Abstract

In this paper, we present finite element method simulations of top-emitting organic light-emitting diodes for designing optimized red, green, and blue full-color device structures. The OLED structures in the simulation are used to evaluate the device parameters, such as the outcoupling efficiency, electroluminescence spectra, and angular emission characteristics on organic layers with varying thickness and different cathodes. The numerical study also extracts these parameters for nano-structured devices. By observing the agreement between the simulated and measured data precisely, our simulations show capability of predicting the fabricated device results.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency red top-emitting micro-cavity organic light emitting diodes

Mi Jin Park, Gyeong Heon Kim, Young Hoon Son, Hyeong Woo Bae, Ji Hoon Kong, and Jang Hyuk Kwon
Opt. Express 22(17) 19919-19929 (2014)

Weak-microcavity organic light-emitting diodes with improved light out-coupling

Sang-Hwan Cho, Young-Woo Song, Joon-gu Lee, Yoon-Chang Kim, Jong Hyuk Lee, Jaeheung Ha, Jong-Suk Oh, So Young Lee, Sun Young Lee, Kyu Hwan Hwang, Dong-Sik Zang, and Yong-Hee Lee
Opt. Express 16(17) 12632-12639 (2008)

Top-emitting organic light-emitting diodes

Simone Hofmann, Michael Thomschke, Björn Lüssem, and Karl Leo
Opt. Express 19(S6) A1250-A1264 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
    [Crossref] [PubMed]
  2. M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett. 81(21), 3921–3923 (2002).
    [Crossref]
  3. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
    [Crossref]
  4. K. Saxena, V. K. Jain, and D. Metha, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
    [Crossref]
  5. G. Z. Ran, G. L. Ma, Y. H. Xu, L. Dai, and G. G. Qin, “Light extraction efficiency of a top-emission organic light-emitting diode with an Yb/Au double-layer cathode and an opaque Si anode,” Appl. Opt. 45(23), 5871–5876 (2006).
    [Crossref] [PubMed]
  6. R. D. Slone, R. Lee, and J.-F. Lee, “Multipoint Galerkin Asymptotic waveform evaluation for model order reduction of frequency domain FEM electromagnetic radiation problems,” IEEE Trans. Antenn. Propag. 49(10), 1504–1513 (2001).
    [Crossref]
  7. Y. W. Hwang and T. Y. Won, “Finite element analysis on the electrical and optical properties in HTL/mCP/ETL multilayer organic light emitting diode device structure,” J. Nanosci. Nanotechnol. 14(8), 5798–5801 (2014).
    [Crossref] [PubMed]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  9. W.-Y. Park, Y. Kwon, C. Lee, and K.-W. Whang, “Light outcoupling enhancement from top-emitting organic light-emitting diodes made on a nano-sized stochastic texture surface,” Opt. Express 22(S7), A1687–A1694 (2014).
    [Crossref] [PubMed]
  10. S. H. Liao, J. R. Shiu, S. W. Liu, S. J. Yeh, Y. H. Chen, C. T. Chen, T. J. Chow, and C. I. Wu, “Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes,” J. Am. Chem. Soc. 131(2), 763–777 (2009).
    [Crossref] [PubMed]
  11. C.-L. Lin, H.-C. Chang, K.-C. Tien, and C.-C. Wu, “Influence of resonant wavelengths on performances of microcavity organic light-emitting devices,” Appl. Phys. Lett. 90(7), 071111 (2007).
    [Crossref]
  12. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991)
  13. S. R. J. Brueck, “Radiation from a dipole embedded in a dielectric slab,” IEEE J. Sel. Top. Quantum Electron. 6(6), 899–910 (2000).
    [Crossref]
  14. S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6), A1250–A1264 (2011).
    [Crossref] [PubMed]
  15. M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
    [Crossref]
  16. R. E. Collin, “Rayleigh scattering and power conservation,” IEEE Trans. Antenn. Propag. 29(5), 795–798 (1981).
    [Crossref]
  17. J. A. Dioone, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
    [Crossref]
  18. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  19. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  20. B. Jorgensen, Statistical Properties of the Generalized Inverse Gaussian Distribution (Springer, 2012).
  21. J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, “Extracting light from polymer light-emitting diodes using stamped Bragg gratings,” Adv. Funct. Mater. 14(5), 451–456 (2004).
    [Crossref]
  22. S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Highly directional emission and beam steering from organic light-emitting diodes with a substrate diffractive optical element,” Adv. Opt. Mater. 4(4), 343–347 (2014).
  23. W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
    [Crossref]

