Abstract

We have proposed a polarization-insensitive laterally tapered coupler for the integration of the active Ge/SiGe multi-quantum-well device with a passive SiGe waveguide. A 45-μm-long taper is designed to achieve more than 90% coupling efficiency for both TE- and TM-polarized modes. The mode interference is utilized to obtain a compact taper coupler with high coupling efficiency. Fabrication tolerances are analyzed in terms of taper width, thickness, material refractive and operation wavelength. The results indicate that a width variation of ± 200 nm and a thickness variation of ± 100 nm are allowed. The designed taper coupler can provide efficient coupling under normal operating conditions in the wavelength range of 1460-1625nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical modal evolution 3-dB coupler

W. K. Burns, A. F. Milton, A. B. Lee, and E. J. West
Appl. Opt. 15(4) 1053-1065 (1976)

Compact and highly-efficient polarization independent vertical resonant couplers for active-passive monolithic integration

Marko Galarza, Dries Van Thourhout, Roel Baets, and Manuel Lopez-Amo
Opt. Express 16(12) 8350-8358 (2008)

Polarization-independent vertical coupler for photonics integration

Mee-Koy Chin, Chee-Wei Lee, and Jinyuan Shen
Opt. Express 12(1) 117-123 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
    [Crossref] [PubMed]
  2. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
    [Crossref]
  3. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
    [Crossref]
  4. V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1332–1343 (1997).
    [Crossref]
  5. R. Holly and K. Hingerl, “Fabrication of silicon vertical taper structures using KOH anisotropic etching,” Microelectron. Eng. 83(4), 1430–1433 (2006).
    [Crossref]
  6. I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997).
    [Crossref]
  7. F. Xia, V. M. Menon, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory,” IEEE J. Sel. Top. Quantum Electron. 11(1), 17–29 (2005).
    [Crossref]
  8. A. Wieczorek, B. Roycroft, F. H. Peters, and B. Corbett, “Loss analysis and increasing of the fabrication tolerance of resonant coupling by tapering the mode beating section,” Opt. Quantum Electron. 42(8), 521–529 (2011).
    [Crossref]
  9. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]
  10. L. Vivien, S. Laval, E. Cassan, X. L. Roux, and D. Pascal, “2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers,” J. Lightwave Technol. 21(10), 2429–2433 (2003).
    [Crossref]
  11. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [Crossref]
  12. D. Dai, S. He, and H. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
    [Crossref]
  13. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
    [Crossref] [PubMed]
  14. S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photonics Technol. Lett. 24(6), 461–463 (2012).
    [Crossref]
  15. E. H. Edwards, L. Lever, E. T. Fei, T. I. Kamins, Z. Ikonic, J. S. Harris, R. W. Kelsall, and D. A. B. Miller, “Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon,” Opt. Express 21(1), 867–876 (2013).
    [Crossref] [PubMed]
  16. P. Chaisakul, J. Frigerio, D. Marris-Morini, V. Vakarin, D. Chrastina, G. Isella, and L. Vivien, “O-band quantum-confined Stark effect optical modulator from Ge/Si0. 15Ge0. 85 quantum wells by well thickness tuning,” J. Appl. Phys. 116(19), 193103 (2014).
    [Crossref]
  17. M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
    [Crossref]
  18. J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, “Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on a SOI platform,” Opt. Express 15(2), 623–628 (2007).
    [Crossref] [PubMed]
  19. D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
    [Crossref]
  20. L. Lever, Z. Ikonić, and R. W. Kelsall, “Adiabatic mode coupling between SiGe photonic devices and SOI waveguides,” Opt. Express 20(28), 29500–29506 (2012).
    [Crossref] [PubMed]
  21. Y. Li and B. Cheng, “Design of electro-absorption modulator with tapered-mode coupler on the GeSi layer,” J. Opt. 15(8), 085501 (2013).
    [Crossref]
  22. Y. Li and B. Cheng, “Efficient evanescent coupling design for GeSi electro-absorption modulator,” Chin. Phys. B 22(12), 124209 (2013).
    [Crossref]
  23. P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
    [Crossref]
  24. C. W. Lee, “A review of polarization dependence applications for asymmetric waveguides vertical couplers in compound semiconductor indium phosphide,” in International Journal of Optics (Academic, 2011), pp. 11.
  25. D. Marcuse, “Radiation losses of tapered dielectric slab waveguides,” Bell Syst. Tech. J. 49(2), 273–290 (1970).
    [Crossref]
  26. W. K. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
    [Crossref]
  27. A. Milton and W. K. Burns, “Mode coupling in optical waveguide horns,” IEEE J. Quantum Electron. 13(10), 828–835 (1977).
    [Crossref]
  28. W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983 (1994).
    [Crossref]
  29. A. Erko and I. Zizak, “Hard X-ray micro-spectroscopy at Berliner Elektronenspeicherring für Synchrotronstrahlung II,” Spectrochimica Acta B. 64(9), 833–848 (2009).
    [Crossref]
  30. J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, “Giant electro-optic effect in Ge/SiGe coupled quantum wells,” Sci. Rep. 5, 15398 (2015).
    [Crossref]
  31. Y. Iseri, H. Yamada, Y. Goda, T. Arakawa, K. Tadab, and N. Haneji, “Analysis of electrorefractive index change in Ge/SiGe coupled quantum well for low-voltage silicon-based optical modulators,” Physica E 43(8), 1433–1438 (2011).
    [Crossref]
  32. R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic optical absorption in germanium-silicon alloys,” Phys. Rev. 109(3), 695–710 (1958).
    [Crossref]
  33. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 3rd ed. (Wiley, 2009).

