Abstract

Filter pad light absorption measurements are subject to two major sources of experimental uncertainty: the so-called pathlength amplification factor, β, and scattering offsets, o, for which previous null-correction approaches are limited by recent observations of non-zero absorption in the near infrared (NIR). A new filter pad absorption correction method is presented here which uses linear regression against point-source integrating cavity absorption meter (PSICAM) absorption data to simultaneously resolve both β and the scattering offset. The PSICAM has previously been shown to provide accurate absorption data, even in highly scattering waters. Comparisons of PSICAM and filter pad particulate absorption data reveal linear relationships that vary on a sample by sample basis. This regression approach provides significantly improved agreement with PSICAM data (3.2% RMS%E) than previously published filter pad absorption corrections. Results show that direct transmittance (T-method) filter pad absorption measurements perform effectively at the same level as more complex geometrical configurations based on integrating cavity measurements (IS-method and QFT-ICAM) because the linear regression correction compensates for the sensitivity to scattering errors in the T-method. This approach produces accurate filter pad particulate absorption data for wavelengths in the blue/UV and in the NIR where sensitivity issues with PSICAM measurements limit performance. The combination of the filter pad absorption and PSICAM is therefore recommended for generating full spectral, best quality particulate absorption data as it enables correction of multiple errors sources across both measurements.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region

Dariusz Stramski, Rick A. Reynolds, Sławomir Kaczmarek, Julia Uitz, and Guangming Zheng
Appl. Opt. 54(22) 6763-6782 (2015)

Measurement uncertainties in PSICAM and reflective tube absorption meters

Ina Lefering, Rüdiger Röttgers, Christian Utschig, Michael S. Twardowski, and David McKee
Opt. Express 26(19) 24384-24402 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, 1994).
  2. S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43(17), 3489–3503 (2004).
  3. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
  4. G. C. Chang and T. D. Dickey, “Partitioning in situ total spectral absorption by use of moored spectral absorption-attenuation meters,” Appl. Opt. 38(18), 3876–3887 (1999).
  5. N. Hoepffner and S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption-spectra of total particulate matter,” J. Geophys. Res.- Oceans 98(C12), 22789–22803 (1993).
  6. G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton-taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).
  7. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
  8. M. J. Behrenfeld and P. G. Falkowski, “A consumer’s guide to phytoplankton primary productivity models,” Limnol. Oceanogr. 42(7), 1479–1491 (1997).
  9. B. G. Mitchell, “Algorithms for determining the absorption-coefficient of aquatic particulates using the quantitative filter technique (QFT),” Proc. SPIE 1302, 137–148 (1990).
  10. M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption-coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).
  11. G. M. Ferrari and S. Tassan, “A method using chemical oxidation to remove light absorption by phytoplankton pigments,” J. Phycol. 35(5), 1090–1098 (1999).
  12. G. M. Zheng and D. Stramski, “A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non-phytoplankton components,” J. Geophys. Res.- Oceans 118, 2155–2174 (2013).
  13. A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35(3), 562–582 (1990).
  14. M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47(3), 911–915 (2002).
  15. R. Röttgers, W. Schönfeld, P. R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
  16. R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51(9), 1336–1351 (2012).
  17. D. Stramski, R. A. Reynolds, S. Kaczmarek, J. Uitz, and G. Zheng, “Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region,” Appl. Opt. 54(22), 6763–6782 (2015).
  18. B. G. Mitchell and D. A. Kiefer, “Chlorophyll-alpha specific absorption and fluorescence excitation-spectra for light-limited phytoplankton,” Deep-Sea Res. 35(5), 639–663 (1988).
  19. C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43(7), 1649–1660 (1998).
  20. D. Stramski, “Artifacts in measuring absorption-spectra of phytoplankton collected on a filter,” Limnol. Oceanogr. 35(8), 1804–1809 (1990).
  21. H. M. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr. 44(4), 1139–1141 (1999).
  22. S. E. Lohrenz, “A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res. 22(4), 639–657 (2000).
  23. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
  24. S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42(24), 4802–4810 (2003).
  25. R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Wozniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).
  26. J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles - a multiple-scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
  27. B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).
  28. Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259(1), 51–61 (2001).
  29. R. Röttgers, D. Doxaran, and C. Dupouy, “Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM),” Opt. Express 24(2), A1–A20 (2016).
  30. H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94(4), 1255–1256 (1967).
  31. B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation - Rev.4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (2003), pp. 39–64.
  32. S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).
  33. S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical pathlength amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20(9), 1699–1709 (1998).
  34. H. Maske and H. Haardt, “Quantitative invivo absorption-spectra of phytoplankton - detrital absorption and comparison with fluorescence excitation-spectra,” Limnol. Oceanogr. 32(3), 620–633 (1987).
  35. G. Neukermans, R. A. Reynolds, and D. Stramski, “Contrasting inherent optical properties and particle characteristics between an under-ice phytoplankton bloom and open water in the Chukchi Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 105, 59–73 (2014).
  36. M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).
  37. D. McKee, R. Röttgers, G. Neukermans, V. S. Calzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.- Oceans 119, 9013–9025 (2014).
  38. A. R. Neeley, S. A. Freeman, and L. A. Harris, “Multi-method approach to quantify uncertainties in the measurements of light absorption by particles,” Opt. Express 23(24), 31043–31058 (2015).
  39. R. Röttgers, C. Haese, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).
  40. R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).
  41. F. P. Chavez, K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, L. Campbell, and J. Newton, “On the chlorophyll-a retention properties of glass-fiber GF/F filters,” Limnol. Oceanogr. 40(2), 428–433 (1995).
  42. M. Stramska, D. Stramski, R. Hapter, S. Kaczmarek, and J. Ston, “Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic,” J. Geophys. Res.- Oceans 108, 3143 (2003).
  43. N. B. Nelson, D. A. Siegel, and A. F. Michaels, “Seasonal dynamics of colored dissolved material in the Sargasso Sea,” Deep Sea Res. Part I Oceanogr. Res. Pap. 45(6), 931–957 (1998).
  44. K. Allali, A. Bricaud, and H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific,” J. Geophys. Res.- Oceans 102(C6), 12413–12423 (1997).
  45. L. R. Moore, R. Goericke, and S. W. Chisholm, “Comparative physiology of synechococcus and prochlorococcus - influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275 (1995).
  46. N. Hoepffner and S. Sathyendranath, “Biooptical characteristics of coastal water - absorption-spectra of phytoplankton and pigment distribution in the western North-Atlantic,” Limnol. Oceanogr. 37(8), 1660–1679 (1992).
  47. E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31(12), 2055–2065 (1992).

