Abstract

A joint chromatic dispersion (CD) and 1st order polarization mode dispersion (PMD) monitoring technique for both a coherent and a non-coherent single carrier system based on a pair of cost effective low-bandwidth coherent receivers is proposed and experimentally demonstrated. By jointly detecting the narrow band around ± 1/2 baud rate, the CD and PMD can be estimated simultaneously by time domain correlation and Stokes space rotational angle recovery, respectively. The CD estimation range is theoretically infinite and the PMD estimation range is limited to the maximum of 1/2 symbol period. Simulation results show that for a 28 G baud dual-polarization (DP)-16QAM transmission system, with dual 1 GHz coherent receivers, the monitoring error for CD and differential group delay (DGD) is 30 ps/nm and 0.5 ps, respectively. We also experimentally verified it for a 12 GBit/s NRZ-OOK transmission system with a full-bandwidth coherent receiver and two 1 GHz digital filters to simulate dual 1 GHz coherent receivers. The monitoring error for CD and DGD is 60 ps/nm and 1.5 ps, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Joint OSNR and CD monitoring in digital coherent receiver using long short-term memory neural network

Chunxiao Wang, Songnian Fu, Hao Wu, Ming Luo, Xiang Li, Ming Tang, and Deming Liu
Opt. Express 27(5) 6936-6945 (2019)

Optical performance monitoring for OFDM using low bandwidth coherent receivers

Simin Chen, Trevor Anderson, Don Hewitt, An V. Tran, Chen Zhu, Liang B. Du, Arthur J. Lowery, and Efstratios Skafidas
Opt. Express 20(27) 28724-28733 (2012)

CD-insensitive PMD monitoring based on RF power measurement

Jing Yang, Changyuan Yu, Linghao Cheng, Zhaohui Li, Chao Lu, Alan Pak Tao Lau, Hwa-yaw Tam, and P. K. A. Wai
Opt. Express 19(2) 1354-1359 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Strand, A. L. Chiu, and R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag. 39(2), 81–87 (2001).
    [Crossref]
  2. B. Ramamurthy, D. Datta, H. Feng, J. P. Heritage, and B. Mukherjee, “Impact of transmission impairments on the teletraffic performance of wavelength-routed optical networks,” J. Lightwave Technol. 17(10), 1713–1723 (1999).
    [Crossref]
  3. D. Kilper, R. Bach, D. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. Willner, “Optical performance monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004).
    [Crossref]
  4. A. E. Willner, J.-Y. Yang, and X. Wu, “Optical performance monitoring to enable robust and reconfigurable optical high-capacity networks,” in MILCOM 2009–2009 IEEE Military Communications Conference (IEEE, 2009), pp. 1–7.
  5. D. E. Crivelli, H. Carter, and M. R. Hueda, “Adaptive digital equalization in the presence of chromatic dispersion, PMD, and phase noise in coherent fiber optic systems,” in IEEE Global Telecommunications Conference,2004 (IEEE, 2004), pp. 2545–2551.
    [Crossref]
  6. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightwave Technol. 25(8), 2033–2043 (2007).
    [Crossref]
  7. C. Do, A. Tran, C. Zhu, S. Chen, L. Du, T. Anderson, A. Lowery, and E. Skafidas, “PMD monitoring in 16-QAM coherent optical system using golay sequences,” in Proceedings of Opto-Elec. and Comm. Conf. (OECC, 2012), paper 6B3–5.
    [Crossref]
  8. F. Buchali and H. Bülow, “Adaptive PMD compensation by electrical and optical techniques,” J. Lightwave Technol. 22(4), 1116–1126 (2004).
    [Crossref]
  9. C. Yu, J. Yang, J. Hu, and B. Zhang, “Chromatic dispersion monitoring based on RF spectrum analysis and delay-tap sampling,” in IET Conference Proceedings (The Institution of Engineering and Technology, 2011).
  10. J.-Y. Yang, M. R. Chitgarha, L. Zhang, and A. E. Willner, “Chromatic dispersion monitoring of 40-Gb/s OOK data using optical VSB filtering at high frequency,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper JThE52.
    [Crossref]
  11. Z. Li and G. Li, “Chromatic dispersion and polarization-mode dispersion monitoring for RZ-DPSK signals based on asynchronous amplitude-histogram evaluation,” J. Lightwave Technol. 24(7), 2859–2866 (2006).
    [Crossref]
  12. J.-Y. Yang, L. Zhang, L. Christen, B. Zhang, S. Nuccio, X. Wu, L.-S. Yan, S. Yao, and A. Willner, “Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter,” IEEE Photonics Technol. Lett. 20(2), 150–152 (2008).
    [Crossref]
  13. Q. Sui, A. P. T. Lau, and C. Lu, “Fast and robust blind chromatic dispersion estimation using auto-correlation of signal power waveform for digital coherent systems,” J. Lightwave Technol. 31(2), 306–312 (2013).
    [Crossref]
  14. F. N. Hauske, M. Kuschnerov, B. Spinnler, and B. Lankl, “Optical performance monitoring in digital coherent receivers,” J. Lightwave Technol. 27(16), 3623–3631 (2009).
    [Crossref]

2013 (1)

2009 (1)

2008 (1)

J.-Y. Yang, L. Zhang, L. Christen, B. Zhang, S. Nuccio, X. Wu, L.-S. Yan, S. Yao, and A. Willner, “Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter,” IEEE Photonics Technol. Lett. 20(2), 150–152 (2008).
[Crossref]

2007 (1)

2006 (1)

2004 (2)

2001 (1)

J. Strand, A. L. Chiu, and R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag. 39(2), 81–87 (2001).
[Crossref]

1999 (1)

Bach, R.