2015 (2)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, “Giant electro-optic effect in Ge/SiGe coupled quantum wells,” Sci. Rep. 5, 15398 (2015).
[Crossref]

2014 (3)

P. Chaisakul, J. Frigerio, D. Marris-Morini, V. Vakarin, D. Chrastina, G. Isella, and L. Vivien, “O-band quantum-confined Stark effect optical modulator from Ge/Si0. 15Ge0. 85 quantum wells by well thickness tuning,” J. Appl. Phys. 116(19), 193103 (2014).
[Crossref]

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

2013 (4)

2012 (4)

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
[Crossref] [PubMed]

L. Lever, Z. Ikonić, and R. W. Kelsall, “Adiabatic mode coupling between SiGe photonic devices and SOI waveguides,” Opt. Express 20(28), 29500–29506 (2012).
[Crossref] [PubMed]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photonics Technol. Lett. 24(6), 461–463 (2012).
[Crossref]

2011 (2)

A. Wieczorek, B. Roycroft, F. H. Peters, and B. Corbett, “Loss analysis and increasing of the fabrication tolerance of resonant coupling by tapering the mode beating section,” Opt. Quantum Electron. 42(8), 521–529 (2011).
[Crossref]

Y. Iseri, H. Yamada, Y. Goda, T. Arakawa, K. Tadab, and N. Haneji, “Analysis of electrorefractive index change in Ge/SiGe coupled quantum well for low-voltage silicon-based optical modulators,” Physica E 43(8), 1433–1438 (2011).
[Crossref]

2009 (2)

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

A. Erko and I. Zizak, “Hard X-ray micro-spectroscopy at Berliner Elektronenspeicherring für Synchrotronstrahlung II,” Spectrochimica Acta B. 64(9), 833–848 (2009).
[Crossref]

2007 (1)

2006 (2)

D. Dai, S. He, and H. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
[Crossref]

R. Holly and K. Hingerl, “Fabrication of silicon vertical taper structures using KOH anisotropic etching,” Microelectron. Eng. 83(4), 1430–1433 (2006).
[Crossref]

2005 (2)

F. Xia, V. M. Menon, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory,” IEEE J. Sel. Top. Quantum Electron. 11(1), 17–29 (2005).
[Crossref]

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[Crossref]

2003 (2)

1997 (2)

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997).
[Crossref]

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1332–1343 (1997).
[Crossref]

1994 (1)

1977 (1)

A. Milton and W. K. Burns, “Mode coupling in optical waveguide horns,” IEEE J. Quantum Electron. 13(10), 828–835 (1977).
[Crossref]

1975 (1)

W. K. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
[Crossref]

1970 (1)

D. Marcuse, “Radiation losses of tapered dielectric slab waveguides,” Bell Syst. Tech. J. 49(2), 273–290 (1970).
[Crossref]

1958 (1)

R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic optical absorption in germanium-silicon alloys,” Phys. Rev. 109(3), 695–710 (1958).
[Crossref]

Agarwala, S.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1332–1343 (1997).
[Crossref]

Almeida, V. R.

Arakawa, T.

