Abstract

A hybrid modulation scheme that simultaneously applies the direct current modulation and intra-cavity loss modulation to a semiconductor laser is proposed. Both numerical calculations using rate equations and experiments using a fabricated laser show that the hybrid modulation scheme can control the frequency response of the laser by changing a modulation ratio and time delay between the two modulations. The modulation ratio and time delay provide the degree of signal mixing of the two modulations and an optimum condition is found when a non-flat frequency response for the intra-cavity loss modulation is compensated by that for the direct current modulation. We experimentally confirm a 8.64-dB improvement of the modulation sensitivity at 20 GHz compared with the pure direct current modulation with a 0.7-dB relaxation oscillation peak.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Amplitude-modulation-free optoelectronic frequency control of laser diodes

B. Bodermann, H. R. Telle, and R. P. Kovacich
Opt. Lett. 25(12) 899-901 (2000)

Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method

Yunshan Zhang, Lianyan Li, Yating Zhou, Guowang Zhao, Yuechun Shi, Jilin Zheng, Zhike Zhang, Yu Liu, Linjie Zou, Yuke Zhou, Yinchao Du, and Xiangfei Chen
Opt. Express 25(22) 27595-27608 (2017)

Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback

Anke Zhao, Ning Jiang, Shiqin Liu, Chenpeng Xue, Jianming Tang, and Kun Qiu
Opt. Express 27(9) 12336-12348 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43 Gb/s 1.3μm DFB laser for 40 km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
    [Crossref]
  2. M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
    [Crossref]
  3. J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40-Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
    [Crossref]
  4. P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon-photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502408 (2013).
    [Crossref]
  5. L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioannini, V. Feies, and I. Montrosset, “22GHz Modulation bandwidth of long cavity DBR laser by using a weakly laterally coupled grating fabricated by focused ion beam lithography,” IEEE Photonics Technol. Lett. 16(1), 18–20 (2004).
    [Crossref]
  6. Y. Matsui, T. Pham, W. A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, ” 55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Proceedings of the Optical Fiber Communication Conference 2016 (OSA, 2016), paper Th5B.4.
    [Crossref]
  7. H. Ishihara, Y. Saito, W. Kobayashi, and H. Yasaka, “Bandwidth enhanced operation of single mode semiconductor laser by intensity modulated signal light injection,” IEICE Trans. Electron. E95(9), 1549–1551 (2012).
    [Crossref]
  8. S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Ultra-wide-bandwidth optically-controlled DFB laser with external cavity,” IEEE J. Quantum Electron. 52(6), 2200107 (2016).
    [Crossref]
  9. S. Mieda, S. Shiratori, N. Yokota, H. Yasaka, and W. Kobayashi, “Gently-sloped small signal response by intra-cavity loss modulation,” in Proceedings of the 20th Optoelectronics and Communications Conference, paper JTuA.24.
    [Crossref]
  10. S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Intra-cavity loss modulation for ultra-high-speed direct modulation lasers based on photon-photon resonance,” Appl. Phys. Express 8(8), 082701 (2015).
    [Crossref]
  11. H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
    [Crossref]
  12. W. Kobayashi, M. Arai, T. Fujisawa, T. Sato, T. Ito, K. Hasebe, S. Kanazawa, Y. Ueda, T. Yamanaka, and H. Sanjoh, “Novel approach for chirp and output power compensation applied to a 40-Gbit/s EADFB laser integrated with a short SOA,” Opt. Express 23(7), 9533–9542 (2015).
    [Crossref] [PubMed]

2016 (1)

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Ultra-wide-bandwidth optically-controlled DFB laser with external cavity,” IEEE J. Quantum Electron. 52(6), 2200107 (2016).
[Crossref]

2015 (2)

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Intra-cavity loss modulation for ultra-high-speed direct modulation lasers based on photon-photon resonance,” Appl. Phys. Express 8(8), 082701 (2015).
[Crossref]

W. Kobayashi, M. Arai, T. Fujisawa, T. Sato, T. Ito, K. Hasebe, S. Kanazawa, Y. Ueda, T. Yamanaka, and H. Sanjoh, “Novel approach for chirp and output power compensation applied to a 40-Gbit/s EADFB laser integrated with a short SOA,” Opt. Express 23(7), 9533–9542 (2015).
[Crossref] [PubMed]

