Abstract

We report a novel patterning technique to direct-write microscale nanoporous gold (NPG) features by projecting laser patterns using a spatial light modulator (SLM) onto an Au/Ag alloy film immersed in diluted nitric acid solutions. Heat accumulation induced by the photothermal effect enables localized dealloying in such solutions, which is otherwise impotent at room temperature. Consequently, NPG micropatterns are formed at the irradiated spots while the surrounding alloy remains intact. We have studied the size of the patterned NPG microstructures with respect to laser power and irradiation time. The NPG microstructures become significantly more transparent compared to the original alloy film. The NPG microstructures also exhibit strong localized surface plasmon resonance (LSPR) which is otherwise weak in the original alloy film. Both the light transmission intensity and LSPR peak wavelength have been demonstrated to be sensitive to the local environmental refractive index as quantified by microscopy and spectroscopy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Utilizing dynamic laser speckle to probe nanoscale morphology evolution in nanoporous gold thin films

Christopher A. R. Chapman, Sonny Ly, Ling Wang, Erkin Seker, and Manyalibo J. Matthews
Opt. Express 24(5) 5323-5333 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Zhang, H. Chang, A. Hirata, H. Wu, Q. K. Xue, and M. Chen, “Nanoporous gold based optical sensor for sub-ppt detection of mercury ions,” ACS Nano 7(5), 4595–4600 (2013).
    [Crossref] [PubMed]
  2. H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, “Enzyme-modified nanoporous gold-based electrochemical biosensors,” Biosens. Bioelectron. 24(10), 3014–3018 (2009).
    [Crossref] [PubMed]
  3. T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
    [Crossref] [PubMed]
  4. A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, and M. Bäumer, “Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature,” Science 327(5963), 319–322 (2010).
    [Crossref] [PubMed]
  5. E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials (Basel) 2(4), 2188–2215 (2009).
    [Crossref]
  6. C. A. Chapman, S. Ly, L. Wang, E. Seker, and M. J. Matthews, “Utilizing dynamic laser speckle to probe nanoscale morphology evolution in nanoporous gold thin films,” Opt. Express 24(5), 5323–5333 (2016).
    [Crossref]
  7. L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
    [Crossref] [PubMed]
  8. Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
    [Crossref] [PubMed]
  9. F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
    [Crossref] [PubMed]
  10. G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
    [Crossref] [PubMed]
  11. J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
    [Crossref]
  12. M. M. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W. C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
    [Crossref] [PubMed]
  13. J. B. Zeng, F. S. Zhao, M. Li, C. H. Li, T. R. Lee, and W. C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
    [Crossref]
  14. G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
    [Crossref] [PubMed]
  15. F. S. Zhao, J. B. Zeng, G. M. Santos, and W. C. Shih, “In situ patterning of hierarchical nanoporous gold structures by in-plane dealloying,” Mater. Sci. Eng. B 194, 34–40 (2015).
    [Crossref]
  16. L. H. Qian and M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation,” Appl. Phys. Lett. 91(8), 083105 (2007).
    [Crossref]
  17. L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS Applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
    [Crossref]
  18. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express 18(11), 11754–11762 (2010).
    [Crossref] [PubMed]
  19. J. H. Slater, J. S. Miller, S. S. Yu, and J. L. West, “Fabrication of multifaceted micropatterned surfaces with laser scanning lithography,” Adv. Funct. Mater. 21(15), 2876–2888 (2011).
    [Crossref]
  20. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008).
    [Crossref] [PubMed]
  21. J. Qi, J. Li, and W. C. Shih, “High-speed hyperspectral Raman imaging for label-free compositional microanalysis,” Biomed. Opt. Express 4(11), 2376–2382 (2013).
    [Crossref] [PubMed]
  22. J. Erlebacher, “An atomistic description of dealloying - Porosity evolution, the critical potential, and rate-limiting behavior,” J. Electrochem. Soc. 151(10), C614–C626 (2004).
    [Crossref]
  23. X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sieradzki, “Dealloying of noble-metal alloy nanoparticles,” Nano Lett. 14(5), 2569–2577 (2014).
    [Crossref] [PubMed]
  24. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
    [Crossref] [PubMed]
  25. Y.-K. Chen-Wiegart, S. Wang, I. McNulty, and D. C. Dunand, “Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation,” Acta Mater. 61(15), 5561–5570 (2013).
    [Crossref]
  26. J. Xu, Y. Wang, and Z. Zhang, “Potential and concentration dependent electrochemical dealloying of Al2Au in sodium chloride solutions,” J. Phys. Chem. C 116(9), 5689–5699 (2012).
    [Crossref]
  27. P. Loza, D. Kouznetsov, and R. Ortega, “Temperature distribution in a uniform medium heated by linear absorption of a Gaussian light beam,” Appl. Opt. 33(18), 3831–3836 (1994).
    [Crossref] [PubMed]
  28. X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
    [Crossref]

