Abstract

Optical feedback interferometry (OFI) performance for microscale-flow sensing is studied theoretically and experimentally. A new numerical modeling approach for OFI flow meter spectrum reproduction is presented in this work to study the optical effect on the signal due to the micro-scale channel geometry. Two well-defined frequency peaks are found in the OFI spectrum, this phenomenon can be attributed to the reflection of the forward scattered light on the channel rear interface. The flow rate measurement shows good accuracy over a range of fluid velocities from 16.8 mm/s to 168 mm/s, thus providing a promising tool to study and to optimize the OFI microfluidic sensor system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extraction of vibration parameters from optical feedback interferometry signals using wavelets

Ajit Jha, Francisco J. Azcona, Carlos Yañez, and Santiago Royo
Appl. Opt. 54(34) 10106-10113 (2015)

Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing

Thomas Taimre, Milan Nikolić, Karl Bertling, Yah Leng Lim, Thierry Bosch, and Aleksandar D. Rakić
Adv. Opt. Photon. 7(3) 570-631 (2015)

Effect of the optical system on the Doppler spectrum in laser-feedback interferometry

Alireza Mowla, Milan Nikolić, Thomas Taimre, John R. Tucker, Yah Leng Lim, Karl Bertling, and Aleksandar D. Rakić
Appl. Opt. 54(1) 18-26 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref] [PubMed]
  2. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
    [Crossref]
  3. M. Baker and H. Wayland, “On-line volume flow rate and velocity profile measurement for blood in microvessels,” Microvasc. Res. 7(1), 131–143 (1974).
    [Crossref] [PubMed]
  4. L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44(12), 2274–2280 (2005).
    [Crossref] [PubMed]
  5. L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
    [Crossref]
  6. U. Zabit, O. D. Bernal, T. Bosch, and F. Bony, “MEMS accelerometer embedded in a self-mixing displacement sensor for parasitic vibration compensation,” Opt. Lett. 36(5), 612–614 (2011).
    [Crossref] [PubMed]
  7. J. Perchoux and T. Bosch, “Multimode VCSELs for self-mixing velocity measurements,” in Proceedings of IEEE Conference on sensors (IEEE, 2007), pp. 419–422.
  8. S. Donati, M. Norgia, and G. Giuliani, “Self-mixing differential vibrometer based on electronic channel subtraction,” Appl. Opt. 45(28), 7264–7268 (2006).
    [Crossref] [PubMed]
  9. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [Crossref]
  10. Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, “Voltage change across the self-coupled semiconductor laser,” IEEE J. Quantum Electron. 17(7), 1216–1225 (1981).
    [Crossref]
  11. J. R. Tucker, Y. L. Lim, K. Bertling, A. V. Zvyagin, and A. D. Rakić, “Fluid flow rate measurement using the change in laser junction voltage due to the self-mixing effect,” in Proceedings of IEEE Conference on Optoelectronic and Microelectronic Materials and Devices, (IEEE, 2006), pp. 192–195.
    [Crossref]
  12. M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows,” Appl. Opt. 33(24), 5628–5641 (1994).
    [Crossref] [PubMed]
  13. E. Figueiras, A. Humeau-Heurtier, R. Campos, R. Oliveira, L. F. R. Ferreira, and F. F. M. de Mul, “Laser Doppler flowmeters prototypes: Monte Carlo simulations validation paired with measurements,” in Proceedings of Biomedical Engineering Systems and Technologies (Springer Berlin Heidelberg 2012), pp. 135–149.
  14. C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A: Pure Appl. Opt. 7(6), S445–S452 (2005).
    [Crossref]
  15. S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39(9), 2574–2580 (2000).
    [Crossref]
  16. M. Nikolić, E. Hicks, Y. L. Lim, K. Bertling, and A. D. Rakić, “Self-mixing laser Doppler flow sensor: an optofluidic implementation,” Appl. Opt. 52(33), 8128–8133 (2013).
    [Crossref] [PubMed]
  17. Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakić, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18(11), 11720–11727 (2010).
    [Crossref] [PubMed]
  18. M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler: a model for extracorporeal blood flow measurement,” in Proceedings of IEEE Conference on Instrumentation and Measurement Technology (IEEE, (2010), pp. 304–307.
    [Crossref]
  19. F. F. M. de Mul, M. H. Koelink, M. L. Kok, P. J. Harmsma, J. Greve, R. Graaff, and J. G. Aarnoudse, “Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue,” Appl. Opt. 34(28), 6595–6611 (1995).
    [Crossref] [PubMed]
  20. L. Scalise, W. Steenbergen, and F. de Mul, “Self-mixing feedback in a laser diode for intra-arterial optical blood velocimetry,” Appl. Opt. 40(25), 4608–4615 (2001).
    [Crossref] [PubMed]
  21. K. Ozdemir, I. Ohno, and S. Shinohara, “A comparative study for the assessment on blood flow measurement using self-mixing laser speckle interferometer,” IEEE Trans. Instrum. Meas. 57(2), 355–363 (2008).
    [Crossref]
  22. R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, “GaN laser self-mixing velocimeter for measuring slow flows,” Opt. Lett. 35(6), 814–816 (2010).
    [Crossref] [PubMed]
  23. M. Wang, M. Lu, H. Hao, and J. Zhou, “Statistics of the self-mixing speckle interference in a laser diode and its application to the measurement of flow velocity,” Opt. Commun. 260(1), 242–247 (2006).
    [Crossref]
  24. C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A: Pure Appl. Opt. 7(6), S445–S452 (2005).
    [Crossref]
  25. M. Nikolić, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, “Multiple signal classification for self-mixing flowmetry,” Appl. Opt. 54(9), 2193–2198 (2015).
    [Crossref] [PubMed]
  26. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32(9), 1551–1558 (1993).
    [Crossref] [PubMed]
  27. L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 18(4), 555–564 (1982).
    [Crossref]
  28. A. Quirantes, F. Arroyo, and J. Quirantes-Ros, “Multiple light scattering by spherical particle systems and its dependence on concentration: a T-matrix study,” J. Colloid Interface Sci. 240(1), 78–82 (2001).
    [Crossref] [PubMed]
  29. H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL-based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
    [Crossref]
  30. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer Verlag, 2003).
  31. M. Spiga and G. L. Morino, “A symmetric solution for velocity profile in laminar flow through rectangular duct,” Int. Commun. Heat Mass Transf. 21(4), 469–475 (1994).
    [Crossref]