2016 (1)

2015 (2)

2014 (3)

G. Neukermans, R. A. Reynolds, and D. Stramski, “Contrasting inherent optical properties and particle characteristics between an under-ice phytoplankton bloom and open water in the Chukchi Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 105, 59–73 (2014).

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Wozniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

D. McKee, R. Röttgers, G. Neukermans, V. S. Calzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.- Oceans 119, 9013–9025 (2014).

2013 (1)

G. M. Zheng and D. Stramski, “A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non-phytoplankton components,” J. Geophys. Res.- Oceans 118, 2155–2174 (2013).

2012 (1)

2007 (2)

R. Röttgers, C. Haese, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).

2005 (1)

2004 (3)

S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43(17), 3489–3503 (2004).

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).

2003 (2)

M. Stramska, D. Stramski, R. Hapter, S. Kaczmarek, and J. Ston, “Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic,” J. Geophys. Res.- Oceans 108, 3143 (2003).

S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42(24), 4802–4810 (2003).

2002 (3)

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47(3), 911–915 (2002).

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).

2001 (1)

Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259(1), 51–61 (2001).

2000 (1)

S. E. Lohrenz, “A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res. 22(4), 639–657 (2000).

1999 (3)

G. M. Ferrari and S. Tassan, “A method using chemical oxidation to remove light absorption by phytoplankton pigments,” J. Phycol. 35(5), 1090–1098 (1999).

H. M. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr. 44(4), 1139–1141 (1999).

G. C. Chang and T. D. Dickey, “Partitioning in situ total spectral absorption by use of moored spectral absorption-attenuation meters,” Appl. Opt. 38(18), 3876–3887 (1999).

1998 (3)

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43(7), 1649–1660 (1998).

S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical pathlength amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20(9), 1699–1709 (1998).

N. B. Nelson, D. A. Siegel, and A. F. Michaels, “Seasonal dynamics of colored dissolved material in the Sargasso Sea,” Deep Sea Res. Part I Oceanogr. Res. Pap. 45(6), 931–957 (1998).