2016 (1)

2015 (3)

J. B. Zeng, F. S. Zhao, M. Li, C. H. Li, T. R. Lee, and W. C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

F. S. Zhao, J. B. Zeng, G. M. Santos, and W. C. Shih, “In situ patterning of hierarchical nanoporous gold structures by in-plane dealloying,” Mater. Sci. Eng. B 194, 34–40 (2015).
[Crossref]

2014 (5)

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

M. M. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W. C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sieradzki, “Dealloying of noble-metal alloy nanoparticles,” Nano Lett. 14(5), 2569–2577 (2014).
[Crossref] [PubMed]

2013 (3)

Y.-K. Chen-Wiegart, S. Wang, I. McNulty, and D. C. Dunand, “Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation,” Acta Mater. 61(15), 5561–5570 (2013).
[Crossref]

J. Qi, J. Li, and W. C. Shih, “High-speed hyperspectral Raman imaging for label-free compositional microanalysis,” Biomed. Opt. Express 4(11), 2376–2382 (2013).
[Crossref] [PubMed]

L. Zhang, H. Chang, A. Hirata, H. Wu, Q. K. Xue, and M. Chen, “Nanoporous gold based optical sensor for sub-ppt detection of mercury ions,” ACS Nano 7(5), 4595–4600 (2013).
[Crossref] [PubMed]

2012 (2)

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

J. Xu, Y. Wang, and Z. Zhang, “Potential and concentration dependent electrochemical dealloying of Al2Au in sodium chloride solutions,” J. Phys. Chem. C 116(9), 5689–5699 (2012).
[Crossref]

2011 (4)

J. H. Slater, J. S. Miller, S. S. Yu, and J. L. West, “Fabrication of multifaceted micropatterned surfaces with laser scanning lithography,” Adv. Funct. Mater. 21(15), 2876–2888 (2011).
[Crossref]

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

2010 (2)

A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, and M. Bäumer, “Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature,” Science 327(5963), 319–322 (2010).
[Crossref] [PubMed]

N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express 18(11), 11754–11762 (2010).
[Crossref] [PubMed]

2009 (3)

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS Applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
[Crossref]

E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials (Basel) 2(4), 2188–2215 (2009).
[Crossref]

H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, “Enzyme-modified nanoporous gold-based electrochemical biosensors,” Biosens. Bioelectron. 24(10), 3014–3018 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

L. H. Qian and M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation,” Appl. Phys. Lett. 91(8), 083105 (2007).
[Crossref]

2004 (1)

J. Erlebacher, “An atomistic description of dealloying - Porosity evolution, the critical potential, and rate-limiting behavior,” J. Electrochem. Soc. 151(10), C614–C626 (2004).
[Crossref]

2001 (1)

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

1994 (1)

Arai, S.

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

Arnob, M. M.

M. M. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W. C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

Asao, N.

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

Aziz, M. J.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

Bäumer, M.

A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, and M. Bäumer, “Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature,” Science 327(5963), 319–322 (2010).
[Crossref] [PubMed]

Begley, M. R.

E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials (Basel) 2(4), 2188–2215 (2009).
[Crossref]

Biener, J.

A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, and M. Bäumer, “Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature,” Science 327(5963), 319–322 (2010).
[Crossref] [PubMed]

Chang, H.

L. Zhang, H. Chang, A. Hirata, H. Wu, Q. K. Xue, and M. Chen, “Nanoporous gold based optical sensor for sub-ppt detection of mercury ions,” ACS Nano 7(5), 4595–4600 (2013).
[Crossref] [PubMed]

Chapman, C. A.

Chen, L. Y.

