin frequency shift using transient analysis,” Proc. SPIE 9916, 9916 (2016).

2015 (5)

2014 (3)

D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
[Crossref] [PubMed]

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

A. López-Gil, A. Domínguez-López, S. Martín-López, and M. González-Herráez, “Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands,” Proc. SPIE 9157, 91573U (2014).

2013 (2)

A. Motil, R. Davidi, A. Bergman, Y. Botsev, M. Hahami, and M. Tur, “Distributed and dynamic monitoring of 4km/sec waves using a Brillouin fiber optic strain sensor,” Proc. SPIE 8794, 879434 (2013).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (2)

2008 (1)

2006 (1)

2005 (1)

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique -proposal, experiment and simulation,” IEICE T. Electorn E83-C(3), 405–412 (2000).

1996 (1)

1990 (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990).
[Crossref]

Afshar V, S.

Antman, Y.

E. Preter, O. Shlomi, Y. London, Y. Antman, and A. Zadok, “Spectral scanning-free measurement of Brillouin frequency shift using transient analysis,” Proc. SPIE 9916, 9916 (2016).

A. Ben-Amram, Y. Stern, Y. London, Y. Antman, and A. Zadok, “Stable closed-loop fiber-optic delay of arbitrary radio-frequency waveforms,” Opt. Express 23(22), 28244–28257 (2015).
[Crossref] [PubMed]

D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
[Crossref] [PubMed]

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[Crossref] [PubMed]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin optical correlation domain analysis addressing 440,000 resolution points,” J. Lightwave Technol.34, in press, (2016).

Bao, X.

Ben-Amram, A.

Bergman, A.

A. Motil, A. Bergman, and M. Tur, “[INVITED] State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

A. Motil, R. Davidi, A. Bergman, Y. Botsev, M. Hahami, and M. Tur, “Distributed and dynamic monitoring of 4km/sec waves using a Brillouin fiber optic strain sensor,” Proc. SPIE 8794, 879434 (2013).
[Crossref]

Botsev, Y.

A. Motil, R. Davidi, A. Bergman, Y. Botsev, M. Hahami, and M. Tur, “Distributed and dynamic monitoring of 4km/sec waves using a Brillouin fiber optic strain sensor,” Proc. SPIE 8794, 879434 (2013).
[Crossref]

Chen, L.

Danon, O.

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

Davidi, R.

A. Motil, R. Davidi, A. Bergman, Y. Botsev, M. Hahami, and M. Tur, “Distributed and dynamic monitoring of 4km/sec waves using a Brillouin fiber optic strain sensor,” Proc. SPIE 8794, 879434 (2013).
[Crossref]

Denisov, A.

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Domínguez-López, A.

A. López-Gil, A. Domínguez-López, S. Martín-López, and M. González-Herráez, “Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands,” Proc. SPIE 9157, 91573U (2014).

Elooz, D.

Eyal, A.

González-Herráez, M.

A. López-Gil, A. Domínguez-López, S. Martín-López, and M. González-Herráez, “Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands,” Proc. SPIE 9157, 91573U (2014).

Hahami, M.

A. Motil, R. Davidi, A. Bergman, Y. Botsev, M. Hahami, and M. Tur, “Distributed and dynamic monitoring of 4km/sec waves using a Brillouin fiber optic strain sensor,” Proc. SPIE 8794, 879434 (2013).
[Crossref]

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique -proposal, experiment and simulation,” IEICE T. Electorn E83-C(3), 405–412 (2000).

He, Z.

Horiguchi, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990).
[Crossref]

Hotate, K.

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[Crossref] [PubMed]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[Crossref] [PubMed]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique -proposal, experiment and simulation,” IEICE T. Electorn E83-C(3), 405–412 (2000).

Huang, H.

Kishi, M.

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[Crossref] [PubMed]

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990).
[Crossref]

Levanon, N.

D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
[Crossref] [PubMed]

Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin optical correlation domain analysis addressing 440,000 resolution points,” J. Lightwave Technol.34, in press, (2016).

Loayssa, A.

London, Y.

E. Preter, O. Shlomi, Y. London, Y. Antman, and A. Zadok, “Spectral scanning-free measurement of Brillouin frequency shift using transient analysis,” Proc. SPIE 9916, 9916 (2016).

A. Ben-Amram, Y. Stern, Y. London, Y. Antman, and A. Zadok, “Stable closed-loop fiber-optic delay of arbitrary radio-frequency waveforms,” Opt. Express 23(22), 28244–28257 (2015).
[Crossref] [PubMed]

Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin optical correlation domain analysis addressing 440,000 resolution points,” J. Lightwave Technol.34, in press, (2016).