2014 (3)

Y. W. Hwang and T. Y. Won, “Finite element analysis on the electrical and optical properties in HTL/mCP/ETL multilayer organic light emitting diode device structure,” J. Nanosci. Nanotechnol. 14(8), 5798–5801 (2014).
[Crossref] [PubMed]

S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Highly directional emission and beam steering from organic light-emitting diodes with a substrate diffractive optical element,” Adv. Opt. Mater. 4(4), 343–347 (2014).

W.-Y. Park, Y. Kwon, C. Lee, and K.-W. Whang, “Light outcoupling enhancement from top-emitting organic light-emitting diodes made on a nano-sized stochastic texture surface,” Opt. Express 22(S7), A1687–A1694 (2014).
[Crossref] [PubMed]

2012 (1)

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[Crossref]

2011 (1)

2009 (4)

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[Crossref]

S. H. Liao, J. R. Shiu, S. W. Liu, S. J. Yeh, Y. H. Chen, C. T. Chen, T. J. Chow, and C. I. Wu, “Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes,” J. Am. Chem. Soc. 131(2), 763–777 (2009).
[Crossref] [PubMed]

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

K. Saxena, V. K. Jain, and D. Metha, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

2007 (1)

C.-L. Lin, H.-C. Chang, K.-C. Tien, and C.-C. Wu, “Influence of resonant wavelengths on performances of microcavity organic light-emitting devices,” Appl. Phys. Lett. 90(7), 071111 (2007).
[Crossref]

2006 (1)

2005 (1)

J. A. Dioone, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

2004 (1)

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, “Extracting light from polymer light-emitting diodes using stamped Bragg gratings,” Adv. Funct. Mater. 14(5), 451–456 (2004).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett. 81(21), 3921–3923 (2002).
[Crossref]

2001 (2)

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
[Crossref]

R. D. Slone, R. Lee, and J.-F. Lee, “Multipoint Galerkin Asymptotic waveform evaluation for model order reduction of frequency domain FEM electromagnetic radiation problems,” IEEE Trans. Antenn. Propag. 49(10), 1504–1513 (2001).
[Crossref]

2000 (1)

S. R. J. Brueck, “Radiation from a dipole embedded in a dielectric slab,” IEEE J. Sel. Top. Quantum Electron. 6(6), 899–910 (2000).
[Crossref]

1981 (1)

R. E. Collin, “Rayleigh scattering and power conservation,” IEEE Trans. Antenn. Propag. 29(5), 795–798 (1981).
[Crossref]

Adachi, C.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
[Crossref]

Aida, T.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Atwater, H. A.

J. A. Dioone, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Baldo, M. A.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Brown, J. J.

M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett. 81(21), 3921–3923 (2002).
[Crossref]

Brueck, S. R. J.

S. R. J. Brueck, “Radiation from a dipole embedded in a dielectric slab,” IEEE J. Sel. Top. Quantum Electron. 6(6), 899–910 (2000).
[Crossref]

Chang, H.-C.

C.-L. Lin, H.-C. Chang, K.-C. Tien, and C.-C. Wu, “Influence of resonant wavelengths on performances of microcavity organic light-emitting devices,” Appl. Phys. Lett. 90(7), 071111 (2007).
[Crossref]

Chen, C. T.

S. H. Liao, J. R. Shiu, S. W. Liu, S. J. Yeh, Y. H. Chen, C. T. Chen, T. J. Chow, and C. I. Wu, “Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes,” J. Am. Chem. Soc. 131(2), 763–777 (2009).
[Crossref] [PubMed]

Chen, Y. H.

S. H. Liao, J. R. Shiu, S. W. Liu, S. J. Yeh, Y. H. Chen, C. T. Chen, T. J. Chow, and C. I. Wu, “Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes,” J. Am. Chem. Soc. 131(2), 763–777 (2009).
[Crossref] [PubMed]

Chow, T. J.

S. H. Liao, J. R. Shiu, S. W. Liu, S. J. Yeh, Y. H. Chen, C. T. Chen, T. J. Chow, and C. I. Wu, “Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes,” J. Am. Chem. Soc. 131(2), 763–777 (2009).
[Crossref] [PubMed]

Collin, R. E.