2016 (1)

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL-based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

2015 (1)

2013 (2)

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

M. Nikolić, E. Hicks, Y. L. Lim, K. Bertling, and A. D. Rakić, “Self-mixing laser Doppler flow sensor: an optofluidic implementation,” Appl. Opt. 52(33), 8128–8133 (2013).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2008 (1)

K. Ozdemir, I. Ohno, and S. Shinohara, “A comparative study for the assessment on blood flow measurement using self-mixing laser speckle interferometer,” IEEE Trans. Instrum. Meas. 57(2), 355–363 (2008).
[Crossref]

2006 (3)

M. Wang, M. Lu, H. Hao, and J. Zhou, “Statistics of the self-mixing speckle interference in a laser diode and its application to the measurement of flow velocity,” Opt. Commun. 260(1), 242–247 (2006).
[Crossref]

S. Donati, M. Norgia, and G. Giuliani, “Self-mixing differential vibrometer based on electronic channel subtraction,” Appl. Opt. 45(28), 7264–7268 (2006).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

2005 (3)

L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44(12), 2274–2280 (2005).
[Crossref] [PubMed]

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A: Pure Appl. Opt. 7(6), S445–S452 (2005).
[Crossref]

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A: Pure Appl. Opt. 7(6), S445–S452 (2005).
[Crossref]

2001 (2)