Blumenthal, D.

Buchali, F.

Bülow, H.

Chiu, A. L.

J. Strand, A. L. Chiu, and R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag. 39(2), 81–87 (2001).
[Crossref]

Christen, L.

J.-Y. Yang, L. Zhang, L. Christen, B. Zhang, S. Nuccio, X. Wu, L.-S. Yan, S. Yao, and A. Willner, “Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter,” IEEE Photonics Technol. Lett. 20(2), 150–152 (2008).
[Crossref]

Datta, D.

Einstein, D.

Feng, H.

Hauske, F. N.

Heritage, J. P.

Ip, E.

Kahn, J. M.

Kilper, D.

Kuschnerov, M.

Landolsi, T.

Lankl, B.

Lau, A. P. T.

Li, G.

Li, Z.

Lu, C.

Mukherjee, B.

Nuccio, S.

J.-Y. Yang, L. Zhang, L. Christen, B. Zhang, S. Nuccio, X. Wu, L.-S. Yan, S. Yao, and A. Willner, “Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter,” IEEE Photonics Technol. Lett. 20(2), 150–152 (2008).
[Crossref]

Ostar, L.

Preiss, M.

Ramamurthy, B.

Spinnler, B.

Strand, J.

J. Strand, A. L. Chiu, and R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag. 39(2), 81–87 (2001).
[Crossref]

Sui, Q.

Tkach, R.

J. Strand, A. L. Chiu, and R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag. 39(2), 81–87 (2001).
[Crossref]

Willner, A.

J.-Y. Yang, L. Zhang, L. Christen, B. Zhang, S. Nuccio, X. Wu, L.-S. Yan, S. Yao, and A. Willner, “Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter,” IEEE Photonics Technol. Lett. 20(2), 150–152 (2008).
[Crossref]

D. Kilper, R. Bach, D. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. Willner, “Optical performance monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004).
[Crossref]

Wu, X.

J.-Y. Yang, L. Zhang, L. Christen, B. Zhang, S. Nuccio, X. Wu, L.-S. Yan, S. Yao, and A. Willner, “Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter,” IEEE Photonics Technol. Lett. 20(2), 150–152 (2008).
[Crossref]

Yan, L.-S.

J.-Y. Yang, L. Zhang, L. Christen, B. Zhang, S. Nuccio, X. Wu, L.-S. Yan, S. Yao, and A. Willner, “Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter,” IEEE Photonics Technol. Lett. 20(2), 150–152 (2008).
[Crossref]

Yang, J.-Y.

J.-Y. Yang, L. Zhang, L. Christen, B. Zhang, S. Nuccio, X. Wu, L.-S. Yan, S. Yao, and A. Willner, “Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter,” IEEE Photonics Technol. Lett. 20(2), 150–152 (2008).
[Crossref]

Yao, S.

J.-Y. Yang, L. Zhang, L. Christen, B. Zhang, S. Nuccio, X. Wu, L.-S. Yan, S. Yao, and A. Willner, “Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter,” IEEE Photonics Technol. Lett. 20(2), 150–152 (2008).
[Crossref]

Zhang, B.

J.-Y. Yang, L. Zhang, L. Christen, B. Zhang, S. Nuccio, X. Wu, L.-S. Yan, S. Yao, and A. Willner, “Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter,” IEEE Photonics Technol. Lett. 20(2), 150–152 (2008).
[Crossref]

Zhang, L.

J.-Y. Yang, L. Zhang, L. Christen, B. Zhang, S. Nuccio, X. Wu, L.-S. Yan, S. Yao, and A. Willner, “Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter,” IEEE Photonics Technol. Lett. 20(2), 150–152 (2008).
[Crossref]

IEEE Commun. Mag. (1)

J. Strand, A. L. Chiu, and R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag. 39(2), 81–87 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J.-Y. Yang, L. Zhang, L. Christen, B. Zhang, S. Nuccio, X. Wu, L.-S. Yan, S. Yao, and A. Willner, “Polarization-mode-dispersion monitoring for phase-modulated signals using DGD-generated interferometric filter,” IEEE Photonics Technol. Lett. 20(2), 150–152 (2008).
[Crossref]

J. Lightwave Technol. (7)

Other (5)

A. E. Willner, J.-Y. Yang, and X. Wu, “Optical performance monitoring to enable robust and reconfigurable optical high-capacity networks,” in MILCOM 2009–2009 IEEE Military Communications Conference (IEEE, 2009), pp. 1–7.