R. E. Collin, “Rayleigh scattering and power conservation,” IEEE Trans. Antenn. Propag. 29(5), 795–798 (1981).
[Crossref]

Dai, L.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dioone, J. A.

J. A. Dioone, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fan, S.

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, “Extracting light from polymer light-emitting diodes using stamped Bragg gratings,” Adv. Funct. Mater. 14(5), 451–456 (2004).
[Crossref]

Forrest, S. R.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
[Crossref]

Fukushima, T.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Furno, M.

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[Crossref]

Hack, M.

M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett. 81(21), 3921–3923 (2002).
[Crossref]

Hata, K.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Hofmann, S.

Hwang, Y. W.

Y. W. Hwang and T. Y. Won, “Finite element analysis on the electrical and optical properties in HTL/mCP/ETL multilayer organic light emitting diode device structure,” J. Nanosci. Nanotechnol. 14(8), 5798–5801 (2014).
[Crossref] [PubMed]

Jain, V. K.

K. Saxena, V. K. Jain, and D. Metha, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Koo, W. H.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[Crossref]

Kwon, Y.

Kwong, R. C.

M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett. 81(21), 3921–3923 (2002).
[Crossref]

Lee, C.

Lee, J.-F.

R. D. Slone, R. Lee, and J.-F. Lee, “Multipoint Galerkin Asymptotic waveform evaluation for model order reduction of frequency domain FEM electromagnetic radiation problems,” IEEE Trans. Antenn. Propag. 49(10), 1504–1513 (2001).
[Crossref]

Lee, R.

R. D. Slone, R. Lee, and J.-F. Lee, “Multipoint Galerkin Asymptotic waveform evaluation for model order reduction of frequency domain FEM electromagnetic radiation problems,” IEEE Trans. Antenn. Propag. 49(10), 1504–1513 (2001).
[Crossref]

Leo, K.

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6), A1250–A1264 (2011).
[Crossref] [PubMed]

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[Crossref]

Li, X. H.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[Crossref]

Liao, S. H.

S. H. Liao, J. R. Shiu, S. W. Liu, S. J. Yeh, Y. H. Chen, C. T. Chen, T. J. Chow, and C. I. Wu, “Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes,” J. Am. Chem. Soc. 131(2), 763–777 (2009).
[Crossref] [PubMed]

Lin, C.-L.

C.-L. Lin, H.-C. Chang, K.-C. Tien, and C.-C. Wu, “Influence of resonant wavelengths on performances of microcavity organic light-emitting devices,” Appl. Phys. Lett. 90(7), 071111 (2007).
[Crossref]

Liu, S. W.

S. H. Liao, J. R. Shiu, S. W. Liu, S. J. Yeh, Y. H. Chen, C. T. Chen, T. J. Chow, and C. I. Wu, “Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes,” J. Am. Chem. Soc. 131(2), 763–777 (2009).
[Crossref] [PubMed]

Lu, M.-H.

M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett. 81(21), 3921–3923 (2002).
[Crossref]

Lüssem, B.

Ma, G. L.

Maeda, H.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

McGehee, M. D.

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, “Extracting light from polymer light-emitting diodes using stamped Bragg gratings,” Adv. Funct. Mater. 14(5), 451–456 (2004).
[Crossref]

Metha, D.

K. Saxena, V. K. Jain, and D. Metha, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Nakajima, H.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Nitsche, R.

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[Crossref]

Park, W.-Y.

Polman, A.

J. A. Dioone, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Qin, G. G.

Ran, G. Z.

Rothman, M.

M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett. 81(21), 3921–3923 (2002).
[Crossref]

Saafir, A. K.

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, “Extracting light from polymer light-emitting diodes using stamped Bragg gratings,” Adv. Funct. Mater. 14(5), 451–456 (2004).
[Crossref]

Samuel, I. D. W.

S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Highly directional emission and beam steering from organic light-emitting diodes with a substrate diffractive optical element,” Adv. Opt. Mater. 4(4), 343–347 (2014).

Saxena, K.

K. Saxena, V. K. Jain, and D. Metha, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Sekitani, T.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Shiu, J. R.

S. H. Liao, J. R. Shiu, S. W. Liu, S. J. Yeh, Y. H. Chen, C. T. Chen, T. J. Chow, and C. I. Wu, “Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes,” J. Am. Chem. Soc. 131(2), 763–777 (2009).
[Crossref] [PubMed]

Slone, R. D.