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS Applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
[Crossref]

Chen, M.

L. Zhang, H. Chang, A. Hirata, H. Wu, Q. K. Xue, and M. Chen, “Nanoporous gold based optical sensor for sub-ppt detection of mercury ions,” ACS Nano 7(5), 4595–4600 (2013).
[Crossref] [PubMed]

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

Chen, M. W.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS Applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
[Crossref]

L. H. Qian and M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation,” Appl. Phys. Lett. 91(8), 083105 (2007).
[Crossref]

Chen, Q.

X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sieradzki, “Dealloying of noble-metal alloy nanoparticles,” Nano Lett. 14(5), 2569–2577 (2014).
[Crossref] [PubMed]

Chen-Wiegart, Y.-K.

Y.-K. Chen-Wiegart, S. Wang, I. McNulty, and D. C. Dunand, “Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation,” Acta Mater. 61(15), 5561–5570 (2013).
[Crossref]

Chilkoti, A.

Ciesielski, P. N.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Clark, R. L.

Cole, D. G.

Crozier, P.

X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sieradzki, “Dealloying of noble-metal alloy nanoparticles,” Nano Lett. 14(5), 2569–2577 (2014).
[Crossref] [PubMed]

Dimitrov, N.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

Dunand, D. C.

Y.-K. Chen-Wiegart, S. Wang, I. McNulty, and D. C. Dunand, “Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation,” Acta Mater. 61(15), 5561–5570 (2013).
[Crossref]

Erlebacher, J.

X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sieradzki, “Dealloying of noble-metal alloy nanoparticles,” Nano Lett. 14(5), 2569–2577 (2014).
[Crossref] [PubMed]

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

J. Erlebacher, “An atomistic description of dealloying - Porosity evolution, the critical potential, and rate-limiting behavior,” J. Electrochem. Soc. 151(10), C614–C626 (2004).
[Crossref]

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

Escobar, C. A.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Friend, C. M.

A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, and M. Bäumer, “Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature,” Science 327(5963), 319–322 (2010).
[Crossref] [PubMed]

Fujita, T.

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS Applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
[Crossref]

Gao, P.

H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, “Enzyme-modified nanoporous gold-based electrochemical biosensors,” Biosens. Bioelectron. 24(10), 3014–3018 (2009).
[Crossref] [PubMed]

Gheewala, M.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Guan, P.

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

Guan, P. F.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

Hill, R. T.

Hirata, A.

L. Zhang, H. Chang, A. Hirata, H. Wu, Q. K. Xue, and M. Chen, “Nanoporous gold based optical sensor for sub-ppt detection of mercury ions,” ACS Nano 7(5), 4595–4600 (2013).
[Crossref] [PubMed]

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

Huang, X.

H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, “Enzyme-modified nanoporous gold-based electrochemical biosensors,” Biosens. Bioelectron. 24(10), 3014–3018 (2009).
[Crossref] [PubMed]

Hucknall, A.

Ishikawa, Y.

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

Jenness, N. J.

Jennings, G. K.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Ji, G.

H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, “Enzyme-modified nanoporous gold-based electrochemical biosensors,” Biosens. Bioelectron. 24(10), 3014–3018 (2009).
[Crossref] [PubMed]

Jiao, Y.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Johannes, M. S.

Karma, A.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

Kouznetsov, D.

Lang, X.

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

Lang, X. Y.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

Lee, T. R.

J. B. Zeng, F. S. Zhao, M. Li, C. H. Li, T. R. Lee, and W. C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Li, C. H.

J. B. Zeng, F. S. Zhao, M. Li, C. H. Li, T. R. Lee, and W. C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Li, C.-H.

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Li, J.

Li, M.

J. B. Zeng, F. S. Zhao, M. Li, C. H. Li, T. R. Lee, and W. C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

M. M. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W. C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

Li, X.

X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sieradzki, “Dealloying of noble-metal alloy nanoparticles,” Nano Lett. 14(5), 2569–2577 (2014).
[Crossref] [PubMed]

Li, Y.

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Loza, P.

Ly, S.

Matthews, M. J.

McCue, I.

X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sieradzki, “Dealloying of noble-metal alloy nanoparticles,” Nano Lett. 14(5), 2569–2577 (2014).
[Crossref] [PubMed]

McKenna, K.

