Abstract

The absolute responsivity of a planar cryogenic radiometer fabricated from micromachined silicon and having carbon nanotubes, as the absorber and thermistor were measured in the visible and far infrared (free-field terahertz) wavelength range by means of detector-based radiometry. The temperature coefficient of the thermistor near 4.8 K and noise equivalent power were evaluated along with independent characterization of the window transmittance and specular reflectance of the nanotube absorber. Measurements of absolute power by means of electrical substitution are compared to the German national standard and the uncertainty of the radiometer responsivity as a function of wavelength is summarized.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Carbon nanotube electrical-substitution cryogenic radiometer: initial results

N. A. Tomlin and J. H. Lehman
Opt. Lett. 38(2) 175-177 (2013)

Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurements

R. U. Datla, K. Stock, A. C. Parr, C. C. Hoyt, P. J. Miller, and P. V. Foukal
Appl. Opt. 31(34) 7219-7225 (1992)

References

  • View by:
  • |
  • |
  • |

  1. S. Langley, “The Bolometer and Radiant Energy,” Proc. Nat. Acad. Arts Sci. 166, 352–358 (1881).
  2. F. Kurlbaum, “Notiz über eine Methode zur quantitativen Bestimmung der stahlenden Wärme,” Ann. Phys. 287, 591 (1894).
  3. T. J. Quinn and J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures, between −40'C and +1001C,” Philos. Trans. R. Soc. Lond. A 316(1536), 85–189 (1985).
    [Crossref]
  4. N. A. Tomlin, M. White, I. Vayshenker, S. I. Woods, and J. H. Lehman, “Planar electrical-substitution carbon nanotube cryogenic radiometer,” Metrologia 52(2), 376–383 (2015).
    [Crossref]
  5. M. Kehrt, C. Monte, J. Beyer, and J. Hollandt, “A highly linear superconducting bolometer for quantitative THz Fourier transform spectroscopy,” Opt. Express 23(9), 11170–11182 (2015).
    [Crossref] [PubMed]
  6. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
    [Crossref] [PubMed]
  7. C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5 - 50 mm wavelength region,” Carbon 50(14), 5348–5350 (2012).
    [Crossref]
  8. A. Steiger, R. Müller, A. Remesal Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz Laser Power Measurement Comparison,” IEEE Trans. Terahertz Sci. Technol. 6(5), 664–669 (2016).
  9. J. H. Lehman, B. Lee, and E. N. Grossman, “Far infrared thermal detectors for laser radiometry using a carbon nanotube array,” Appl. Opt. 50(21), 4099–4104 (2011).
    [Crossref] [PubMed]
  10. A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21(12), 14466–14473 (2013).
    [Crossref] [PubMed]
  11. I. Müller, C. Kwong Tang, J. Gran, and L. Werner, “Experimental validation of the predictabilty of a predictable quantum efficent detector by a direct intercomparision,” in 12th International Conference on New Developments and Applications in Optical Radiometry (2014), pp. 197 – 198.
  12. B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Technical Note 1297, 1994 Edition, p.2, (National Institute of Standards and Technology, USA).

2016 (1)

A. Steiger, R. Müller, A. Remesal Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz Laser Power Measurement Comparison,” IEEE Trans. Terahertz Sci. Technol. 6(5), 664–669 (2016).

2015 (2)

N. A. Tomlin, M. White, I. Vayshenker, S. I. Woods, and J. H. Lehman, “Planar electrical-substitution carbon nanotube cryogenic radiometer,” Metrologia 52(2), 376–383 (2015).
[Crossref]

M. Kehrt, C. Monte, J. Beyer, and J. Hollandt, “A highly linear superconducting bolometer for quantitative THz Fourier transform spectroscopy,” Opt. Express 23(9), 11170–11182 (2015).
[Crossref] [PubMed]

2013 (1)

2012 (1)

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5 - 50 mm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[Crossref]

2011 (1)

2009 (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

1985 (1)

T. J. Quinn and J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures, between −40'C and +1001C,” Philos. Trans. R. Soc. Lond. A 316(1536), 85–189 (1985).
[Crossref]

1894 (1)

F. Kurlbaum, “Notiz über eine Methode zur quantitativen Bestimmung der stahlenden Wärme,” Ann. Phys. 287, 591 (1894).

1881 (1)

S. Langley, “The Bolometer and Radiant Energy,” Proc. Nat. Acad. Arts Sci. 166, 352–358 (1881).

Beyer, J.