L. Scalise, W. Steenbergen, and F. de Mul, “Self-mixing feedback in a laser diode for intra-arterial optical blood velocimetry,” Appl. Opt. 40(25), 4608–4615 (2001).
[Crossref] [PubMed]

A. Quirantes, F. Arroyo, and J. Quirantes-Ros, “Multiple light scattering by spherical particle systems and its dependence on concentration: a T-matrix study,” J. Colloid Interface Sci. 240(1), 78–82 (2001).
[Crossref] [PubMed]

2000 (1)

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39(9), 2574–2580 (2000).
[Crossref]

1998 (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

1995 (1)

1994 (2)

1993 (1)

1982 (1)

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 18(4), 555–564 (1982).
[Crossref]

1981 (1)

Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, “Voltage change across the self-coupled semiconductor laser,” IEEE J. Quantum Electron. 17(7), 1216–1225 (1981).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

1974 (1)

M. Baker and H. Wayland, “On-line volume flow rate and velocity profile measurement for blood in microvessels,” Microvasc. Res. 7(1), 131–143 (1974).
[Crossref] [PubMed]

Aarnoudse, J. G.

Adrian, R. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Arroyo, F.

A. Quirantes, F. Arroyo, and J. Quirantes-Ros, “Multiple light scattering by spherical particle systems and its dependence on concentration: a T-matrix study,” J. Colloid Interface Sci. 240(1), 78–82 (2001).
[Crossref] [PubMed]

Baker, M.

M. Baker and H. Wayland, “On-line volume flow rate and velocity profile measurement for blood in microvessels,” Microvasc. Res. 7(1), 131–143 (1974).
[Crossref] [PubMed]

Beebe, D. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Bernal, O. D.

Bertling, K.

M. Nikolić, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, “Multiple signal classification for self-mixing flowmetry,” Appl. Opt. 54(9), 2193–2198 (2015).
[Crossref] [PubMed]

M. Nikolić, E. Hicks, Y. L. Lim, K. Bertling, and A. D. Rakić, “Self-mixing laser Doppler flow sensor: an optofluidic implementation,” Appl. Opt. 52(33), 8128–8133 (2013).
[Crossref] [PubMed]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakić, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18(11), 11720–11727 (2010).
[Crossref] [PubMed]

J. R. Tucker, Y. L. Lim, K. Bertling, A. V. Zvyagin, and A. D. Rakić, “Fluid flow rate measurement using the change in laser junction voltage due to the self-mixing effect,” in Proceedings of IEEE Conference on Optoelectronic and Microelectronic Materials and Devices, (IEEE, 2006), pp. 192–195.
[Crossref]

Bony, F.

Bosch, T.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

U. Zabit, O. D. Bernal, T. Bosch, and F. Bony, “MEMS accelerometer embedded in a self-mixing displacement sensor for parasitic vibration compensation,” Opt. Lett. 36(5), 612–614 (2011).
[Crossref] [PubMed]

R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, “GaN laser self-mixing velocimeter for measuring slow flows,” Opt. Lett. 35(6), 814–816 (2010).
[Crossref] [PubMed]

J. Perchoux and T. Bosch, “Multimode VCSELs for self-mixing velocity measurements,” in Proceedings of IEEE Conference on sensors (IEEE, 2007), pp. 419–422.

Boyle, W. J. O.

Büttner, L.

Campagnolo, L.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Carpaij, M.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL-based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

Czarske, J.

Dandridge, A.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 18(4), 555–564 (1982).
[Crossref]

Dassel, A. C. M.

de Mul, F.

de Mul, F. F. M.

Dickinson, M.

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A: Pure Appl. Opt. 7(6), S445–S452 (2005).
[Crossref]

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A: Pure Appl. Opt. 7(6), S445–S452 (2005).
[Crossref]

Donati, S.

Gerlach, P.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL-based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

Giuliani, G.

Goldberg, L.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 18(4), 555–564 (1982).
[Crossref]

Graaff, R.