Y. Iseri, H. Yamada, Y. Goda, T. Arakawa, K. Tadab, and N. Haneji, “Analysis of electrorefractive index change in Ge/SiGe coupled quantum well for low-voltage silicon-based optical modulators,” Physica E 43(8), 1433–1438 (2011).
[Crossref]

Asghari, M.

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Bartolo, R. E.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1332–1343 (1997).
[Crossref]

Bauters, J. F.

Bouville, D.

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

Bowers, J. E.

Braunstein, R.

R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic optical absorption in germanium-silicon alloys,” Phys. Rev. 109(3), 695–710 (1958).
[Crossref]

Burns, W. K.

A. Milton and W. K. Burns, “Mode coupling in optical waveguide horns,” IEEE J. Quantum Electron. 13(10), 828–835 (1977).
[Crossref]

W. K. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
[Crossref]

Cassan, E.

Cecchi, S.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

Chaisakul, P.

J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, “Giant electro-optic effect in Ge/SiGe coupled quantum wells,” Sci. Rep. 5, 15398 (2015).
[Crossref]

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

P. Chaisakul, J. Frigerio, D. Marris-Morini, V. Vakarin, D. Chrastina, G. Isella, and L. Vivien, “O-band quantum-confined Stark effect optical modulator from Ge/Si0. 15Ge0. 85 quantum wells by well thickness tuning,” J. Appl. Phys. 116(19), 193103 (2014).
[Crossref]

Chen, A.

Cheng, B.

Y. Li and B. Cheng, “Efficient evanescent coupling design for GeSi electro-absorption modulator,” Chin. Phys. B 22(12), 124209 (2013).
[Crossref]

Y. Li and B. Cheng, “Design of electro-absorption modulator with tapered-mode coupler on the GeSi layer,” J. Opt. 15(8), 085501 (2013).
[Crossref]

Chrastina, D.

J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, “Giant electro-optic effect in Ge/SiGe coupled quantum wells,” Sci. Rep. 5, 15398 (2015).
[Crossref]

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

P. Chaisakul, J. Frigerio, D. Marris-Morini, V. Vakarin, D. Chrastina, G. Isella, and L. Vivien, “O-band quantum-confined Stark effect optical modulator from Ge/Si0. 15Ge0. 85 quantum wells by well thickness tuning,” J. Appl. Phys. 116(19), 193103 (2014).
[Crossref]

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

Claussen, S.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photonics Technol. Lett. 24(6), 461–463 (2012).
[Crossref]

Corbett, B.

A. Wieczorek, B. Roycroft, F. H. Peters, and B. Corbett, “Loss analysis and increasing of the fabrication tolerance of resonant coupling by tapering the mode beating section,” Opt. Quantum Electron. 42(8), 521–529 (2011).
[Crossref]

Coudevylle, J. R.

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

Crozat, P.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

Cunningham, J.

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Dagenais, M.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1332–1343 (1997).
[Crossref]

Dai, D.

Davenport, M. L.

de Valicourt, G.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Demeester, P. M.

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997).
[Crossref]

Dong, P.

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Doylend, J. K.

Duan, G. H.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Edmond, S.

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

Edwards, E. H.

Erko, A.

A. Erko and I. Zizak, “Hard X-ray micro-spectroscopy at Berliner Elektronenspeicherring für Synchrotronstrahlung II,” Spectrochimica Acta B. 64(9), 833–848 (2009).
[Crossref]

Fang, A. W.

Fedeli, J.-M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Fei, E. T.

Feng, D.

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Feng, N.

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Ferretto, M.

J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, “Giant electro-optic effect in Ge/SiGe coupled quantum wells,” Sci. Rep. 5, 15398 (2015).
[Crossref]

Fong, J.

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Forrest, S. R.

F. Xia, V. M. Menon, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory,” IEEE J. Sel. Top. Quantum Electron. 11(1), 17–29 (2005).
[Crossref]

Frigerio, J.

J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, “Giant electro-optic effect in Ge/SiGe coupled quantum wells,” Sci. Rep. 5, 15398 (2015).
[Crossref]

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

P. Chaisakul, J. Frigerio, D. Marris-Morini, V. Vakarin, D. Chrastina, G. Isella, and L. Vivien, “O-band quantum-confined Stark effect optical modulator from Ge/Si0. 15Ge0. 85 quantum wells by well thickness tuning,” J. Appl. Phys. 116(19), 193103 (2014).
[Crossref]

Goda, Y.