Lopez-Fernandino, F.

López-Gil, A.

A. López-Gil, A. Domínguez-López, S. Martín-López, and M. González-Herráez, “Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands,” Proc. SPIE 9157, 91573U (2014).

Martín-López, S.

A. López-Gil, A. Domínguez-López, S. Martín-López, and M. González-Herráez, “Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands,” Proc. SPIE 9157, 91573U (2014).

Motil, A.

A. Motil, A. Bergman, and M. Tur, “[INVITED] State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

A. Motil, R. Davidi, A. Bergman, Y. Botsev, M. Hahami, and M. Tur, “Distributed and dynamic monitoring of 4km/sec waves using a Brillouin fiber optic strain sensor,” Proc. SPIE 8794, 879434 (2013).
[Crossref]

Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
[Crossref] [PubMed]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

Niklès, M.

Peled, Y.

Preter, E.

E. Preter and A. Zadok, “Scanning-free characterization of local Brillouin spectra based on transient analysis,” Proc. SPIE 9763, 97631M (2016).
[Crossref]

E. Preter, O. Shlomi, Y. London, Y. Antman, and A. Zadok, “Spectral scanning-free measurement of Brillouin frequency shift using transient analysis,” Proc. SPIE 9916, 9916 (2016).

Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin optical correlation domain analysis addressing 440,000 resolution points,” J. Lightwave Technol.34, in press, (2016).

Primerov, N.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[Crossref] [PubMed]

Robert, P. A.

Rogawski, D.

Sagues, M.

Sancho, J.

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[Crossref] [PubMed]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Shlomi, O.

E. Preter, O. Shlomi, Y. London, Y. Antman, and A. Zadok, “Spectral scanning-free measurement of Brillouin frequency shift using transient analysis,” Proc. SPIE 9916, 9916 (2016).

Song, K. Y.

Soto, M. A.

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

Sovran, I.

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

Stern, Y.

Tateda, M.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990).
[Crossref]

Thevenaz, L.

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[Crossref] [PubMed]

Thévenaz, L.

Tur, M.

A. Motil, A. Bergman, and M. Tur, “[INVITED] State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

A. Voskoboinik, A. E. Willner, and M. Tur, “Extending the dynamic range of sweep-free Brillouin optical time-domain analyzer,” J. Lightwave Technol. 33(14), 2978–2985 (2015).
[Crossref]

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

A. Motil, R. Davidi, A. Bergman, Y. Botsev, M. Hahami, and M. Tur, “Distributed and dynamic monitoring of 4km/sec waves using a Brillouin fiber optic strain sensor,” Proc. SPIE 8794, 879434 (2013).
[Crossref]

A. Voskoboinik, D. Rogawski, H. Huang, Y. Peled, A. E. Willner, and M. Tur, “Frequency-domain analysis of dynamically applied strain using sweep-free Brillouin time-domain analyzer and sloped-assisted FBG sensing,” Opt. Express 20(26), B581–B586 (2012).
[Crossref] [PubMed]

Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
[Crossref] [PubMed]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

Urricelqui, J.

Voskoboinik, A.

Wan, Y.

Willner, A. E.

Yaron, L.

Zadok, A.

E. Preter and A. Zadok, “Scanning-free characterization of local Brillouin spectra based on transient analysis,” Proc. SPIE 9763, 97631M (2016).
[Crossref]

E. Preter, O. Shlomi, Y. London, Y. Antman, and A. Zadok, “Spectral scanning-free measurement of Brillouin frequency shift using transient analysis,” Proc. SPIE 9916, 9916 (2016).

A. Ben-Amram, Y. Stern, Y. London, Y. Antman, and A. Zadok, “Stable closed-loop fiber-optic delay of arbitrary radio-frequency waveforms,” Opt. Express 23(22), 28244–28257 (2015).
[Crossref] [PubMed]

D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
[Crossref] [PubMed]

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[Crossref] [PubMed]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin optical correlation domain analysis addressing 440,000 resolution points,” J. Lightwave Technol.34, in press, (2016).

Zhang, C.

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

Zilka, E.

Zornoza, A.

Zou, L.

Appl. Phys. Express (1)

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2(5), 352–354 (1990).
[Crossref]

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

IEICE T. Electorn (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique -proposal, experiment and simulation,” IEICE T. Electorn E83-C(3), 405–412 (2000).