2013 (1)

P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon-photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502408 (2013).
[Crossref]

2012 (3)

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40-Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

H. Ishihara, Y. Saito, W. Kobayashi, and H. Yasaka, “Bandwidth enhanced operation of single mode semiconductor laser by intensity modulated signal light injection,” IEICE Trans. Electron. E95(9), 1549–1551 (2012).
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43 Gb/s 1.3μm DFB laser for 40 km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

2007 (1)

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

2004 (1)

L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioannini, V. Feies, and I. Montrosset, “22GHz Modulation bandwidth of long cavity DBR laser by using a weakly laterally coupled grating fabricated by focused ion beam lithography,” IEEE Photonics Technol. Lett. 16(1), 18–20 (2004).
[Crossref]

1991 (1)

H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
[Crossref]

Arai, M.

Bach, L.

L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioannini, V. Feies, and I. Montrosset, “22GHz Modulation bandwidth of long cavity DBR laser by using a weakly laterally coupled grating fabricated by focused ion beam lithography,” IEEE Photonics Technol. Lett. 16(1), 18–20 (2004).
[Crossref]

Bandelow, U.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Bardella, P.

P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon-photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502408 (2013).
[Crossref]

Feies, V.

L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioannini, V. Feies, and I. Montrosset, “22GHz Modulation bandwidth of long cavity DBR laser by using a weakly laterally coupled grating fabricated by focused ion beam lithography,” IEEE Photonics Technol. Lett. 16(1), 18–20 (2004).
[Crossref]

Forchel, A.

L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioannini, V. Feies, and I. Montrosset, “22GHz Modulation bandwidth of long cavity DBR laser by using a weakly laterally coupled grating fabricated by focused ion beam lithography,” IEEE Photonics Technol. Lett. 16(1), 18–20 (2004).
[Crossref]

Fujisawa, T.

Gaertner, T.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40-Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

Gioannini, M.

L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioannini, V. Feies, and I. Montrosset, “22GHz Modulation bandwidth of long cavity DBR laser by using a weakly laterally coupled grating fabricated by focused ion beam lithography,” IEEE Photonics Technol. Lett. 16(1), 18–20 (2004).
[Crossref]

Glitzky, A.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Hasebe, K.

Ishihara, H.

H. Ishihara, Y. Saito, W. Kobayashi, and H. Yasaka, “Bandwidth enhanced operation of single mode semiconductor laser by intensity modulated signal light injection,” IEICE Trans. Electron. E95(9), 1549–1551 (2012).
[Crossref]

Ito, T.

Kaiser, W.

L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioannini, V. Feies, and I. Montrosset, “22GHz Modulation bandwidth of long cavity DBR laser by using a weakly laterally coupled grating fabricated by focused ion beam lithography,” IEEE Photonics Technol. Lett. 16(1), 18–20 (2004).
[Crossref]

Kanazawa, S.

Kano, F.

Kobayashi, W.

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Ultra-wide-bandwidth optically-controlled DFB laser with external cavity,” IEEE J. Quantum Electron. 52(6), 2200107 (2016).
[Crossref]

W. Kobayashi, M. Arai, T. Fujisawa, T. Sato, T. Ito, K. Hasebe, S. Kanazawa, Y. Ueda, T. Yamanaka, and H. Sanjoh, “Novel approach for chirp and output power compensation applied to a 40-Gbit/s EADFB laser integrated with a short SOA,” Opt. Express 23(7), 9533–9542 (2015).
[Crossref] [PubMed]

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Intra-cavity loss modulation for ultra-high-speed direct modulation lasers based on photon-photon resonance,” Appl. Phys. Express 8(8), 082701 (2015).
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43 Gb/s 1.3μm DFB laser for 40 km transmission,” J. Lightwave Technol. 30(15), 2520–2524 (2012).
[Crossref]

H. Ishihara, Y. Saito, W. Kobayashi, and H. Yasaka, “Bandwidth enhanced operation of single mode semiconductor laser by intensity modulated signal light injection,” IEICE Trans. Electron. E95(9), 1549–1551 (2012).
[Crossref]

S. Mieda, S. Shiratori, N. Yokota, H. Yasaka, and W. Kobayashi, “Gently-sloped small signal response by intra-cavity loss modulation,” in Proceedings of the 20th Optoelectronics and Communications Conference, paper JTuA.24.
[Crossref]

Kreissl, J.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40-Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Mieda, S.