R. D. Slone, R. Lee, and J.-F. Lee, “Multipoint Galerkin Asymptotic waveform evaluation for model order reduction of frequency domain FEM electromagnetic radiation problems,” IEEE Trans. Antenn. Propag. 49(10), 1504–1513 (2001).
[Crossref]

So, F.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[Crossref]

Someya, T.

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Sweatlock, L. A.

J. A. Dioone, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Tansu, N.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[Crossref]

Thompson, M. E.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
[Crossref]

Thomschke, M.

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19(S6), A1250–A1264 (2011).
[Crossref] [PubMed]

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[Crossref]

Tien, K.-C.

C.-L. Lin, H.-C. Chang, K.-C. Tien, and C.-C. Wu, “Influence of resonant wavelengths on performances of microcavity organic light-emitting devices,” Appl. Phys. Lett. 90(7), 071111 (2007).
[Crossref]

Turnbull, G. A.

S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Highly directional emission and beam steering from organic light-emitting diodes with a substrate diffractive optical element,” Adv. Opt. Mater. 4(4), 343–347 (2014).

Weaver, M. S.

M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett. 81(21), 3921–3923 (2002).
[Crossref]

Whang, K.-W.

Won, T. Y.

Y. W. Hwang and T. Y. Won, “Finite element analysis on the electrical and optical properties in HTL/mCP/ETL multilayer organic light emitting diode device structure,” J. Nanosci. Nanotechnol. 14(8), 5798–5801 (2014).
[Crossref] [PubMed]

Wu, C. I.

S. H. Liao, J. R. Shiu, S. W. Liu, S. J. Yeh, Y. H. Chen, C. T. Chen, T. J. Chow, and C. I. Wu, “Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes,” J. Am. Chem. Soc. 131(2), 763–777 (2009).
[Crossref] [PubMed]

Wu, C.-C.

C.-L. Lin, H.-C. Chang, K.-C. Tien, and C.-C. Wu, “Influence of resonant wavelengths on performances of microcavity organic light-emitting devices,” Appl. Phys. Lett. 90(7), 071111 (2007).
[Crossref]

Xu, Y. H.

Yeh, S. J.

S. H. Liao, J. R. Shiu, S. W. Liu, S. J. Yeh, Y. H. Chen, C. T. Chen, T. J. Chow, and C. I. Wu, “Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes,” J. Am. Chem. Soc. 131(2), 763–777 (2009).
[Crossref] [PubMed]

Youn, W.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[Crossref]

Zhang, S.

S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Highly directional emission and beam steering from organic light-emitting diodes with a substrate diffractive optical element,” Adv. Opt. Mater. 4(4), 343–347 (2014).

Zhou, T. X.

M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett. 81(21), 3921–3923 (2002).
[Crossref]

Zhu, P.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[Crossref]

Ziebarth, J. M.

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, “Extracting light from polymer light-emitting diodes using stamped Bragg gratings,” Adv. Funct. Mater. 14(5), 451–456 (2004).
[Crossref]

Adv. Funct. Mater. (2)

J. M. Ziebarth, A. K. Saafir, S. Fan, and M. D. McGehee, “Extracting light from polymer light-emitting diodes using stamped Bragg gratings,” Adv. Funct. Mater. 14(5), 451–456 (2004).
[Crossref]

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012).
[Crossref]

Adv. Opt. Mater. (1)

S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Highly directional emission and beam steering from organic light-emitting diodes with a substrate diffractive optical element,” Adv. Opt. Mater. 4(4), 343–347 (2014).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M.-H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett. 81(21), 3921–3923 (2002).
[Crossref]

C.-L. Lin, H.-C. Chang, K.-C. Tien, and C.-C. Wu, “Influence of resonant wavelengths on performances of microcavity organic light-emitting devices,” Appl. Phys. Lett. 90(7), 071111 (2007).
[Crossref]

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. R. J. Brueck, “Radiation from a dipole embedded in a dielectric slab,” IEEE J. Sel. Top. Quantum Electron. 6(6), 899–910 (2000).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

R. E. Collin, “Rayleigh scattering and power conservation,” IEEE Trans. Antenn. Propag. 29(5), 795–798 (1981).
[Crossref]