Chunnilall, C. J.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5 - 50 mm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[Crossref]

Deng, Y.

A. Steiger, R. Müller, A. Remesal Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz Laser Power Measurement Comparison,” IEEE Trans. Terahertz Sci. Technol. 6(5), 664–669 (2016).

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Gran, J.

I. Müller, C. Kwong Tang, J. Gran, and L. Werner, “Experimental validation of the predictabilty of a predictable quantum efficent detector by a direct intercomparision,” in 12th International Conference on New Developments and Applications in Optical Radiometry (2014), pp. 197 – 198.

Grossman, E. N.

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Hollandt, J.

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Kehrt, M.

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Kurlbaum, F.

F. Kurlbaum, “Notiz über eine Methode zur quantitativen Bestimmung der stahlenden Wärme,” Ann. Phys. 287, 591 (1894).

Kwong Tang, C.

I. Müller, C. Kwong Tang, J. Gran, and L. Werner, “Experimental validation of the predictabilty of a predictable quantum efficent detector by a direct intercomparision,” in 12th International Conference on New Developments and Applications in Optical Radiometry (2014), pp. 197 – 198.

Langley, S.

S. Langley, “The Bolometer and Radiant Energy,” Proc. Nat. Acad. Arts Sci. 166, 352–358 (1881).

Lee, B.

Lehman, J.

A. Steiger, R. Müller, A. Remesal Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz Laser Power Measurement Comparison,” IEEE Trans. Terahertz Sci. Technol. 6(5), 664–669 (2016).

Lehman, J. H.

N. A. Tomlin, M. White, I. Vayshenker, S. I. Woods, and J. H. Lehman, “Planar electrical-substitution carbon nanotube cryogenic radiometer,” Metrologia 52(2), 376–383 (2015).
[Crossref]

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5 - 50 mm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[Crossref]

J. H. Lehman, B. Lee, and E. N. Grossman, “Far infrared thermal detectors for laser radiometry using a carbon nanotube array,” Appl. Opt. 50(21), 4099–4104 (2011).
[Crossref] [PubMed]

Martin, J. E.

T. J. Quinn and J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures, between −40'C and +1001C,” Philos. Trans. R. Soc. Lond. A 316(1536), 85–189 (1985).
[Crossref]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Monte, C.

Müller, I.

I. Müller, C. Kwong Tang, J. Gran, and L. Werner, “Experimental validation of the predictabilty of a predictable quantum efficent detector by a direct intercomparision,” in 12th International Conference on New Developments and Applications in Optical Radiometry (2014), pp. 197 – 198.

Müller, R.

A. Steiger, R. Müller, A. Remesal Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz Laser Power Measurement Comparison,” IEEE Trans. Terahertz Sci. Technol. 6(5), 664–669 (2016).

A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21(12), 14466–14473 (2013).
[Crossref] [PubMed]

Quinn, T. J.

T. J. Quinn and J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures, between −40'C and +1001C,” Philos. Trans. R. Soc. Lond. A 316(1536), 85–189 (1985).
[Crossref]

Remesal Oliva, A.

A. Steiger, R. Müller, A. Remesal Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz Laser Power Measurement Comparison,” IEEE Trans. Terahertz Sci. Technol. 6(5), 664–669 (2016).

Sanders, A.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5 - 50 mm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[Crossref]

Steiger, A.

A. Steiger, R. Müller, A. Remesal Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz Laser Power Measurement Comparison,” IEEE Trans. Terahertz Sci. Technol. 6(5), 664–669 (2016).

A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21(12), 14466–14473 (2013).
[Crossref] [PubMed]

Sun, Q.

A. Steiger, R. Müller, A. Remesal Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz Laser Power Measurement Comparison,” IEEE Trans. Terahertz Sci. Technol. 6(5), 664–669 (2016).

Theocharous, E.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5 - 50 mm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[Crossref]

Tomlin, N. A.