Grattan, K. T. V.

Greve, J.

Gronenborn, S.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL-based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

Gudde, R.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL-based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

Hao, H.

M. Wang, M. Lu, H. Hao, and J. Zhou, “Statistics of the self-mixing speckle interference in a laser diode and its application to the measurement of flow velocity,” Opt. Commun. 260(1), 242–247 (2006).
[Crossref]

Harmsma, P. J.

Hellmig, J.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL-based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

Hicks, E.

Jacobs, P. A.

King, T.

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A: Pure Appl. Opt. 7(6), S445–S452 (2005).
[Crossref]

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A: Pure Appl. Opt. 7(6), S445–S452 (2005).
[Crossref]

Kliese, R.

Knuppertz, H.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Koelink, M. H.

Kok, M. L.

Kolb, J.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL-based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Lim, Y. L.

M. Nikolić, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, “Multiple signal classification for self-mixing flowmetry,” Appl. Opt. 54(9), 2193–2198 (2015).
[Crossref] [PubMed]

M. Nikolić, E. Hicks, Y. L. Lim, K. Bertling, and A. D. Rakić, “Self-mixing laser Doppler flow sensor: an optofluidic implementation,” Appl. Opt. 52(33), 8128–8133 (2013).
[Crossref] [PubMed]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakić, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18(11), 11720–11727 (2010).
[Crossref] [PubMed]

R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, “GaN laser self-mixing velocimeter for measuring slow flows,” Opt. Lett. 35(6), 814–816 (2010).
[Crossref] [PubMed]

J. R. Tucker, Y. L. Lim, K. Bertling, A. V. Zvyagin, and A. D. Rakić, “Fluid flow rate measurement using the change in laser junction voltage due to the self-mixing effect,” in Proceedings of IEEE Conference on Optoelectronic and Microelectronic Materials and Devices, (IEEE, 2006), pp. 192–195.
[Crossref]

Loubière, K.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Lu, M.

M. Wang, M. Lu, H. Hao, and J. Zhou, “Statistics of the self-mixing speckle interference in a laser diode and its application to the measurement of flow velocity,” Opt. Commun. 260(1), 242–247 (2006).
[Crossref]

Meinhart, C. D.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Miles, R. O.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 18(4), 555–564 (1982).
[Crossref]

Mitsuhashi, Y.

Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, “Voltage change across the self-coupled semiconductor laser,” IEEE J. Quantum Electron. 17(7), 1216–1225 (1981).
[Crossref]

Mitsutsuka, S.

Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, “Voltage change across the self-coupled semiconductor laser,” IEEE J. Quantum Electron. 17(7), 1216–1225 (1981).
[Crossref]

Moench, H.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL-based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

Morino, G. L.

M. Spiga and G. L. Morino, “A symmetric solution for velocity profile in laminar flow through rectangular duct,” Int. Commun. Heat Mass Transf. 21(4), 469–475 (1994).
[Crossref]

Nikolic, M.

M. Nikolić, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, “Multiple signal classification for self-mixing flowmetry,” Appl. Opt. 54(9), 2193–2198 (2015).
[Crossref] [PubMed]

M. Nikolić, E. Hicks, Y. L. Lim, K. Bertling, and A. D. Rakić, “Self-mixing laser Doppler flow sensor: an optofluidic implementation,” Appl. Opt. 52(33), 8128–8133 (2013).
[Crossref] [PubMed]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Norgia, M.

S. Donati, M. Norgia, and G. Giuliani, “Self-mixing differential vibrometer based on electronic channel subtraction,” Appl. Opt. 45(28), 7264–7268 (2006).
[Crossref] [PubMed]

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler: a model for extracorporeal blood flow measurement,” in Proceedings of IEEE Conference on Instrumentation and Measurement Technology (IEEE, (2010), pp. 304–307.
[Crossref]

Ohno, I.