R. D. Slone, R. Lee, and J.-F. Lee, “Multipoint Galerkin Asymptotic waveform evaluation for model order reduction of frequency domain FEM electromagnetic radiation problems,” IEEE Trans. Antenn. Propag. 49(10), 1504–1513 (2001).
[Crossref]

J. Am. Chem. Soc. (1)

S. H. Liao, J. R. Shiu, S. W. Liu, S. J. Yeh, Y. H. Chen, C. T. Chen, T. J. Chow, and C. I. Wu, “Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes,” J. Am. Chem. Soc. 131(2), 763–777 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (1)

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
[Crossref]

J. Nanosci. Nanotechnol. (1)

Y. W. Hwang and T. Y. Won, “Finite element analysis on the electrical and optical properties in HTL/mCP/ETL multilayer organic light emitting diode device structure,” J. Nanosci. Nanotechnol. 14(8), 5798–5801 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display using printable elastic conductors,” Nat. Mater. 8(6), 494–499 (2009).
[Crossref] [PubMed]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. (1)

K. Saxena, V. K. Jain, and D. Metha, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Phys. Rev. B (1)

J. A. Dioone, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991)

B. Jorgensen, Statistical Properties of the Generalized Inverse Gaussian Distribution (Springer, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) An AFM image of the NSTS. (b) The grating pitch distribution of the NSTS [9].
Fig. 2
Fig. 2 A schematic illustration of the structure of the TEOLEDs with the NSTS. (a) Structure of the conventional device. (b) Structure of a NSTS embedded device.
Fig. 3
Fig. 3 The EQE of (a) the blue devices and (b) red devices. The normalized EL spectra as a function of observation angle: (c) blue-emitting device without NSTS; (d) blue-emitting device with the NSTS using an 8 nm Ag thin film; (e) blue-emitting device with the NSTS fabricated using 12 nm Ag thin film; (f) red-emitting device without the NSTS; (g) red-emitting device with the NSTS fabricated using an 8 nm Ag thin film; (h) red-emitting device with the NSTS fabricated using a 12 nm Ag thin film.
Fig. 4
Fig. 4 Electromagnetic waves are reflected multiple times and are transmitted at each layer.
Fig. 5
Fig. 5 (a) The emission intensity of the blue-emitting device as a function of HTL, EML, ETL, cathode, and CPL thicknesses. (b) The emission intensity of the blue-emitting device as a function of HTL, EML, ETL, cathode, and CPL thicknesses. (c) The simulated spectrum of the optimized blue-emitting device. (d) The simulated spectrum of the optimized red-emitting device.
Fig. 6
Fig. 6 Bound (SPP), radiative, and quasi-bound (QB) surface plasmon dispersion relations for the microcavity cross-section. Each mode is separated by dashed lines.
Fig. 7
Fig. 7 (a) Representation of a planar TEOLED and (b) representation of a trapezoidal-shaped nano-structure embedded TEOLED in the simulation. (c) Simulated 3D radiation pattern of a planar device. (d) Simulated 3D radiation pattern of a corrugated device. (e) Comparison of the simulated radiation patterns of planar and corrugated devices. (f) Comparison of the simulated and measured radiation patterns of planar blue-emitting devices.
Fig. 8
Fig. 8 (a) The distribution of the periodic, stochastic, and random nano-structures. (b) The outcoupling efficiency as a function of grating pitch for RGB emitting devices. The height is fixed at 50 nm. (c) The outcoupling efficiency as a function of the type of nano-structure.

Tables (1)

Tables Icon

Table 1 Complex refractive indices of the OLED layers used in the simulations

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E =( Π )+ k 2 n 2 Π . H =jω ε 0 n 2 × Π .
1 Γ 1 Γ 2 e 2j k 0 n eff d eff = T 1 T 2 .
I( λ,θ )= T top [ 1+ R bot +2 R bot cos( 4π L 1 λ φ bot ) ] ( 1 R bot R top ) 2 +4 R bot R top sin 2 ( 2πL λ φ bot + φ top 2 ) .
λ=L× n eff × n 2 .
P= 1 2 Re s E× H * dS .
E( x,z,t ) E 0 e i( k x x k z | z |ωt ) .
k x = ω c ε 1 ε 2 ε 1 + ε 2 and k z1,2 2 = ε 1,2 ( ω c ) 2 k x 2 .
n eff = j= t 1 t 2 a η j j .

Metrics