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Light Sci. Appl. (1)

A. Denisov, M. A. Soto, and L. Thevenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), e16074 (2016).
[Crossref]

Opt. Express (9)

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[Crossref] [PubMed]

Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
[Crossref] [PubMed]

J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20(24), 26942–26949 (2012).
[Crossref] [PubMed]

A. Voskoboinik, D. Rogawski, H. Huang, Y. Peled, A. E. Willner, and M. Tur, “Frequency-domain analysis of dynamically applied strain using sweep-free Brillouin time-domain analyzer and sloped-assisted FBG sensing,” Opt. Express 20(26), B581–B586 (2012).
[Crossref] [PubMed]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
[Crossref] [PubMed]

A. Ben-Amram, Y. Stern, Y. London, Y. Antman, and A. Zadok, “Stable closed-loop fiber-optic delay of arbitrary radio-frequency waveforms,” Opt. Express 23(22), 28244–28257 (2015).
[Crossref] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

A. Motil, A. Bergman, and M. Tur, “[INVITED] State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Opt. Lett. (4)

Proc. SPIE (4)

E. Preter and A. Zadok, “Scanning-free characterization of local Brillouin spectra based on transient analysis,” Proc. SPIE 9763, 97631M (2016).
[Crossref]

E. Preter, O. Shlomi, Y. London, Y. Antman, and A. Zadok, “Spectral scanning-free measurement of Brillouin frequency shift using transient analysis,” Proc. SPIE 9916, 9916 (2016).

A. Motil, R. Davidi, A. Bergman, Y. Botsev, M. Hahami, and M. Tur, “Distributed and dynamic monitoring of 4km/sec waves using a Brillouin fiber optic strain sensor,” Proc. SPIE 8794, 879434 (2013).
[Crossref]

A. López-Gil, A. Domínguez-López, S. Martín-López, and M. González-Herráez, “Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands,” Proc. SPIE 9157, 91573U (2014).

Other (2)

Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin optical correlation domain analysis addressing 440,000 resolution points,” J. Lightwave Technol.34, in press, (2016).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) – calculated logarithmic gain coefficient of the output signal wave as a function of time, during the transient buildup of the stimulated Brillouin interaction, for several values of the frequency detuning Δν= ΔΩ / ( 2π ) between the stimulated acoustic wave frequency and the BFS of the medium (see legend). The gain coefficient is normalized to its steady state value at Δν=0 . (b) – map of the logarithmic gain coefficient as a function of time and frequency detuning [20].
Fig. 2
Fig. 2 (a) - calculated logarithmic gain coefficient of the output signal wave as a function of time, during the transient buildup of the stimulated Brillouin interaction within a single correlation peak in phase-coded B-OCDA. The detuning Δν between the stimulated acoustic wave frequency and the BFS in traces 1 through 5 was 1 MHz, 15 MHz, 25 MHz, 50 MHz and 100 MHz. The gain coefficients are normalized to the steady state value at Δν=0 .(b) - map of the calculated gain functions, evaluated as a function of time and frequency detuning.
Fig. 3
Fig. 3 Experimental setup used in temporal transient B-OCDA. SSB – single sideband electro-optic modulator; PM – electro optic phase modulator; SOA – semiconductor optical amplifier; EDFA – erbium-doped fiber amplifier; AWG – arbitrary waveform generator. EOM – electro optic modulator.
Fig. 4
Fig. 4 (a) - Measured output pulses of the probe wave, following SBS amplification by pump pulses over 2 meters of FUT, at different values of detuning Δν between the frequency of the stimulated acoustic field and the BFS (solid lines, see legend for colors). The black, solid line denotes an unamplified, reference pulse. (b) – Measured logarithmic gain factor of the probe wave at different values of Δν (dotted lines), alongside the corresponding calculated curves (solid lines, see legend on left panel for colors) [21].
Fig. 5
Fig. 5 (a) – Experimentally estimated BFS values (left axis), and residual difference error from the correct value (right axis), as a function of the frequency difference ν between pump and probe waves. (b) – Histogram (bars, left axis) and cumulative probability (solid line, right axis) of the absolute value of the BFS measurement error | ε | [21].
Fig. 6
Fig. 6 Solid lines: measured output probe waves as a function of time, in phase-coded B-OCDA experiments. Two amplification events are observed, corresponding to SBS interactions in two correlation peaks. The detuning Δν between the frequency of the stimulated acoustic field and the BFS was 0, 20 MHz and 50 MHz (see legend). Dashed, solid lines show the simulated output probe waves, calculated using best-fitted values of Δν .
Fig. 7
Fig. 7 (a) - measured normalized steady-state Brillouin gain as a function of correlation peak position z and frequency offset ν between pump and probe, in a phase-coded B-OCDA experiment over 360 mm of fiber. A 4 cm-wide segment at z = 160 mm was locally heated. (b) – measured normalized transient Brillouin gain of the same fiber, as a function of correlation peak position z and time. The frequency offset was set to ν = 10.733 GHz.
Fig. 8
Fig. 8 Measured BFS as a function of position. A local hot-spot was introduced between 12 and 16 cm. Blue, solid curve: estimates based on temporal transient B-OCDA with a single pair of arbitrary frequency offset values ν between pump and probe: 10.719 GHz and 10.769 GHz. Blue error bars show the uncertainty in the transient B-OCDA BFS measurement in each resolution cell (see below). Black, dashed curve: average of the estimates obtained using temporal transient B-OCDA with 25 different pairs of frequencies. Red, solid curve: measurements of a control experiment based on B-OCDA of the local Brillouin gain spectra at steady state.
Fig. 9
Fig. 9 Estimates of the BFS in resolution cells 2, 4, 6 and 8, obtained using temporal transient B-OCDA, as a function of the frequency offset ν between pump and probe waves. Resolution cell 4 was in overlap with the hot-spot. Horizontal black lines represent the BFS as measured by spectral scanning B-OCDA at steady state (control experiment).
Fig. 10
Fig. 10 Histogram (bars, left axis) and cumulative probability (solid line, right axis) of the BFS measurement error (absolute value), calculated using 225 pairs of traces.
Fig. 11
Fig. 11 Experimental errors in the measurements the local BFS using temporal-transient B-OCDA. (a) – mean absolute value of the measurement error as a function of resolution cell number, averaged over all 25 frequency pairs. (b) – mean absolute value of the measurement error as a function of the frequency offset ν between pump and signal, averaged over all nine resolution cells. The overall mean of the absolute value of the BFS measurement error was 2.9 MHz. The standard deviation of the measurement error was 2.4 MHz.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ρ( z,t )={ j g 1 A p0 A s0 * Γ A { 1exp[ Γ A ( t Lz v g ) ] } :t Lz v g 0 :else .
A s ( z,t ) z + 1 v g A s ( z,t ) t = 1 2 g 2 ρ * ( z,t ) A p0 = 1 2 g 1 g 2 Γ A * | A p0 | 2 { 1exp[ Γ A * ( t Lz v g ) ] } A s ( z,t ).
A s ( z,t )= A s0 exp( 1 2 g 1 g 2 Γ A * | A p0 | 2 ( Lz ){ 1exp[ Γ A * ( t Lz v g ) ] } ).
| A s ( z=0,t' ) | 2 = | A s0 | 2 exp{ g 1 g 2 Re[ 1exp( Γ A * t' ) Γ A * ] | A p0 | 2 L }.
g( t',ΔΩ ) g 1 g 2 Re[ 1exp( Γ A * t' ) Γ A * ] = g 1 g 2 1 2 Γ B ( 1 2 Γ B ) 2 Δ Ω 2 + ( 1 2 Γ B ) 2 { 1 e 1 2 Γ B t' [ cos( ΔΩt' ) ΔΩ 1 2 Γ B sin( ΔΩt' ) ] } = g ss ( ΔΩ ){ 1 e 1 2 Γ B t' [ cos( ΔΩt' ) ΔΩ 1 2 Γ B sin( ΔΩt' ) ] }
h exp ( t' )=log[ | A s ( z=0,t' ) | 2 / | A s ( z=0,t'=0 ) | 2 ].
C i ( Ω i )= max t' [ h exp ( t' ) g i ( t', Ω i Ω 0 ) ].
g( t',ΔΩ ) t' | t'= t peak =0cos( ΔΩ t peak )=0
A s ( z=L,t ) A ˜ s ( t )= A s0 n c n rect( tn T phase T phase )
A p ( z=0,t ) A ˜ p ( t )= A p0 rect( t T pulse ) n c n rect( tn T phase T phase ) .
ρ( z,t )=j g 1 0 t exp[ Γ A ( tη ) ] A ˜ p ( η z v g ) A ˜ s * ( η Lz v g ) dη.
A s ( z,t ) z + 1 v g A s ( z,t ) t = 1 2 g 2 ρ * ( z,t ) A ˜ p ( t z v g ).

Metrics