1997 (2)

K. Allali, A. Bricaud, and H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific,” J. Geophys. Res.- Oceans 102(C6), 12413–12423 (1997).

M. J. Behrenfeld and P. G. Falkowski, “A consumer’s guide to phytoplankton primary productivity models,” Limnol. Oceanogr. 42(7), 1479–1491 (1997).

1996 (1)

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).

1995 (3)

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).

L. R. Moore, R. Goericke, and S. W. Chisholm, “Comparative physiology of synechococcus and prochlorococcus - influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275 (1995).

F. P. Chavez, K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, L. Campbell, and J. Newton, “On the chlorophyll-a retention properties of glass-fiber GF/F filters,” Limnol. Oceanogr. 40(2), 428–433 (1995).

1994 (1)

G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton-taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).

1993 (2)

N. Hoepffner and S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption-spectra of total particulate matter,” J. Geophys. Res.- Oceans 98(C12), 22789–22803 (1993).

J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles - a multiple-scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).

1992 (2)

N. Hoepffner and S. Sathyendranath, “Biooptical characteristics of coastal water - absorption-spectra of phytoplankton and pigment distribution in the western North-Atlantic,” Limnol. Oceanogr. 37(8), 1660–1679 (1992).

E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31(12), 2055–2065 (1992).

1990 (3)

A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35(3), 562–582 (1990).

B. G. Mitchell, “Algorithms for determining the absorption-coefficient of aquatic particulates using the quantitative filter technique (QFT),” Proc. SPIE 1302, 137–148 (1990).

D. Stramski, “Artifacts in measuring absorption-spectra of phytoplankton collected on a filter,” Limnol. Oceanogr. 35(8), 1804–1809 (1990).

1988 (1)

B. G. Mitchell and D. A. Kiefer, “Chlorophyll-alpha specific absorption and fluorescence excitation-spectra for light-limited phytoplankton,” Deep-Sea Res. 35(5), 639–663 (1988).

1987 (1)

H. Maske and H. Haardt, “Quantitative invivo absorption-spectra of phytoplankton - detrital absorption and comparison with fluorescence excitation-spectra,” Limnol. Oceanogr. 32(3), 620–633 (1987).

1985 (1)

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption-coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

1967 (1)

H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94(4), 1255–1256 (1967).

Allali, K.

K. Allali, A. Bricaud, and H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific,” J. Geophys. Res.- Oceans 102(C6), 12413–12423 (1997).

Ampolo-Rella, M.

D. McKee, R. Röttgers, G. Neukermans, V. S. Calzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.- Oceans 119, 9013–9025 (2014).

Arbones, B.

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).

Arnone, R. A.

Babin, M.

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47(3), 911–915 (2002).

Behrenfeld, M. J.

M. J. Behrenfeld and P. G. Falkowski, “A consumer’s guide to phytoplankton primary productivity models,” Limnol. Oceanogr. 42(7), 1479–1491 (1997).

Bidigare, R. R.

F. P. Chavez, K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, L. Campbell, and J. Newton, “On the chlorophyll-a retention properties of glass-fiber GF/F filters,” Limnol. Oceanogr. 40(2), 428–433 (1995).

Bogucki, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).

Boss, E.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).

Bracher, A.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Wozniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

Bricaud, A.

K. Allali, A. Bricaud, and H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific,” J. Geophys. Res.- Oceans 102(C6), 12413–12423 (1997).

A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35(3), 562–582 (1990).

Buck, K. R.

F. P. Chavez, K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, L. Campbell, and J. Newton, “On the chlorophyll-a retention properties of glass-fiber GF/F filters,” Limnol. Oceanogr. 40(2), 428–433 (1995).

Calzado, V. S.

D. McKee, R. Röttgers, G. Neukermans, V. S. Calzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.- Oceans 119, 9013–9025 (2014).

Campbell, L.

F. P. Chavez, K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, L. Campbell, and J. Newton, “On the chlorophyll-a retention properties of glass-fiber GF/F filters,” Limnol. Oceanogr. 40(2), 428–433 (1995).

Carder, K. L.

Chang, G. C.

Chavez, F. P.

F. P. Chavez, K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, L. Campbell, and J. Newton, “On the chlorophyll-a retention properties of glass-fiber GF/F filters,” Limnol. Oceanogr. 40(2), 428–433 (1995).