K. Ozdemir, I. Ohno, and S. Shinohara, “A comparative study for the assessment on blood flow measurement using self-mixing laser speckle interferometer,” IEEE Trans. Instrum. Meas. 57(2), 355–363 (2008).
[Crossref]

Ozdemir, K.

K. Ozdemir, I. Ohno, and S. Shinohara, “A comparative study for the assessment on blood flow measurement using self-mixing laser speckle interferometer,” IEEE Trans. Instrum. Meas. 57(2), 355–363 (2008).
[Crossref]

Ozdemir, S. K.

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39(9), 2574–2580 (2000).
[Crossref]

Palmer, A. W.

Perchoux, J.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

J. Perchoux and T. Bosch, “Multimode VCSELs for self-mixing velocity measurements,” in Proceedings of IEEE Conference on sensors (IEEE, 2007), pp. 419–422.

Pesatori, A.

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler: a model for extracorporeal blood flow measurement,” in Proceedings of IEEE Conference on Instrumentation and Measurement Technology (IEEE, (2010), pp. 304–307.
[Crossref]

Prat, L.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Quirantes, A.

A. Quirantes, F. Arroyo, and J. Quirantes-Ros, “Multiple light scattering by spherical particle systems and its dependence on concentration: a T-matrix study,” J. Colloid Interface Sci. 240(1), 78–82 (2001).
[Crossref] [PubMed]

Quirantes-Ros, J.

A. Quirantes, F. Arroyo, and J. Quirantes-Ros, “Multiple light scattering by spherical particle systems and its dependence on concentration: a T-matrix study,” J. Colloid Interface Sci. 240(1), 78–82 (2001).
[Crossref] [PubMed]

Rakic, A. D.

M. Nikolić, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, “Multiple signal classification for self-mixing flowmetry,” Appl. Opt. 54(9), 2193–2198 (2015).
[Crossref] [PubMed]

M. Nikolić, E. Hicks, Y. L. Lim, K. Bertling, and A. D. Rakić, “Self-mixing laser Doppler flow sensor: an optofluidic implementation,” Appl. Opt. 52(33), 8128–8133 (2013).
[Crossref] [PubMed]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs, and A. D. Rakić, “Self-mixing flow sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 18(11), 11720–11727 (2010).
[Crossref] [PubMed]

R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, “GaN laser self-mixing velocimeter for measuring slow flows,” Opt. Lett. 35(6), 814–816 (2010).
[Crossref] [PubMed]

J. R. Tucker, Y. L. Lim, K. Bertling, A. V. Zvyagin, and A. D. Rakić, “Fluid flow rate measurement using the change in laser junction voltage due to the self-mixing effect,” in Proceedings of IEEE Conference on Optoelectronic and Microelectronic Materials and Devices, (IEEE, 2006), pp. 192–195.
[Crossref]

Rovati, L.

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler: a model for extracorporeal blood flow measurement,” in Proceedings of IEEE Conference on Instrumentation and Measurement Technology (IEEE, (2010), pp. 304–307.
[Crossref]

Santiago, J. G.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Scalise, L.

Shimada, J.

Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, “Voltage change across the self-coupled semiconductor laser,” IEEE J. Quantum Electron. 17(7), 1216–1225 (1981).
[Crossref]

Shinohara, S.

K. Ozdemir, I. Ohno, and S. Shinohara, “A comparative study for the assessment on blood flow measurement using self-mixing laser speckle interferometer,” IEEE Trans. Instrum. Meas. 57(2), 355–363 (2008).
[Crossref]

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39(9), 2574–2580 (2000).
[Crossref]

Spiga, M.

M. Spiga and G. L. Morino, “A symmetric solution for velocity profile in laminar flow through rectangular duct,” Int. Commun. Heat Mass Transf. 21(4), 469–475 (1994).
[Crossref]

Steenbergen, W.

Taimre, T.

Takamiya, S.

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39(9), 2574–2580 (2000).
[Crossref]

Tanimizu, K.