N. A. Tomlin, M. White, I. Vayshenker, S. I. Woods, and J. H. Lehman, “Planar electrical-substitution carbon nanotube cryogenic radiometer,” Metrologia 52(2), 376–383 (2015).
[Crossref]

Vayshenker, I.

N. A. Tomlin, M. White, I. Vayshenker, S. I. Woods, and J. H. Lehman, “Planar electrical-substitution carbon nanotube cryogenic radiometer,” Metrologia 52(2), 376–383 (2015).
[Crossref]

Werner, L.

I. Müller, C. Kwong Tang, J. Gran, and L. Werner, “Experimental validation of the predictabilty of a predictable quantum efficent detector by a direct intercomparision,” in 12th International Conference on New Developments and Applications in Optical Radiometry (2014), pp. 197 – 198.

White, M.

A. Steiger, R. Müller, A. Remesal Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz Laser Power Measurement Comparison,” IEEE Trans. Terahertz Sci. Technol. 6(5), 664–669 (2016).

N. A. Tomlin, M. White, I. Vayshenker, S. I. Woods, and J. H. Lehman, “Planar electrical-substitution carbon nanotube cryogenic radiometer,” Metrologia 52(2), 376–383 (2015).
[Crossref]

Woods, S. I.

N. A. Tomlin, M. White, I. Vayshenker, S. I. Woods, and J. H. Lehman, “Planar electrical-substitution carbon nanotube cryogenic radiometer,” Metrologia 52(2), 376–383 (2015).
[Crossref]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Ann. Phys. (1)

F. Kurlbaum, “Notiz über eine Methode zur quantitativen Bestimmung der stahlenden Wärme,” Ann. Phys. 287, 591 (1894).

Appl. Opt. (1)

Carbon (1)

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, “Infrared hemispherical reflectance of carbon nanotube mats and arrays in the 5 - 50 mm wavelength region,” Carbon 50(14), 5348–5350 (2012).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

A. Steiger, R. Müller, A. Remesal Oliva, Y. Deng, Q. Sun, M. White, and J. Lehman, “Terahertz Laser Power Measurement Comparison,” IEEE Trans. Terahertz Sci. Technol. 6(5), 664–669 (2016).

Metrologia (1)

N. A. Tomlin, M. White, I. Vayshenker, S. I. Woods, and J. H. Lehman, “Planar electrical-substitution carbon nanotube cryogenic radiometer,” Metrologia 52(2), 376–383 (2015).
[Crossref]

Opt. Express (2)

Philos. Trans. R. Soc. Lond. A (1)

T. J. Quinn and J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures, between −40'C and +1001C,” Philos. Trans. R. Soc. Lond. A 316(1536), 85–189 (1985).
[Crossref]

Proc. Nat. Acad. Arts Sci. (1)

S. Langley, “The Bolometer and Radiant Energy,” Proc. Nat. Acad. Arts Sci. 166, 352–358 (1881).

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Other (2)

I. Müller, C. Kwong Tang, J. Gran, and L. Werner, “Experimental validation of the predictabilty of a predictable quantum efficent detector by a direct intercomparision,” in 12th International Conference on New Developments and Applications in Optical Radiometry (2014), pp. 197 – 198.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Technical Note 1297, 1994 Edition, p.2, (National Institute of Standards and Technology, USA).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Thermal and electrical schematic of the radiometer (left) with a line diagram (middle) and photo (right).
Fig. 2
Fig. 2 Representation of the VANTA thermistor grown across tungsten leads.
Fig. 3
Fig. 3 Schematic of aperture and radiometer geometry.
Fig. 4
Fig. 4 Configuration of the VANTA reflectance measurement.
Fig. 5
Fig. 5 Laser beam profile at 117 um wavelength showing the beam diameter less than 4 mm.
Fig. 6
Fig. 6 Measured VANTA thermistor resistance as a function of temperature. The line represents the connection of individual measurement points.

Tables (4)

Tables Icon

Table 1 Summary of VANTA Specular Reflectance at Five FIR/THz Frequencies

Tables Icon

Table 2 Summary of Uncertainty

Tables Icon

Table 3 Summary of Radiometer Calibrations

Tables Icon

Table 4 Summary of the Hyperblack Radiometer’s Characteristics

Metrics