Chisholm, S. W.

L. R. Moore, R. Goericke, and S. W. Chisholm, “Comparative physiology of synechococcus and prochlorococcus - influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275 (1995).

Ciotti, A. M.

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).

Claustre, H.

K. Allali, A. Bricaud, and H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific,” J. Geophys. Res.- Oceans 102(C6), 12413–12423 (1997).

Cleveland, J. S.

J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles - a multiple-scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).

Cullen, J. J.

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).

Cunningham, A.

D. McKee, R. Röttgers, G. Neukermans, V. S. Calzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.- Oceans 119, 9013–9025 (2014).

Dickey, T. D.

Doerffer, R.

R. Röttgers, C. Haese, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).

R. Röttgers, W. Schönfeld, P. R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).

Doxaran, D.

Dupouy, C.

R. Röttgers, D. Doxaran, and C. Dupouy, “Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM),” Opt. Express 24(2), A1–A20 (2016).

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Wozniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

Falkowski, P. G.

M. J. Behrenfeld and P. G. Falkowski, “A consumer’s guide to phytoplankton primary productivity models,” Limnol. Oceanogr. 42(7), 1479–1491 (1997).

Ferrari, G. M.

S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42(24), 4802–4810 (2003).

G. M. Ferrari and S. Tassan, “A method using chemical oxidation to remove light absorption by phytoplankton pigments,” J. Phycol. 35(5), 1090–1098 (1999).

S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical pathlength amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20(9), 1699–1709 (1998).

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).

Figueiras, F. G.

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).

Finkel, Z. V.

Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259(1), 51–61 (2001).

Freeman, S. A.

Fry, E. S.

Gehnke, S.

Goericke, R.

L. R. Moore, R. Goericke, and S. W. Chisholm, “Comparative physiology of synechococcus and prochlorococcus - influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275 (1995).

Granskog, L.

G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton-taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).

Haardt, H.

H. Maske and H. Haardt, “Quantitative invivo absorption-spectra of phytoplankton - detrital absorption and comparison with fluorescence excitation-spectra,” Limnol. Oceanogr. 32(3), 620–633 (1987).

Haese, C.

R. Röttgers, C. Haese, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).

Hapter, R.

M. Stramska, D. Stramski, R. Hapter, S. Kaczmarek, and J. Ston, “Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic,” J. Geophys. Res.- Oceans 108, 3143 (2003).

Harris, L. A.

Hebel, D.

F. P. Chavez, K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, L. Campbell, and J. Newton, “On the chlorophyll-a retention properties of glass-fiber GF/F filters,” Limnol. Oceanogr. 40(2), 428–433 (1995).

Hoepffner, N.

N. Hoepffner and S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption-spectra of total particulate matter,” J. Geophys. Res.- Oceans 98(C12), 22789–22803 (1993).

N. Hoepffner and S. Sathyendranath, “Biooptical characteristics of coastal water - absorption-spectra of phytoplankton and pigment distribution in the western North-Atlantic,” Limnol. Oceanogr. 37(8), 1660–1679 (1992).

Ichimura, S.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption-coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Irwin, A. J.

Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259(1), 51–61 (2001).

Johnsen, G.

G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton-taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).

Kaczmarek, S.

D. Stramski, R. A. Reynolds, S. Kaczmarek, J. Uitz, and G. Zheng, “Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region,” Appl. Opt. 54(22), 6763–6782 (2015).

M. Stramska, D. Stramski, R. Hapter, S. Kaczmarek, and J. Ston, “Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic,” J. Geophys. Res.- Oceans 108, 3143 (2003).

Karl, D. M.

F. P. Chavez, K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, L. Campbell, and J. Newton, “On the chlorophyll-a retention properties of glass-fiber GF/F filters,” Limnol. Oceanogr. 40(2), 428–433 (1995).

Kattawar, G. W.

Kiefer, D. A.

B. G. Mitchell and D. A. Kiefer, “Chlorophyll-alpha specific absorption and fluorescence excitation-spectra for light-limited phytoplankton,” Deep-Sea Res. 35(5), 639–663 (1988).

Kipp, P. R.

Kishino, M.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption-coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Latasa, M.