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Ultra-wide-bandwidth optically-controlled DFB laser with external cavity,” IEEE J. Quantum Electron. 52(6), 2200107 (2016).
[Crossref]

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Intra-cavity loss modulation for ultra-high-speed direct modulation lasers based on photon-photon resonance,” Appl. Phys. Express 8(8), 082701 (2015).
[Crossref]

S. Mieda, S. Shiratori, N. Yokota, H. Yasaka, and W. Kobayashi, “Gently-sloped small signal response by intra-cavity loss modulation,” in Proceedings of the 20th Optoelectronics and Communications Conference, paper JTuA.24.
[Crossref]

Montrosset, I.

P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon-photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502408 (2013).
[Crossref]

L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioannini, V. Feies, and I. Montrosset, “22GHz Modulation bandwidth of long cavity DBR laser by using a weakly laterally coupled grating fabricated by focused ion beam lithography,” IEEE Photonics Technol. Lett. 16(1), 18–20 (2004).
[Crossref]

Naganuma, M.

H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
[Crossref]

Radziunas, M.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Rehbein, W.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Reithmaier, J. P.

L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioannini, V. Feies, and I. Montrosset, “22GHz Modulation bandwidth of long cavity DBR laser by using a weakly laterally coupled grating fabricated by focused ion beam lithography,” IEEE Photonics Technol. Lett. 16(1), 18–20 (2004).
[Crossref]

Saito, Y.

H. Ishihara, Y. Saito, W. Kobayashi, and H. Yasaka, “Bandwidth enhanced operation of single mode semiconductor laser by intensity modulated signal light injection,” IEICE Trans. Electron. E95(9), 1549–1551 (2012).
[Crossref]

Sanjoh, H.

Sato, T.

Schell, M.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40-Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

Shiratori, S.

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Ultra-wide-bandwidth optically-controlled DFB laser with external cavity,” IEEE J. Quantum Electron. 52(6), 2200107 (2016).
[Crossref]

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Intra-cavity loss modulation for ultra-high-speed direct modulation lasers based on photon-photon resonance,” Appl. Phys. Express 8(8), 082701 (2015).
[Crossref]

S. Mieda, S. Shiratori, N. Yokota, H. Yasaka, and W. Kobayashi, “Gently-sloped small signal response by intra-cavity loss modulation,” in Proceedings of the 20th Optoelectronics and Communications Conference, paper JTuA.24.
[Crossref]

Tadokoro, T.

Takahata, K.

H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
[Crossref]

Troppenz, U.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40-Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Ueda, Y.

Vercesi, V.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40-Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

Wenisch, W.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40-Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

Wolfrum, M.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Yamamoto, N.

H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
[Crossref]

Yamanaka, T.

Yasaka, H.

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Ultra-wide-bandwidth optically-controlled DFB laser with external cavity,” IEEE J. Quantum Electron. 52(6), 2200107 (2016).
[Crossref]

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Intra-cavity loss modulation for ultra-high-speed direct modulation lasers based on photon-photon resonance,” Appl. Phys. Express 8(8), 082701 (2015).
[Crossref]

H. Ishihara, Y. Saito, W. Kobayashi, and H. Yasaka, “Bandwidth enhanced operation of single mode semiconductor laser by intensity modulated signal light injection,” IEICE Trans. Electron. E95(9), 1549–1551 (2012).
[Crossref]

H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
[Crossref]

S. Mieda, S. Shiratori, N. Yokota, H. Yasaka, and W. Kobayashi, “Gently-sloped small signal response by intra-cavity loss modulation,” in Proceedings of the 20th Optoelectronics and Communications Conference, paper JTuA.24.
[Crossref]

Yokota, N.