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

McNulty, I.

Y.-K. Chen-Wiegart, S. Wang, I. McNulty, and D. C. Dunand, “Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation,” Acta Mater. 61(15), 5561–5570 (2013).
[Crossref]

Miller, J. S.

J. H. Slater, J. S. Miller, S. S. Yu, and J. L. West, “Fabrication of multifaceted micropatterned surfaces with laser scanning lithography,” Adv. Funct. Mater. 21(15), 2876–2888 (2011).
[Crossref]

Motwani, P.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Ortega, R.

Padgett, M. J.

Parvez Arnob, M. M.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Paterson, A.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Qi, J.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

J. Qi, J. Li, and W. C. Shih, “High-speed hyperspectral Raman imaging for label-free compositional microanalysis,” Biomed. Opt. Express 4(11), 2376–2382 (2013).
[Crossref] [PubMed]

Qian, L. H.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

L. H. Qian and M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation,” Appl. Phys. Lett. 91(8), 083105 (2007).
[Crossref]

Qiu, H.

H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, “Enzyme-modified nanoporous gold-based electrochemical biosensors,” Biosens. Bioelectron. 24(10), 3014–3018 (2009).
[Crossref] [PubMed]

Qu, Y.

H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, “Enzyme-modified nanoporous gold-based electrochemical biosensors,” Biosens. Bioelectron. 24(10), 3014–3018 (2009).
[Crossref] [PubMed]

Raja, B.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Reed, M. L.

E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials (Basel) 2(4), 2188–2215 (2009).
[Crossref]

Ryckman, J. D.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Santos, G. M.

F. S. Zhao, J. B. Zeng, G. M. Santos, and W. C. Shih, “In situ patterning of hierarchical nanoporous gold structures by in-plane dealloying,” Mater. Sci. Eng. B 194, 34–40 (2015).
[Crossref]

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

M. M. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W. C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

Seker, E.

C. A. Chapman, S. Ly, L. Wang, E. Seker, and M. J. Matthews, “Utilizing dynamic laser speckle to probe nanoscale morphology evolution in nanoporous gold thin films,” Opt. Express 24(5), 5323–5333 (2016).
[Crossref]

E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials (Basel) 2(4), 2188–2215 (2009).
[Crossref]

Shih, W. C.

J. B. Zeng, F. S. Zhao, M. Li, C. H. Li, T. R. Lee, and W. C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

F. S. Zhao, J. B. Zeng, G. M. Santos, and W. C. Shih, “In situ patterning of hierarchical nanoporous gold structures by in-plane dealloying,” Mater. Sci. Eng. B 194, 34–40 (2015).
[Crossref]

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

M. M. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W. C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

J. Qi, J. Li, and W. C. Shih, “High-speed hyperspectral Raman imaging for label-free compositional microanalysis,” Biomed. Opt. Express 4(11), 2376–2382 (2013).
[Crossref] [PubMed]

Shih, W.-C.

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Sieradzki, K.

X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sieradzki, “Dealloying of noble-metal alloy nanoparticles,” Nano Lett. 14(5), 2569–2577 (2014).
[Crossref] [PubMed]

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

Slater, J. H.

J. H. Slater, J. S. Miller, S. S. Yu, and J. L. West, “Fabrication of multifaceted micropatterned surfaces with laser scanning lithography,” Adv. Funct. Mater. 21(15), 2876–2888 (2011).
[Crossref]

Snyder, J.

X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sieradzki, “Dealloying of noble-metal alloy nanoparticles,” Nano Lett. 14(5), 2569–2577 (2014).
[Crossref] [PubMed]

Strych, U.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Sun, P.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Tanaka, N.

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

Tokunaga, T.

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

Wang, L.

Wang, S.

Y.-K. Chen-Wiegart, S. Wang, I. McNulty, and D. C. Dunand, “Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation,” Acta Mater. 61(15), 5561–5570 (2013).
[Crossref]

Wang, Y.

J. Xu, Y. Wang, and Z. Zhang, “Potential and concentration dependent electrochemical dealloying of Al2Au in sodium chloride solutions,” J. Phys. Chem. C 116(9), 5689–5699 (2012).
[Crossref]

Weiss, S. M.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

West, J. L.