F. P. Chavez, K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, L. Campbell, and J. Newton, “On the chlorophyll-a retention properties of glass-fiber GF/F filters,” Limnol. Oceanogr. 40(2), 428–433 (1995).

Lee, Z.

Lewis, M. R.

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).

Lohrenz, S. E.

S. E. Lohrenz, “A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res. 22(4), 639–657 (2000).

Maske, H.

H. Maske and H. Haardt, “Quantitative invivo absorption-spectra of phytoplankton - detrital absorption and comparison with fluorescence excitation-spectra,” Limnol. Oceanogr. 32(3), 620–633 (1987).

McKee, D.

D. McKee, R. Röttgers, G. Neukermans, V. S. Calzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.- Oceans 119, 9013–9025 (2014).

Michaels, A. F.

N. B. Nelson, D. A. Siegel, and A. F. Michaels, “Seasonal dynamics of colored dissolved material in the Sargasso Sea,” Deep Sea Res. Part I Oceanogr. Res. Pap. 45(6), 931–957 (1998).

Mitchell, B. G.

B. G. Mitchell, “Algorithms for determining the absorption-coefficient of aquatic particulates using the quantitative filter technique (QFT),” Proc. SPIE 1302, 137–148 (1990).

B. G. Mitchell and D. A. Kiefer, “Chlorophyll-alpha specific absorption and fluorescence excitation-spectra for light-limited phytoplankton,” Deep-Sea Res. 35(5), 639–663 (1988).

Moore, L. R.

L. R. Moore, R. Goericke, and S. W. Chisholm, “Comparative physiology of synechococcus and prochlorococcus - influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275 (1995).

Neeley, A. R.

Neil, C.

D. McKee, R. Röttgers, G. Neukermans, V. S. Calzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.- Oceans 119, 9013–9025 (2014).

Nelson, N. B.

N. B. Nelson, D. A. Siegel, and A. F. Michaels, “Seasonal dynamics of colored dissolved material in the Sargasso Sea,” Deep Sea Res. Part I Oceanogr. Res. Pap. 45(6), 931–957 (1998).

Neukermans, G.

D. McKee, R. Röttgers, G. Neukermans, V. S. Calzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.- Oceans 119, 9013–9025 (2014).

G. Neukermans, R. A. Reynolds, and D. Stramski, “Contrasting inherent optical properties and particle characteristics between an under-ice phytoplankton bloom and open water in the Chukchi Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 105, 59–73 (2014).

Newton, J.

F. P. Chavez, K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, L. Campbell, and J. Newton, “On the chlorophyll-a retention properties of glass-fiber GF/F filters,” Limnol. Oceanogr. 40(2), 428–433 (1995).

Okami, N.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption-coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Pope, R. M.

Reynolds, R. A.

D. Stramski, R. A. Reynolds, S. Kaczmarek, J. Uitz, and G. Zheng, “Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region,” Appl. Opt. 54(22), 6763–6782 (2015).

G. Neukermans, R. A. Reynolds, and D. Stramski, “Contrasting inherent optical properties and particle characteristics between an under-ice phytoplankton bloom and open water in the Chukchi Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 105, 59–73 (2014).

Roesler, C. S.

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43(7), 1649–1660 (1998).

Röttgers, R.

R. Röttgers, D. Doxaran, and C. Dupouy, “Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM),” Opt. Express 24(2), A1–A20 (2016).

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Wozniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

D. McKee, R. Röttgers, G. Neukermans, V. S. Calzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.- Oceans 119, 9013–9025 (2014).

R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51(9), 1336–1351 (2012).

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).

R. Röttgers, C. Haese, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).

R. Röttgers, W. Schönfeld, P. R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).

Sakshaug, E.

G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton-taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).

Samset, O.

G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton-taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).

Sathyendranath, S.

N. Hoepffner and S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption-spectra of total particulate matter,” J. Geophys. Res.- Oceans 98(C12), 22789–22803 (1993).

N. Hoepffner and S. Sathyendranath, “Biooptical characteristics of coastal water - absorption-spectra of phytoplankton and pigment distribution in the western North-Atlantic,” Limnol. Oceanogr. 37(8), 1660–1679 (1992).

Schönfeld, W.

Siegel, D. A.

N. B. Nelson, D. A. Siegel, and A. F. Michaels, “Seasonal dynamics of colored dissolved material in the Sargasso Sea,” Deep Sea Res. Part I Oceanogr. Res. Pap. 45(6), 931–957 (1998).