D. E. Crivelli, H. Carter, and M. R. Hueda, “Adaptive digital equalization in the presence of chromatic dispersion, PMD, and phase noise in coherent fiber optic systems,” in IEEE Global Telecommunications Conference,2004 (IEEE, 2004), pp. 2545–2551.
[Crossref]

C. Do, A. Tran, C. Zhu, S. Chen, L. Du, T. Anderson, A. Lowery, and E. Skafidas, “PMD monitoring in 16-QAM coherent optical system using golay sequences,” in Proceedings of Opto-Elec. and Comm. Conf. (OECC, 2012), paper 6B3–5.
[Crossref]

C. Yu, J. Yang, J. Hu, and B. Zhang, “Chromatic dispersion monitoring based on RF spectrum analysis and delay-tap sampling,” in IET Conference Proceedings (The Institution of Engineering and Technology, 2011).

J.-Y. Yang, M. R. Chitgarha, L. Zhang, and A. E. Willner, “Chromatic dispersion monitoring of 40-Gb/s OOK data using optical VSB filtering at high frequency,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper JThE52.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 CD estimation by cross correlation between the upper and lower narrow band around ± 1/2 baud rate.
Fig. 2
Fig. 2 Simulation setup of the CD and PMD measuring system. PBS: polarization beam splitter; VDL: variable delay line; PBC: polarization beam combiner; PC: polarization controller.
Fig. 3
Fig. 3 CD estimation results.
Fig. 4
Fig. 4 Fitting arithmetic in power cross-correlation.
Fig. 5
Fig. 5 CD estimation results, (a) with quadratic fitting, (b) modified fitting.
Fig. 6
Fig. 6 PMD simulation results.
Fig. 7
Fig. 7 Monitored CD and PMD with different (a-b) linewidth, (c-d) OSNR, (e-f) receiver bandwidth.
Fig. 8
Fig. 8 Monitored PMD in the presence of PDL.
Fig. 9
Fig. 9 Experimental CD and PMD monitoring results.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

d ( t ) = k s k δ ( t k T ) p ( t ) D ( f ) = S ( f ) P ( f ) ,
S ( f ) = S ( f + n / T ) , n Z .
τ 0 = 2 π β 2 L T ,
C D = τ 0 T c λ 2 ,
E t ( f ) = S ( f ) P ( f ) .
E r ( f ) = e 2 i π 2 β 2 L f 2 R 1 [ e 2 π i f Δ τ / 2 0 0 e 2 π i f Δ τ / 2 ] R S ( f ) P ( f ) ,
E U ( L ) ( f ) = e 2 i π 2 β 2 L ( f ± 1 2 T ) 2 R 1 [ e 2 π i ( f ± 1 2 T ) Δ τ 2 0 0 e 2 π i f ( f ± 1 2 T ) Δ τ 2 ] R S ( f ± 1 2 T ) P ( f ± 1 2 T ) H e ( f ) ,
S ( f ) = S ( f + 1 2 T ) = S ( f 1 2 T ) .
E U ( L ) ( f ) = e i π 2 β 2 L 2 T 2 e ± 2 i π 2 β 2 L f T R 1 [ e 2 π i ( f ± 1 2 T ) Δ τ 2 0 0 e 2 π i ( f ± 1 2 T ) Δ τ 2 ] R e 2 i π 2 β 2 L f 2 S ( f ) P ( f ± 1 2 T ) H e ( f ) ,
E U ( L ) ' ( f ) = R 1 [ e 2 π i ( f ± 1 2 T ) Δ τ 2 0 0 e 2 π i ( f ± 1 2 T ) Δ τ 2 ] R e 2 i π 2 β 2 L f 2 S ( f ) H e ( f ) .
E U ' ( f ) = R 1 [ e 2 π i ( f ± 1 T ) Δ τ 2 0 0 e 2 π i ( f ± 1 T ) Δ τ 2 ] R E L ' ( f ) .
S ^ U ( f ) = M P M D S ^ L ( f ) ,
M P M D = r ^ r ^ + sin 2 π Δ τ T ( r ^ × ) cos 2 π Δ τ T ( r ^ × ) ( r ^ × )
r ^ r ^ = [ r 1 r 1 r 1 r 2 r 1 r 3 r 2 r 1 r 2 r 2 r 2 r 3 r 3 r 1 r 3 r 2 r 3 r 3 ] , ( r ^ × ) = [ 0 r 3 r 2 r 3 0 r 1 r 2 r 1 0 ] .
Tr ( M P M D ) = 1 + 2 cos 2 π Δ τ T ,
S ^ U ( L) ( f ) = [ S 1 , U ( L ) ( f ) S 2 , U ( L ) ( f ) S 3 , U ( L ) ( f ) ] = [ S 1 , U ( L ) ( f 1 ) S 1 , U ( L ) ( f m ) S 2 , U ( L ) ( f 1 ) S 2 , U ( L ) ( f m ) S 3 , U ( L ) ( f 1 ) S 3 , U ( L ) ( f m ) ] .
Δ τ = cos 1 Tr ( M det ( M ) 1 / 3 ) 1 2 T 2 π ,
s 2 = s i g n ( s 1 ) . 5 ( 2 2 | s 1 | ) 2 1 2 .

Metrics