Taylor, H. F.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 18(4), 555–564 (1982).
[Crossref]

Tucker, J. R.

J. R. Tucker, Y. L. Lim, K. Bertling, A. V. Zvyagin, and A. D. Rakić, “Fluid flow rate measurement using the change in laser junction voltage due to the self-mixing effect,” in Proceedings of IEEE Conference on Optoelectronic and Microelectronic Materials and Devices, (IEEE, 2006), pp. 192–195.
[Crossref]

van der Lee, A.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL-based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

Wang, M.

M. Wang, M. Lu, H. Hao, and J. Zhou, “Statistics of the self-mixing speckle interference in a laser diode and its application to the measurement of flow velocity,” Opt. Commun. 260(1), 242–247 (2006).
[Crossref]

Wang, W. M.

Wayland, H.

M. Baker and H. Wayland, “On-line volume flow rate and velocity profile measurement for blood in microvessels,” Microvasc. Res. 7(1), 131–143 (1974).
[Crossref] [PubMed]

Weijers, A. L.

Weller, J. F.

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 18(4), 555–564 (1982).
[Crossref]

Wereley, S. T.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Yoshida, H.

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39(9), 2574–2580 (2000).
[Crossref]

Zabit, U.

Zakian, C.

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A: Pure Appl. Opt. 7(6), S445–S452 (2005).
[Crossref]

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A: Pure Appl. Opt. 7(6), S445–S452 (2005).
[Crossref]

Zhou, J.

M. Wang, M. Lu, H. Hao, and J. Zhou, “Statistics of the self-mixing speckle interference in a laser diode and its application to the measurement of flow velocity,” Opt. Commun. 260(1), 242–247 (2006).
[Crossref]

Zvyagin, A. V.

J. R. Tucker, Y. L. Lim, K. Bertling, A. V. Zvyagin, and A. D. Rakić, “Fluid flow rate measurement using the change in laser junction voltage due to the self-mixing effect,” in Proceedings of IEEE Conference on Optoelectronic and Microelectronic Materials and Devices, (IEEE, 2006), pp. 192–195.
[Crossref]

Appl. Opt. (8)

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32(9), 1551–1558 (1993).
[Crossref] [PubMed]

M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows,” Appl. Opt. 33(24), 5628–5641 (1994).
[Crossref] [PubMed]

F. F. M. de Mul, M. H. Koelink, M. L. Kok, P. J. Harmsma, J. Greve, R. Graaff, and J. G. Aarnoudse, “Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue,” Appl. Opt. 34(28), 6595–6611 (1995).
[Crossref] [PubMed]

L. Scalise, W. Steenbergen, and F. de Mul, “Self-mixing feedback in a laser diode for intra-arterial optical blood velocimetry,” Appl. Opt. 40(25), 4608–4615 (2001).
[Crossref] [PubMed]

L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44(12), 2274–2280 (2005).
[Crossref] [PubMed]

S. Donati, M. Norgia, and G. Giuliani, “Self-mixing differential vibrometer based on electronic channel subtraction,” Appl. Opt. 45(28), 7264–7268 (2006).
[Crossref] [PubMed]

M. Nikolić, E. Hicks, Y. L. Lim, K. Bertling, and A. D. Rakić, “Self-mixing laser Doppler flow sensor: an optofluidic implementation,” Appl. Opt. 52(33), 8128–8133 (2013).
[Crossref] [PubMed]

M. Nikolić, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakić, “Multiple signal classification for self-mixing flowmetry,” Appl. Opt. 54(9), 2193–2198 (2015).
[Crossref] [PubMed]

Exp. Fluids (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

IEEE J. Quantum Electron. (3)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, “Voltage change across the self-coupled semiconductor laser,” IEEE J. Quantum Electron. 17(7), 1216–1225 (1981).
[Crossref]

L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 18(4), 555–564 (1982).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

K. Ozdemir, I. Ohno, and S. Shinohara, “A comparative study for the assessment on blood flow measurement using self-mixing laser speckle interferometer,” IEEE Trans. Instrum. Meas. 57(2), 355–363 (2008).
[Crossref]