Sosik, H. M.

H. M. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr. 44(4), 1139–1141 (1999).

Ston, J.

M. Stramska, D. Stramski, R. Hapter, S. Kaczmarek, and J. Ston, “Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic,” J. Geophys. Res.- Oceans 108, 3143 (2003).

Stramska, M.

M. Stramska, D. Stramski, R. Hapter, S. Kaczmarek, and J. Ston, “Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic,” J. Geophys. Res.- Oceans 108, 3143 (2003).

Stramski, D.

D. Stramski, R. A. Reynolds, S. Kaczmarek, J. Uitz, and G. Zheng, “Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region,” Appl. Opt. 54(22), 6763–6782 (2015).

G. Neukermans, R. A. Reynolds, and D. Stramski, “Contrasting inherent optical properties and particle characteristics between an under-ice phytoplankton bloom and open water in the Chukchi Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 105, 59–73 (2014).

G. M. Zheng and D. Stramski, “A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non-phytoplankton components,” J. Geophys. Res.- Oceans 118, 2155–2174 (2013).

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).

S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43(17), 3489–3503 (2004).

M. Stramska, D. Stramski, R. Hapter, S. Kaczmarek, and J. Ston, “Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic,” J. Geophys. Res.- Oceans 108, 3143 (2003).

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47(3), 911–915 (2002).

D. Stramski, “Artifacts in measuring absorption-spectra of phytoplankton collected on a filter,” Limnol. Oceanogr. 35(8), 1804–1809 (1990).

A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35(3), 562–582 (1990).

Takahashi, M.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption-coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Tassan, S.

S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42(24), 4802–4810 (2003).

G. M. Ferrari and S. Tassan, “A method using chemical oxidation to remove light absorption by phytoplankton pigments,” J. Phycol. 35(5), 1090–1098 (1999).

S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical pathlength amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20(9), 1699–1709 (1998).

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).

Taylor, B. B.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Wozniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

Trees, C.

D. McKee, R. Röttgers, G. Neukermans, V. S. Calzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.- Oceans 119, 9013–9025 (2014).

Trüper, H. G.

H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94(4), 1255–1256 (1967).

Uitz, J.

Voss, K. J.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).

Weidemann, A. D.

J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles - a multiple-scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).

Wozniak, S. B.

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Wozniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43(17), 3489–3503 (2004).

Yentsch, C. S.

H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94(4), 1255–1256 (1967).

Zapata, M.

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).

Zheng, G.

Zheng, G. M.

G. M. Zheng and D. Stramski, “A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non-phytoplankton components,” J. Geophys. Res.- Oceans 118, 2155–2174 (2013).

Appl. Opt. (8)

S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43(17), 3489–3503 (2004).

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).

G. C. Chang and T. D. Dickey, “Partitioning in situ total spectral absorption by use of moored spectral absorption-attenuation meters,” Appl. Opt. 38(18), 3876–3887 (1999).

R. Röttgers, W. Schönfeld, P. R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).

R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” Appl. Opt. 51(9), 1336–1351 (2012).

D. Stramski, R. A. Reynolds, S. Kaczmarek, J. Uitz, and G. Zheng, “Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region,” Appl. Opt. 54(22), 6763–6782 (2015).

S. Tassan and G. M. Ferrari, “Variability of light absorption by aquatic particles in the near-infrared spectral region,” Appl. Opt. 42(24), 4802–4810 (2003).

E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31(12), 2055–2065 (1992).

Bull. Mar. Sci. (1)

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption-coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Deep Sea Res. Part I Oceanogr. Res. Pap. (1)

N. B. Nelson, D. A. Siegel, and A. F. Michaels, “Seasonal dynamics of colored dissolved material in the Sargasso Sea,” Deep Sea Res. Part I Oceanogr. Res. Pap. 45(6), 931–957 (1998).

Deep Sea Res. Part II Top. Stud. Oceanogr. (1)

G. Neukermans, R. A. Reynolds, and D. Stramski, “Contrasting inherent optical properties and particle characteristics between an under-ice phytoplankton bloom and open water in the Chukchi Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 105, 59–73 (2014).

Deep-Sea Res. (1)

B. G. Mitchell and D. A. Kiefer, “Chlorophyll-alpha specific absorption and fluorescence excitation-spectra for light-limited phytoplankton,” Deep-Sea Res. 35(5), 639–663 (1988).