Y. Iseri, H. Yamada, Y. Goda, T. Arakawa, K. Tadab, and N. Haneji, “Analysis of electrorefractive index change in Ge/SiGe coupled quantum well for low-voltage silicon-based optical modulators,” Physica E 43(8), 1433–1438 (2011).
[Crossref]

Haneji, N.

Y. Iseri, H. Yamada, Y. Goda, T. Arakawa, K. Tadab, and N. Haneji, “Analysis of electrorefractive index change in Ge/SiGe coupled quantum well for low-voltage silicon-based optical modulators,” Physica E 43(8), 1433–1438 (2011).
[Crossref]

Harris, J.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photonics Technol. Lett. 24(6), 461–463 (2012).
[Crossref]

Harris, J. S.

He, S.

Heck, M. J. R.

Herman, F.

R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic optical absorption in germanium-silicon alloys,” Phys. Rev. 109(3), 695–710 (1958).
[Crossref]

Hingerl, K.

R. Holly and K. Hingerl, “Fabrication of silicon vertical taper structures using KOH anisotropic etching,” Microelectron. Eng. 83(4), 1430–1433 (2006).
[Crossref]

Holly, R.

R. Holly and K. Hingerl, “Fabrication of silicon vertical taper structures using KOH anisotropic etching,” Microelectron. Eng. 83(4), 1430–1433 (2006).
[Crossref]

Huang, W. P.

Ikonic, Z.

Isella, G.

J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, “Giant electro-optic effect in Ge/SiGe coupled quantum wells,” Sci. Rep. 5, 15398 (2015).
[Crossref]

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

P. Chaisakul, J. Frigerio, D. Marris-Morini, V. Vakarin, D. Chrastina, G. Isella, and L. Vivien, “O-band quantum-confined Stark effect optical modulator from Ge/Si0. 15Ge0. 85 quantum wells by well thickness tuning,” J. Appl. Phys. 116(19), 193103 (2014).
[Crossref]

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

Iseri, Y.

Y. Iseri, H. Yamada, Y. Goda, T. Arakawa, K. Tadab, and N. Haneji, “Analysis of electrorefractive index change in Ge/SiGe coupled quantum well for low-voltage silicon-based optical modulators,” Physica E 43(8), 1433–1438 (2011).
[Crossref]

Jany, C.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Johnson, F. G.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1332–1343 (1997).
[Crossref]

Jongthammanurak, S.

Kamins, T.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photonics Technol. Lett. 24(6), 461–463 (2012).
[Crossref]

Kamins, T. I.

Kelsall, R. W.

Keyvaninia, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Kimerling, L. C.

Krishnamoorthy, A. V.

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Kung, C.

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Lamponi, M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Laval, S.

Le Roux, X.

J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, “Giant electro-optic effect in Ge/SiGe coupled quantum wells,” Sci. Rep. 5, 15398 (2015).
[Crossref]

Lelarge, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Lever, L.

Li, Y.

Y. Li and B. Cheng, “Efficient evanescent coupling design for GeSi electro-absorption modulator,” Chin. Phys. B 22(12), 124209 (2013).
[Crossref]

Y. Li and B. Cheng, “Design of electro-absorption modulator with tapered-mode coupler on the GeSi layer,” J. Opt. 15(8), 085501 (2013).
[Crossref]

Liang, H.

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Liao, S.

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Lipson, M.

Liu, J.

Marcuse, D.

D. Marcuse, “Radiation losses of tapered dielectric slab waveguides,” Bell Syst. Tech. J. 49(2), 273–290 (1970).
[Crossref]

Marris-Morini, D.

J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, “Giant electro-optic effect in Ge/SiGe coupled quantum wells,” Sci. Rep. 5, 15398 (2015).
[Crossref]

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

P. Chaisakul, J. Frigerio, D. Marris-Morini, V. Vakarin, D. Chrastina, G. Isella, and L. Vivien, “O-band quantum-confined Stark effect optical modulator from Ge/Si0. 15Ge0. 85 quantum wells by well thickness tuning,” J. Appl. Phys. 116(19), 193103 (2014).
[Crossref]

Menon, V. M.

F. Xia, V. M. Menon, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory,” IEEE J. Sel. Top. Quantum Electron. 11(1), 17–29 (2005).
[Crossref]

Messaoudene, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Michel, J.