J. H. Slater, J. S. Miller, S. S. Yu, and J. L. West, “Fabrication of multifaceted micropatterned surfaces with laser scanning lithography,” Adv. Funct. Mater. 21(15), 2876–2888 (2011).
[Crossref]

Willson, R. C.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Wittstock, A.

A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, and M. Bäumer, “Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature,” Science 327(5963), 319–322 (2010).
[Crossref] [PubMed]

Wolfe, J. C.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Wu, H.

L. Zhang, H. Chang, A. Hirata, H. Wu, Q. K. Xue, and M. Chen, “Nanoporous gold based optical sensor for sub-ppt detection of mercury ions,” ACS Nano 7(5), 4595–4600 (2013).
[Crossref] [PubMed]

Wulff, K. D.

Xu, J.

J. Xu, Y. Wang, and Z. Zhang, “Potential and concentration dependent electrochemical dealloying of Al2Au in sodium chloride solutions,” J. Phys. Chem. C 116(9), 5689–5699 (2012).
[Crossref]

Xue, L.

H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, “Enzyme-modified nanoporous gold-based electrochemical biosensors,” Biosens. Bioelectron. 24(10), 3014–3018 (2009).
[Crossref] [PubMed]

Xue, Q. K.

L. Zhang, H. Chang, A. Hirata, H. Wu, Q. K. Xue, and M. Chen, “Nanoporous gold based optical sensor for sub-ppt detection of mercury ions,” ACS Nano 7(5), 4595–4600 (2013).
[Crossref] [PubMed]

Yamamoto, Y.

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

Yao, Y.

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Yu, J. S.

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS Applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
[Crossref]

Yu, S. S.

J. H. Slater, J. S. Miller, S. S. Yu, and J. L. West, “Fabrication of multifaceted micropatterned surfaces with laser scanning lithography,” Adv. Funct. Mater. 21(15), 2876–2888 (2011).
[Crossref]

Zeng, J.

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

M. M. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W. C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Zeng, J. B.

J. B. Zeng, F. S. Zhao, M. Li, C. H. Li, T. R. Lee, and W. C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

F. S. Zhao, J. B. Zeng, G. M. Santos, and W. C. Shih, “In situ patterning of hierarchical nanoporous gold structures by in-plane dealloying,” Mater. Sci. Eng. B 194, 34–40 (2015).
[Crossref]

Zhang, L.

L. Zhang, H. Chang, A. Hirata, H. Wu, Q. K. Xue, and M. Chen, “Nanoporous gold based optical sensor for sub-ppt detection of mercury ions,” ACS Nano 7(5), 4595–4600 (2013).
[Crossref] [PubMed]

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

Zhang, Z.

J. Xu, Y. Wang, and Z. Zhang, “Potential and concentration dependent electrochemical dealloying of Al2Au in sodium chloride solutions,” J. Phys. Chem. C 116(9), 5689–5699 (2012).
[Crossref]

Zhao, F.

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

M. M. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W. C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

Zhao, F. S.

J. B. Zeng, F. S. Zhao, M. Li, C. H. Li, T. R. Lee, and W. C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

F. S. Zhao, J. B. Zeng, G. M. Santos, and W. C. Shih, “In situ patterning of hierarchical nanoporous gold structures by in-plane dealloying,” Mater. Sci. Eng. B 194, 34–40 (2015).
[Crossref]

Zhou, G.

H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, “Enzyme-modified nanoporous gold-based electrochemical biosensors,” Biosens. Bioelectron. 24(10), 3014–3018 (2009).
[Crossref] [PubMed]

Zi, J.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

Zielasek, V.

A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, and M. Bäumer, “Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature,” Science 327(5963), 319–322 (2010).
[Crossref] [PubMed]

ACS Nano (2)

L. Zhang, H. Chang, A. Hirata, H. Wu, Q. K. Xue, and M. Chen, “Nanoporous gold based optical sensor for sub-ppt detection of mercury ions,” ACS Nano 7(5), 4595–4600 (2013).
[Crossref] [PubMed]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

Acta Mater. (1)

Y.-K. Chen-Wiegart, S. Wang, I. McNulty, and D. C. Dunand, “Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation,” Acta Mater. 61(15), 5561–5570 (2013).
[Crossref]

Adv. Funct. Mater. (2)