J. Bacteriol. (1)

H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol. 94(4), 1255–1256 (1967).

J. Exp. Mar. Biol. Ecol. (1)

Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol. 259(1), 51–61 (2001).

J. Geophys. Res.- Oceans (5)

D. McKee, R. Röttgers, G. Neukermans, V. S. Calzado, C. Trees, M. Ampolo-Rella, C. Neil, and A. Cunningham, “Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton,” J. Geophys. Res.- Oceans 119, 9013–9025 (2014).

G. M. Zheng and D. Stramski, “A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non-phytoplankton components,” J. Geophys. Res.- Oceans 118, 2155–2174 (2013).

N. Hoepffner and S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption-spectra of total particulate matter,” J. Geophys. Res.- Oceans 98(C12), 22789–22803 (1993).

K. Allali, A. Bricaud, and H. Claustre, “Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific,” J. Geophys. Res.- Oceans 102(C6), 12413–12423 (1997).

M. Stramska, D. Stramski, R. Hapter, S. Kaczmarek, and J. Ston, “Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic,” J. Geophys. Res.- Oceans 108, 3143 (2003).

J. Phycol. (1)

G. M. Ferrari and S. Tassan, “A method using chemical oxidation to remove light absorption by phytoplankton pigments,” J. Phycol. 35(5), 1090–1098 (1999).

J. Plankton Res. (2)

S. E. Lohrenz, “A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res. 22(4), 639–657 (2000).

S. Tassan and G. M. Ferrari, “Measurement of light absorption by aquatic particles retained on filters: determination of the optical pathlength amplification by the ‘transmittance-reflectance’ method,” J. Plankton Res. 20(9), 1699–1709 (1998).

Limnol. Oceanogr. (14)

H. Maske and H. Haardt, “Quantitative invivo absorption-spectra of phytoplankton - detrital absorption and comparison with fluorescence excitation-spectra,” Limnol. Oceanogr. 32(3), 620–633 (1987).

S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr. 40(8), 1358–1368 (1995).

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).

R. Röttgers, C. Dupouy, B. B. Taylor, A. Bracher, and S. B. Wozniak, “Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 59(5), 1449–1460 (2014).

J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles - a multiple-scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).

A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35(3), 562–582 (1990).

M. Babin and D. Stramski, “Light absorption by aquatic particles in the near-infrared spectral region,” Limnol. Oceanogr. 47(3), 911–915 (2002).

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43(7), 1649–1660 (1998).

D. Stramski, “Artifacts in measuring absorption-spectra of phytoplankton collected on a filter,” Limnol. Oceanogr. 35(8), 1804–1809 (1990).

H. M. Sosik, “Storage of marine particulate samples for light-absorption measurements,” Limnol. Oceanogr. 44(4), 1139–1141 (1999).

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).

M. J. Behrenfeld and P. G. Falkowski, “A consumer’s guide to phytoplankton primary productivity models,” Limnol. Oceanogr. 42(7), 1479–1491 (1997).

F. P. Chavez, K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, L. Campbell, and J. Newton, “On the chlorophyll-a retention properties of glass-fiber GF/F filters,” Limnol. Oceanogr. 40(2), 428–433 (1995).

N. Hoepffner and S. Sathyendranath, “Biooptical characteristics of coastal water - absorption-spectra of phytoplankton and pigment distribution in the western North-Atlantic,” Limnol. Oceanogr. 37(8), 1660–1679 (1992).

Limnol. Oceanogr. Methods (2)

R. Röttgers, C. Haese, and R. Doerffer, “Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence,” Limnol. Oceanogr. Methods 5(1), 1–12 (2007).

R. Röttgers and R. Doerffer, “Measurements of optical absorption by chromophoric dissolved organic matter using a point-source integrating-cavity absorption meter,” Limnol. Oceanogr. Methods 5(5), 126–135 (2007).

Mar. Ecol. Prog. Ser. (3)

L. R. Moore, R. Goericke, and S. W. Chisholm, “Comparative physiology of synechococcus and prochlorococcus - influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275 (1995).

G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton-taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser. 105, 149–157 (1994).

B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser. 137, 293–304 (1996).