Miller, D.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photonics Technol. Lett. 24(6), 461–463 (2012).
[Crossref]

Miller, D. A. B.

Milton, A.

A. Milton and W. K. Burns, “Mode coupling in optical waveguide horns,” IEEE J. Quantum Electron. 13(10), 828–835 (1977).
[Crossref]

W. K. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
[Crossref]

Moerman, I.

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997).
[Crossref]

Moore, A. R.

R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic optical absorption in germanium-silicon alloys,” Phys. Rev. 109(3), 695–710 (1958).
[Crossref]

Pan, D.

Panepucci, R. R.

Pascal, D.

Peters, F. H.

A. Wieczorek, B. Roycroft, F. H. Peters, and B. Corbett, “Loss analysis and increasing of the fabrication tolerance of resonant coupling by tapering the mode beating section,” Opt. Quantum Electron. 42(8), 521–529 (2011).
[Crossref]

Poingt, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Ren, S.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photonics Technol. Lett. 24(6), 461–463 (2012).
[Crossref]

Roelkens, G.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Rong, Y.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photonics Technol. Lett. 24(6), 461–463 (2012).
[Crossref]

Rouifed, M.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

Rouifed, M. S.

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

Roux, X. L.

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

L. Vivien, S. Laval, E. Cassan, X. L. Roux, and D. Pascal, “2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers,” J. Lightwave Technol. 21(10), 2429–2433 (2003).
[Crossref]

Roycroft, B.

A. Wieczorek, B. Roycroft, F. H. Peters, and B. Corbett, “Loss analysis and increasing of the fabrication tolerance of resonant coupling by tapering the mode beating section,” Opt. Quantum Electron. 42(8), 521–529 (2011).
[Crossref]

Saini, S. S.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1332–1343 (1997).
[Crossref]

Schaevitz, R.

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photonics Technol. Lett. 24(6), 461–463 (2012).
[Crossref]

Shafiiha, R.

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Stone, D. R.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1332–1343 (1997).
[Crossref]

Tadab, K.

Y. Iseri, H. Yamada, Y. Goda, T. Arakawa, K. Tadab, and N. Haneji, “Analysis of electrorefractive index change in Ge/SiGe coupled quantum well for low-voltage silicon-based optical modulators,” Physica E 43(8), 1433–1438 (2011).
[Crossref]

Tang, Y.

Tsang, H.

Vakarin, V.

J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, “Giant electro-optic effect in Ge/SiGe coupled quantum wells,” Sci. Rep. 5, 15398 (2015).
[Crossref]

P. Chaisakul, J. Frigerio, D. Marris-Morini, V. Vakarin, D. Chrastina, G. Isella, and L. Vivien, “O-band quantum-confined Stark effect optical modulator from Ge/Si0. 15Ge0. 85 quantum wells by well thickness tuning,” J. Appl. Phys. 116(19), 193103 (2014).
[Crossref]

Van Daele, P. P.

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997).
[Crossref]

Van Thourhout, D.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Vivien, L.

J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, “Giant electro-optic effect in Ge/SiGe coupled quantum wells,” Sci. Rep. 5, 15398 (2015).
[Crossref]

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

P. Chaisakul, J. Frigerio, D. Marris-Morini, V. Vakarin, D. Chrastina, G. Isella, and L. Vivien, “O-band quantum-confined Stark effect optical modulator from Ge/Si0. 15Ge0. 85 quantum wells by well thickness tuning,” J. Appl. Phys. 116(19), 193103 (2014).
[Crossref]

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

L. Vivien, S. Laval, E. Cassan, X. L. Roux, and D. Pascal, “2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers,” J. Lightwave Technol. 21(10), 2429–2433 (2003).
[Crossref]

Vusirikala, V.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1332–1343 (1997).
[Crossref]

Wada, K.

Whaley, R. D.

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1332–1343 (1997).
[Crossref]

Wieczorek, A.

A. Wieczorek, B. Roycroft, F. H. Peters, and B. Corbett, “Loss analysis and increasing of the fabrication tolerance of resonant coupling by tapering the mode beating section,” Opt. Quantum Electron. 42(8), 521–529 (2011).
[Crossref]

Xia, F.

F. Xia, V. M. Menon, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory,” IEEE J. Sel. Top. Quantum Electron. 11(1), 17–29 (2005).
[Crossref]

Yamada, H.