Int. Commun. Heat Mass Transf. (1)

M. Spiga and G. L. Morino, “A symmetric solution for velocity profile in laminar flow through rectangular duct,” Int. Commun. Heat Mass Transf. 21(4), 469–475 (1994).
[Crossref]

J. Colloid Interface Sci. (1)

A. Quirantes, F. Arroyo, and J. Quirantes-Ros, “Multiple light scattering by spherical particle systems and its dependence on concentration: a T-matrix study,” J. Colloid Interface Sci. 240(1), 78–82 (2001).
[Crossref] [PubMed]

J. Opt. A: Pure Appl. Opt. (2)

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A: Pure Appl. Opt. 7(6), S445–S452 (2005).
[Crossref]

C. Zakian, M. Dickinson, and T. King, “Particle sizing and flow measurement using self-mixing interferometry with a laser diode,” J. Opt. A: Pure Appl. Opt. 7(6), S445–S452 (2005).
[Crossref]

Microfluid. Nanofluidics (1)

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluidics 14(1–2), 113–119 (2013).
[Crossref]

Microvasc. Res. (1)

M. Baker and H. Wayland, “On-line volume flow rate and velocity profile measurement for blood in microvessels,” Microvasc. Res. 7(1), 131–143 (1974).
[Crossref] [PubMed]

Nature (1)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Wang, M. Lu, H. Hao, and J. Zhou, “Statistics of the self-mixing speckle interference in a laser diode and its application to the measurement of flow velocity,” Opt. Commun. 260(1), 242–247 (2006).
[Crossref]

Opt. Eng. (1)

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, “Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments,” Opt. Eng. 39(9), 2574–2580 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL-based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

Other (5)

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer Verlag, 2003).

M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler: a model for extracorporeal blood flow measurement,” in Proceedings of IEEE Conference on Instrumentation and Measurement Technology (IEEE, (2010), pp. 304–307.
[Crossref]

J. Perchoux and T. Bosch, “Multimode VCSELs for self-mixing velocity measurements,” in Proceedings of IEEE Conference on sensors (IEEE, 2007), pp. 419–422.

J. R. Tucker, Y. L. Lim, K. Bertling, A. V. Zvyagin, and A. D. Rakić, “Fluid flow rate measurement using the change in laser junction voltage due to the self-mixing effect,” in Proceedings of IEEE Conference on Optoelectronic and Microelectronic Materials and Devices, (IEEE, 2006), pp. 192–195.
[Crossref]