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Ultra-wide-bandwidth optically-controlled DFB laser with external cavity,” IEEE J. Quantum Electron. 52(6), 2200107 (2016).
[Crossref]

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Intra-cavity loss modulation for ultra-high-speed direct modulation lasers based on photon-photon resonance,” Appl. Phys. Express 8(8), 082701 (2015).
[Crossref]

S. Mieda, S. Shiratori, N. Yokota, H. Yasaka, and W. Kobayashi, “Gently-sloped small signal response by intra-cavity loss modulation,” in Proceedings of the 20th Optoelectronics and Communications Conference, paper JTuA.24.
[Crossref]

Appl. Phys. Express (1)

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Intra-cavity loss modulation for ultra-high-speed direct modulation lasers based on photon-photon resonance,” Appl. Phys. Express 8(8), 082701 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Mieda, S. Shiratori, N. Yokota, W. Kobayashi, and H. Yasaka, “Ultra-wide-bandwidth optically-controlled DFB laser with external cavity,” IEEE J. Quantum Electron. 52(6), 2200107 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon-photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502408 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Bach, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioannini, V. Feies, and I. Montrosset, “22GHz Modulation bandwidth of long cavity DBR laser by using a weakly laterally coupled grating fabricated by focused ion beam lithography,” IEEE Photonics Technol. Lett. 16(1), 18–20 (2004).
[Crossref]

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40-Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

H. Yasaka, K. Takahata, N. Yamamoto, and M. Naganuma, “Gain saturation coefficients of strained-layer multiple quantum-well distributed feedback lasers,” IEEE Photonics Technol. Lett. 3(10), 879–882 (1991).
[Crossref]

IEICE Trans. Electron. (1)

H. Ishihara, Y. Saito, W. Kobayashi, and H. Yasaka, “Bandwidth enhanced operation of single mode semiconductor laser by intensity modulated signal light injection,” IEICE Trans. Electron. E95(9), 1549–1551 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (2)

S. Mieda, S. Shiratori, N. Yokota, H. Yasaka, and W. Kobayashi, “Gently-sloped small signal response by intra-cavity loss modulation,” in Proceedings of the 20th Optoelectronics and Communications Conference, paper JTuA.24.
[Crossref]

Y. Matsui, T. Pham, W. A. Ling, R. Schatz, G. Carey, H. Daghighian, T. Sudo, and C. Roxlo, ” 55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Proceedings of the Optical Fiber Communication Conference 2016 (OSA, 2016), paper Th5B.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Frequency response of a PPR-enhanced laser based on (a) DM and (b) HM.
Fig. 2
Fig. 2 Schematic structure of HM laser.
Fig. 3
Fig. 3 Calculated frequency responses for the pure DM and pure ICLM.
Fig. 4
Fig. 4 Calculated unit step responses of the HM scheme (a) without a time delay and (b) with a 26-ps time delay.
Fig. 5
Fig. 5 (a) Calculated frequency responses of HM laser with various η conditions for Δt = 26 ps. (b) Modulation ratio dependences of maximum response deviation χ and sensitivity improvement δ for Δt = 26 ps.
Fig. 6
Fig. 6 Calculated eye diagrams of 25-Gbps NRZ signal for (a) DM and (b) HM for Δt = 26 ps and η = −6.61 dB. (c) Frequency response dependence on Δt.
Fig. 7
Fig. 7 (a) Experimental setup for measurement of frequency responses. Schematics of voltage dependences of output power for (b) DFB active section and (c) ICLM section.
Fig. 8
Fig. 8 (a) Measured frequency responses with various η conditions for Δt = 26 ps. (b) Modulation ratio dependences of maximum response deviation χ and sensitivity improvement δ for Δt = 26 ps.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dN dt = I eV N τ s v g A g (N N 0 ) 1+εS S,
dS dt =[ Γ v g A g (N N 0 ) 1+εS 1 τ p ]S,
1 τ p = 1 τ p0 + 1 Δ τ p ,
I= I 0 + I 1 sin[ ω(tΔt) ],
1 Δ τ p = 1 Δ τ p0 + 1 Δ τ p1 sin(ωt),
V LD = V LD0 + V LD1 sin[ ω(tΔt) ],
V LM = V LM0 + V LM1 sin(ωt),

Metrics