Y. Iseri, H. Yamada, Y. Goda, T. Arakawa, K. Tadab, and N. Haneji, “Analysis of electrorefractive index change in Ge/SiGe coupled quantum well for low-voltage silicon-based optical modulators,” Physica E 43(8), 1433–1438 (2011).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

Zheng, D.

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

Zizak, I.

A. Erko and I. Zizak, “Hard X-ray micro-spectroscopy at Berliner Elektronenspeicherring für Synchrotronstrahlung II,” Spectrochimica Acta B. 64(9), 833–848 (2009).
[Crossref]

Appl. Phys. Lett. (1)

D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009).
[Crossref]

Bell Syst. Tech. J. (1)

D. Marcuse, “Radiation losses of tapered dielectric slab waveguides,” Bell Syst. Tech. J. 49(2), 273–290 (1970).
[Crossref]

Chin. Phys. B (1)

Y. Li and B. Cheng, “Efficient evanescent coupling design for GeSi electro-absorption modulator,” Chin. Phys. B 22(12), 124209 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

W. K. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
[Crossref]

A. Milton and W. K. Burns, “Mode coupling in optical waveguide horns,” IEEE J. Quantum Electron. 13(10), 828–835 (1977).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R. D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55-μm InGaAsP-InP laser arrays with integrated-mode expanders fabricated using a single epitaxial growth,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1332–1343 (1997).
[Crossref]

I. Moerman, P. P. Van Daele, and P. M. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron. 3(6), 1308–1320 (1997).
[Crossref]

F. Xia, V. M. Menon, and S. R. Forrest, “Photonic integration using asymmetric twin-waveguide (ATG) technology: part I-concepts and theory,” IEEE J. Sel. Top. Quantum Electron. 11(1), 17–29 (2005).
[Crossref]

M. S. Rouifed, D. Marris-Morini, P. Chaisakul, J. Frigerio, G. Isella, D. Chrastina, S. Edmond, X. L. Roux, J. R. Coudevylle, D. Bouville, and L. Vivien, “Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3μm,” IEEE J. Sel. Top. Quantum Electron. 20(4), 33–39 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Ren, Y. Rong, S. Claussen, R. Schaevitz, T. Kamins, J. Harris, and D. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photonics Technol. Lett. 24(6), 461–463 (2012).
[Crossref]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

J. Appl. Phys. (1)

P. Chaisakul, J. Frigerio, D. Marris-Morini, V. Vakarin, D. Chrastina, G. Isella, and L. Vivien, “O-band quantum-confined Stark effect optical modulator from Ge/Si0. 15Ge0. 85 quantum wells by well thickness tuning,” J. Appl. Phys. 116(19), 193103 (2014).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (1)

Y. Li and B. Cheng, “Design of electro-absorption modulator with tapered-mode coupler on the GeSi layer,” J. Opt. 15(8), 085501 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

Microelectron. Eng. (1)

R. Holly and K. Hingerl, “Fabrication of silicon vertical taper structures using KOH anisotropic etching,” Microelectron. Eng. 83(4), 1430–1433 (2006).
[Crossref]

Nat. Photonics (1)

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

A. Wieczorek, B. Roycroft, F. H. Peters, and B. Corbett, “Loss analysis and increasing of the fabrication tolerance of resonant coupling by tapering the mode beating section,” Opt. Quantum Electron. 42(8), 521–529 (2011).
[Crossref]

Phys. Rev. (1)

R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic optical absorption in germanium-silicon alloys,” Phys. Rev. 109(3), 695–710 (1958).
[Crossref]

Physica E (1)

Y. Iseri, H. Yamada, Y. Goda, T. Arakawa, K. Tadab, and N. Haneji, “Analysis of electrorefractive index change in Ge/SiGe coupled quantum well for low-voltage silicon-based optical modulators,” Physica E 43(8), 1433–1438 (2011).
[Crossref]

Sci. Rep. (1)

J. Frigerio, V. Vakarin, P. Chaisakul, M. Ferretto, D. Chrastina, X. Le Roux, L. Vivien, G. Isella, and D. Marris-Morini, “Giant electro-optic effect in Ge/SiGe coupled quantum wells,” Sci. Rep. 5, 15398 (2015).
[Crossref]

Spectrochimica Acta B. (1)

A. Erko and I. Zizak, “Hard X-ray micro-spectroscopy at Berliner Elektronenspeicherring für Synchrotronstrahlung II,” Spectrochimica Acta B. 64(9), 833–848 (2009).
[Crossref]

Other (2)

C. W. Lee, “A review of polarization dependence applications for asymmetric waveguides vertical couplers in compound semiconductor indium phosphide,” in International Journal of Optics (Academic, 2011), pp. 11.