E. Figueiras, A. Humeau-Heurtier, R. Campos, R. Oliveira, L. F. R. Ferreira, and F. F. M. de Mul, “Laser Doppler flowmeters prototypes: Monte Carlo simulations validation paired with measurements,” in Proceedings of Biomedical Engineering Systems and Technologies (Springer Berlin Heidelberg 2012), pp. 135–149.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Three mirror cavity model: (a) with a solid target, (c) with a group of small particles. Equivalent cavity: (b) with a solid target, (d) with a group of small particles.
Fig. 2
Fig. 2 Schematic of experiment setup (inset: cross-section view of the used microfluidic channel wafer).
Fig. 3
Fig. 3 2D ZEMAX simulation mapping: (a) Incident irradiant 2D profile for laser focalization calibration; (b) Power fraction of back-scattered light profile in different particle positions with the rear interface and (c) in the case of an absorbing rear interface.
Fig. 4
Fig. 4 Normalized scattered light irradiant profile simulated as a function of scatter angle.
Fig. 5
Fig. 5 Simulated profile of power reflectivity Rext as a function of particle positions along laser emission direction (i.e., Z' direction). (a) The red dashed line and the blue solid curve correspond to the cases only considering the direct back-scattered light and the reflection of the forward scattered light on the rear interface, respectively. (b) The black curve describes the profile in the case of the realistic SU8 rear interface, where both Rext contributions are taken into account.
Fig. 6
Fig. 6 Blue dashed curve depicts the Fluent-based velocity simulation profile along the laser axis (i.e., Z' direction) when the flow rate Q = 10 µL/min, with V1 being the maximal value 33.6 mm/s in center. Red solid curve shows 1D power reflectivity coupling in laser direction. The sharp reflectivity peak demonstrates the region where the OFI signal is enhanced by the reflection of forward scattered light on the rear interface, and the black dot line shows the peak center position with a velocity V2 of 5.4 mm/s.
Fig. 7
Fig. 7 Simulated OFI power spectra obtained for different flow rates (Q = 20 µL/min in red and 40 µL/min in blue).
Fig. 8
Fig. 8 Comparison of simulated OFI frequency spectrum red line in Fig. 8(a) and measured spectrum blue line in Fig. 8(b) when Q = 10µL/min. In both figures, there are two Doppler frequency peaks: fd1 arises from the forward scattered light reflection on the rear interface and fd2 denotes the velocity at the focus point. Two black solid lines indict the frequency (34.8 kHz) corresponding to the calculation based on maximal velocity (33.6 mm/s) from Fluent simulation. The black dashed line being calculated from the equation: a/f+c for noise estimation, where a = 190, c = 4.
Fig. 9
Fig. 9 Measured OFI spectral of various flow rates: Q = 0 µL/min (in black), Q = 5 µL/min (in red), Q = 20 µL/min (blue) and Q = 50µL/min (in green). Both fd1 and fd2 in each flow rate case are denoted as well.
Fig. 10
Fig. 10 Doppler frequency fd1 trends as a function of the flow rate Q. The black solid markers correspond to the simulated values, and the blue hollow circles with error bars illustrate the measurement results. The red dashed line is the calculation result associated with the Fluent simulation velocity value in feedback power peak position in Fig. 6.
Fig. 11
Fig. 11 Doppler frequency fd2 profile versus different flow rates. The black solid markers and the blue hollow ones with error bars correspond to the simulated values and the measurement ones, respectively. The red dashed line is the calculation frequency curve associated with the maximal velocity values in channel center based on Eqs. (6) and (20).

Tables (2)

Tables Icon

Table 1 ZEMAX basic modeling parameters setting

Tables Icon

Table 2 Rate equations based OFI signal simulation parameters setting

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

r eq = r 2 [1+ξexp(j ω D t+j Φ D )]
ξ= r ext (1 r 2 2 ) r 2
ω D =2πν 2 V A c+ V A
Φ D =2πν( 1+ c V A c+ V A ) τ d 2
ω D =2π f D 2π 2n V A λ
| f D |= 2n V A λ
P OFI = P 0 [1+mcos( ω D t+ Φ D )]
m=4ξ τ p τ l
r eq = r 2 [1+ i ξ i exp(j ω D i t+j Φ D i )]
ξ i = r exti (1 r 2 2 ) r 2
ω Di =2πν 2 V Ai c+ V Ai
Φ D i =2πν( 1+ c V Ai c+ V Ai ) τ di 2
| r eq |= r 2 (1+ i ξ i cos( ω D i t+ Φ D i )) 2 + ( i ξ i sin( ω D i t+ Φ D i )) 2 = r 2 1+2 i ξ i cos( ω D i t+ Φ D i )+ ( i ξ i cos( ω D i t+ Φ D i )) 2 + ( i ξ i sin( ω D i t+ Φ D i )) 2
ξ i cos( ω D i t+ Φ D i )<<1
ξ i sin( ω D i t+ Φ D i )<<1
| r eq |= r 2 1+2 i ξ i cos( ω D i t+ Φ D i )
P OFI = P 0 [1+ i m i cos( ω D i t+ Φ D i ) ]
R ext i = P in i P ref P 0 = P fdi P 0
r ext i = R ext i
V max (Q)=3.36×Q

Metrics