J. H. Slater, J. S. Miller, S. S. Yu, and J. L. West, “Fabrication of multifaceted micropatterned surfaces with laser scanning lithography,” Adv. Funct. Mater. 21(15), 2876–2888 (2011).
[Crossref]

L. Y. Chen, J. S. Yu, T. Fujita, and M. W. Chen, “Nanoporous copper with tunable nanoporosity for SERS Applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

L. H. Qian and M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation,” Appl. Phys. Lett. 91(8), 083105 (2007).
[Crossref]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (1)

H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, “Enzyme-modified nanoporous gold-based electrochemical biosensors,” Biosens. Bioelectron. 24(10), 3014–3018 (2009).
[Crossref] [PubMed]

J. Biophotonics (1)

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

J. Erlebacher, “An atomistic description of dealloying - Porosity evolution, the critical potential, and rate-limiting behavior,” J. Electrochem. Soc. 151(10), C614–C626 (2004).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

J. B. Zeng, F. S. Zhao, M. Li, C. H. Li, T. R. Lee, and W. C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

J. Phys. Chem. C (1)

J. Xu, Y. Wang, and Z. Zhang, “Potential and concentration dependent electrochemical dealloying of Al2Au in sodium chloride solutions,” J. Phys. Chem. C 116(9), 5689–5699 (2012).
[Crossref]

Mater. Sci. Eng. B (1)

F. S. Zhao, J. B. Zeng, G. M. Santos, and W. C. Shih, “In situ patterning of hierarchical nanoporous gold structures by in-plane dealloying,” Mater. Sci. Eng. B 194, 34–40 (2015).
[Crossref]

Materials (Basel) (1)

E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials (Basel) 2(4), 2188–2215 (2009).
[Crossref]

Nano Lett. (1)

X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sieradzki, “Dealloying of noble-metal alloy nanoparticles,” Nano Lett. 14(5), 2569–2577 (2014).
[Crossref] [PubMed]

Nanoscale (3)

M. M. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W. C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen, “Atomic origins of the high catalytic activity of nanoporous gold,” Nat. Mater. 11(9), 775–780 (2012).
[Crossref] [PubMed]

Nature (1)

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

Opt. Express (3)

RSC Advances (1)

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Science (1)

A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, and M. Bäumer, “Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature,” Science 327(5963), 319–322 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) SEM images of dealloyed samples corresponding to 6 different temperatures. (b) Pore sizes after dealloying at different temperatures. Errorbars denote the standard deviation.
Fig. 2
Fig. 2 Characterization of NPG spots: (a) SEM image of an NPG spot. The defined edge of the spot is indicated by a red circle; (b) Zoom-in image at the center of the spot; (c) Cross-sectional view of the bright-field image; inset: bright-field image, scale bar is 2 µm; (d) Pore size statistics and a Gaussian fit; (e-h) SEM images of different locations from close to far away from the irradiated center. e-h share the same scale bar.
Fig. 3
Fig. 3 (a) Different outcomes depending on the laser power and irradiation time of each spot. Gray markers indicate no dealloying, empty markers indicate bi-continuous pores and ligaments, and solid markers indicate non-continuous structure at the center. Insets are bright-field images of NPG spots exposed for 20 s with 2.8, 3.5, and 4.9 mW. Scale bar is 2 µm. (b) Donut-shaped NPG spot. The size threshold is indicated by red circles. The inset is the bright-field image of the spot. Scale bar is 1 µm. (c) Cross-sectional view of the bright-field image. (d) Enlarged SEM image indicated by the yellow square in (b). (e) Center cross-section of the temperature distribution (dotted line) and its Gaussian fit (red curve). Inset: thermal map of the irradiated spot. Scale bar is 5 mm.
Fig. 4
Fig. 4 Bright-field images of dealloyed NPG: (a) 8 points with equal spacing and equal distance (30µm) to the center; (b) 4 by 4 grid pattern with 20 µm inter-spot spacing; (c) “UH” pattern, each letter is 12 µm × 12 µm in size. a-c share the same scale bar (10 µm); (d) two adjacent NPG spots 4 µm apart.
Fig. 5
Fig. 5 (a) Extinction spectra of alloy (dotted lines) and NPG spots (solid lines) of different diameters and in different media; (b) SEM images of corresponding NPG spots; Scale bar: 1 µm.

Metrics