P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 3rd ed. (Wiley, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Multiple step model for a taper. The bottom right corner shows a single step where the taper width varies from w to w + δw.
Fig. 2
Fig. 2 Schematic of the Ge/SiGe MQWs p-i-n diode integrated on the SiGe waveguide. The optical field distributions of both fundamental and first-order modes in this structure are shown on the right.
Fig. 3
Fig. 3 Mode power conversion between fundamental and first-order mode as a function of taper width at various taper angles for both TE and TM polarization.
Fig. 4
Fig. 4 Schematic diagram of the designed taper coupler. The input optical mode is from the passive Si0.16Ge0.84 waveguide at the left, and the tapered SiGe active waveguide allows the optical power to be transferred from lower passive waveguide to upper active device.
Fig. 5
Fig. 5 The coupling efficiency of fundamental mode at output as a function of the taper length for both TE and TM polarization.
Fig. 6
Fig. 6 (a) Difference between TE and TM resonant width as a function of the slab thickness with a fixed ridge height of 1.5μm. (b) Difference between TE and TM coupling length as a function of the slab thickness with a fixed ridge height of 1.5μm.
Fig. 7
Fig. 7 (a) Difference between TE and TM resonant width as a function of the ridge height with a fixed ratio of ridge height and slab thickness of 3:2. (b) Difference between TE and TM coupling length as a function of the ridge height with a fixed ratio of ridge height and slab thickness of 3:2.
Fig. 8
Fig. 8 The percentage of the power in fundamental mode, the first order mode and the total power of two modes as a function of the propagation distance in the designed taper coupler.
Fig. 9
Fig. 9 (a)-(b) The profile of the electric field distribution through a vertical cross section at the central of the taper coupler. (c)-(d) The profile of the electric field distribution through a lateral cross section at the central of the tapered active device. (e)-(f) The profile of the electric field distribution through a lateral cross section at the central of the passive Si0.16Ge0.84 waveguide. The left figures represent the electric field distribution of TE-polarized incident light, and the right figures represent that of TM-polarized incident light.
Fig. 10
Fig. 10 The coupling efficiency of TE and TM polarization as a function of the deviation of the starting and ending width w1, w2 in the middle tapered section.
Fig. 11
Fig. 11 (a) Mode power conversion between fundamental and first-order mode as a function of taper width for different thickness deviation of each layer. (b) Resonant width as a function of thickness deviation of each layer. (c) Coupling length as a function of thickness deviation of each layer. (d) The coupling efficiency as a function of thickness deviation of each layer. Clad layer refers to n-type Si0.09Ge0.91 layer, gap layer refers to p-type Si0.09Ge0.91 layer and MQW layer refers to Ge/SiGe multi-quantum-well layer.
Fig. 12
Fig. 12 (a) Mode power conversion between fundamental and first-order modes as a function of taper width for different refractive index deviation of MQW layer. (b) Resonant width as a function of refractive index deviation of MQW layer. (c) Coupling length as a function of refractive index deviation of MQW layer. (d) The coupling efficiency as a function of refractive index deviation of MQW layer.
Fig. 13
Fig. 13 The coupling efficiency of fundamental mode at output versus Ge composition of SiGe passive waveguide for TE and TM polarizations.
Fig. 14
Fig. 14 The coupling efficiency of fundamental mode at output as a function of laser wavelength for TE and TM polarizations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E i = A i e i ( x,y ) e i( β i z+ φ i ) , H i = B i h i ( x,y ) e i( β i z+ φ i ) E j = A j e j ( x,y ) e i( β j z+ φ j ) , H j = B j h j ( x,y ) e i( β j z+ φ j )
E i = i c ij E j ' H i = i c ij H j '
c ij = [ ( e j ' × h i * ) z + ( e i * × h j ' ) z ]dxdy 2 [ ( e i × h i * ) z dxdy ( e j ' × h j '* ) z dxdy ] 1 2
d A j dz =2Cθ e i 0 z Δ β ij d z A i d A i dz =2Cθ e i 0 z Δ β ij d z A j
L= mπ β 0 β 1 ,m=1,2,3,

Metrics