Opt. Express (2)

Proc. SPIE (1)

B. G. Mitchell, “Algorithms for determining the absorption-coefficient of aquatic particulates using the quantitative filter technique (QFT),” Proc. SPIE 1302, 137–148 (1990).

Prog. Oceanogr. (1)

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).

Other (2)

C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, 1994).

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation - Rev.4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (2003), pp. 39–64.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Comparison of particulate absorption spectra (400-700 nm) of all samples collected on the UKCW cruise using two independent PSICAMs – one operated by the Helmholtz-Zentrum Geesthacht (HZG) and one by the University of Strathclyde (Strath).
Fig. 2
Fig. 2 (a) and (d) PSICAM data, ap, and uncorrected (β = 1) filter pad data, au, of two different samples. (b) and (e) linear regression, coefficients and R2 for the same samples. Data ranges for the linear regression were limited to 400 – 700 nm for (b) and 440 – 700 nm for (e). (c) and (f) show final particulate absorption spectra measured with PSICAM and T-method. Filter pad data have been offset corrected and re-scaled using Eq. (3) and the coefficients derived in (b) and (e) respectively.
Fig. 3
Fig. 3 Distributions of (a) β-factors (regression slopes) and (b) scattering offsets (o, regression intercepts) determined for filter pad absorption measurements made using the T-method on the UKCW cruise.
Fig. 4
Fig. 4 Slopes of linear regression applied to theoretical filter pad absorption, au, (calculated using Eq. (1) and β = 1.0) vs. particulate absorption, ap, measured in a PSICAM for 5 subsamples of the same (a) natural sample and (b) sample of D. maritima. Data in (a) is limited to the linear range from 480 – 700 nm.
Fig. 5
Fig. 5 Multiple determinations of β-factors for 4 algal culture samples within a 2 week time period. SM – Skeletonema marinoi, HS – Heterocapsa spp., PS – Pseudonitzschia seriata, AM – Alexandrium minutum
Fig. 6
Fig. 6 The effect of different filter pad absorption correction methods on the agreement between ap derived from PSICAM and filter pad measurements from 362 – 726 nm (except where PSICAM data was limited in the blue to eliminate artefacts due to very low signal levels), made on the UKCW cruise in 2015. (a)-(d) show variations of the linear regression correction in comparison to two previously published corrections by (e) Mitchell (1990) and (f) Stramski et al. (2015). Solid lines: 1:1 line, dashed lines: linear fit through data.
Fig. 7
Fig. 7 The effect of the linear regression filter pad absorption correction methods on the agreement ap derived from PSICAM and filter pad measurements using different geometric configurations: (a) T-method, (b) QFT-ICAM and (c) IS-method. Data presented is a subset of 51 stations sampled during the UKCW cruise in May 2015, from 362 – 726 nm (except where PSICAM data was limited in the blue to eliminate artefacts due to very low signal levels). Solid lines: 1:1 line, dashed lines: linear fit through data.

Tables (6)

Tables Icon

Table 1 Summary of cultured algal species, type, size and location of isolation.

Tables Icon

Table 2 Summary of literature pathlength amplification as functional relationships ODS = f(ODf) and scattering offset corrections for the T-method.

Tables Icon

Table 3 Mean and 95% prediction intervals for β-distributions derived for three different geometrical configurations used during the UKCW cruise in 2015.

Tables Icon

Table 4 Mean and 95% prediction intervals for β-distributions derived for three different data sets and measurements with the T-method.

Tables Icon

Table 5 Slope, intercept and coefficient of determination (R2) for linear regression (362 (or PSICAM cut off wavelength) – 726 nm) of corrected T-method filter pad absorption data vs. PSICAM data. Overall agreement is given as RMS%E.

Tables Icon

Table 6 Performance of geometrical configurations to measure filter pad absorption, when corrected with different correction approaches, and compared to PSICAM data. The analysis was performed for a subset of 51 stations sampled during the UKCW cruise in 2015 for which data from all three filter pad measurements was available. The spectral range was limited to 362 – 726 nm. Data where PSICAM sensitivity issues in the blue were observed were excluded from this comparison.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

a p ( λ )= 2.303O D f ( λ )A Vβ
a p ( λ )= 2.303O D s ( λ )A V
a p ( λ )= a u ( λ )o β
RMS%E= 1 n 1 n ( x model x meas x meas ×100 ) 2

Metrics