Abstract

We describe an algorithm for simulating atmospheric wavefront perturbations over ranges of spatial and temporal scales spanning more than 4 orders of magnitude. An open-source implementation of the algorithm written in Python can simulate the evolution of the perturbations more than an order-of-magnitude faster than real time. Testing of the implementation using metrics appropriate to adaptive optics systems and long-baseline interferometers show accuracies at the few percent level or better.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Woofer-tweeter control in an adaptive optics system using a Fourier reconstructor

Jean-François Lavigne and Jean-Pierre Véran
J. Opt. Soc. Am. A 25(9) 2271-2279 (2008)

Computationally efficient autoregressive method for generating phase screens with frozen flow and turbulence in optical simulations

Srikar Srinath, Lisa A. Poyneer, Alexander R. Rudy, and S. Mark Ammons
Opt. Express 23(26) 33335-33349 (2015)

Closed-loop control of a woofer–tweeter adaptive optics system using wavelet-based phase reconstruction

Peter J. Hampton, Pan Agathoklis, Rodolphe Conan, and Colin Bradley
J. Opt. Soc. Am. A 27(11) A145-A156 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Ziad, “Review of the outer scale of the atmospheric turbulence,” Proc. SPIE 9909, 99091 (2016).
    [Crossref]
  2. M. Charnotskii, “Sparse spectrum model for a turbulent phase,” J. Opt. Soc. Am. A 30, 479–488 (2013).
    [Crossref]
  3. B. L. McGlamery, “Restoration of turbulence-degraded images,” J. Opt. Soc. Am. 57, 293–297 (1967).
    [Crossref]
  4. A. M. Vorontsov, P. V. Paramonov, M. T. Valley, and M. A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Wave Random Complex 18, 91–108 (2008).
    [Crossref]
  5. P. Jia, D. Cai, D. Wang, and A. Basden, “Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer,” M. Not. R. Astron. Soc. 447, 3467–3474 (2015).
    [Crossref]
  6. D. Buscher, “MegaScreen,” figshare (2016) [retrieved 20 Sept. 2016], https://dx.doi.org/10.6084/m9.figshare.3840825
  7. D. M. Winker, “Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence,” J. Opt. Soc. Am. A 8, 1568 (1991).
    [Crossref]
  8. J. Xiang, “Accurate compensation of the low-frequency components for the FFT-based turbulent phase screen,” Opt. Express 20, 681 (2012).
    [Crossref]

2016 (1)

A. Ziad, “Review of the outer scale of the atmospheric turbulence,” Proc. SPIE 9909, 99091 (2016).
[Crossref]

2015 (1)

P. Jia, D. Cai, D. Wang, and A. Basden, “Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer,” M. Not. R. Astron. Soc. 447, 3467–3474 (2015).
[Crossref]

2013 (1)

2012 (1)

2008 (1)

A. M. Vorontsov, P. V. Paramonov, M. T. Valley, and M. A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Wave Random Complex 18, 91–108 (2008).
[Crossref]

1991 (1)

1967 (1)

Basden, A.

P. Jia, D. Cai, D. Wang, and A. Basden, “Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer,” M. Not. R. Astron. Soc. 447, 3467–3474 (2015).
[Crossref]

Cai, D.

P. Jia, D. Cai, D. Wang, and A. Basden, “Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer,” M. Not. R. Astron. Soc. 447, 3467–3474 (2015).
[Crossref]

Charnotskii, M.

Jia, P.

P. Jia, D. Cai, D. Wang, and A. Basden, “Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer,” M. Not. R. Astron. Soc. 447, 3467–3474 (2015).
[Crossref]

McGlamery, B. L.

Paramonov, P. V.

A. M. Vorontsov, P. V. Paramonov, M. T. Valley, and M. A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Wave Random Complex 18, 91–108 (2008).
[Crossref]

Valley, M. T.

A. M. Vorontsov, P. V. Paramonov, M. T. Valley, and M. A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Wave Random Complex 18, 91–108 (2008).
[Crossref]

Vorontsov, A. M.

A. M. Vorontsov, P. V. Paramonov, M. T. Valley, and M. A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Wave Random Complex 18, 91–108 (2008).
[Crossref]

Vorontsov, M. A.

A. M. Vorontsov, P. V. Paramonov, M. T. Valley, and M. A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Wave Random Complex 18, 91–108 (2008).
[Crossref]

Wang, D.

P. Jia, D. Cai, D. Wang, and A. Basden, “Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer,” M. Not. R. Astron. Soc. 447, 3467–3474 (2015).
[Crossref]

Winker, D. M.

Xiang, J.

Ziad, A.

A. Ziad, “Review of the outer scale of the atmospheric turbulence,” Proc. SPIE 9909, 99091 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

M. Not. R. Astron. Soc. (1)

P. Jia, D. Cai, D. Wang, and A. Basden, “Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer,” M. Not. R. Astron. Soc. 447, 3467–3474 (2015).
[Crossref]

Opt. Express (1)

Proc. SPIE (1)

A. Ziad, “Review of the outer scale of the atmospheric turbulence,” Proc. SPIE 9909, 99091 (2016).
[Crossref]

Wave Random Complex (1)

A. M. Vorontsov, P. V. Paramonov, M. T. Valley, and M. A. Vorontsov, “Generation of infinitely long phase screens for modeling of optical wave propagation in atmospheric turbulence,” Wave Random Complex 18, 91–108 (2008).
[Crossref]

Other (1)

D. Buscher, “MegaScreen,” figshare (2016) [retrieved 20 Sept. 2016], https://dx.doi.org/10.6084/m9.figshare.3840825

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Power spectral density of the “tweeter” (left) and “woofer” (right) signals in the one-dimensional example in the text. Note the change of scales between graphs. In this case F0 = f0/10
Fig. 2
Fig. 2 A single wave-packet of a “tile” in a one-dimensional simulation (left), the spectrum the wave-packet with carrier frequency f0 (centre) and the spectrum of a set of wave-packets at adjacent carrier frequencies together with their sum (right).
Fig. 3
Fig. 3 Results from simulations with the woofer-tweeter algorithm. Left: Mean square residual phase fluctuation Zj for an aperture of diameter r0 after removal of the Zernike polynomials up to and including radial order 0 (upper curve), 1 (middle curve) and 2 (lowest curve), as a function of the ratio of the aperture radius R to the outer scale L0. The dotted lines show the predicted values for infinite L0. Right: Temporal power spectrum Φ(f) of the fringe motion in an interferometer with baselines of 50 r0 (lower curve) and 300 r0 (upper curve) in seeing with an outer scale of L0 = 600 r0; the theoretical curves are shown in light gray.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ ( f ) = A [ f 2 + F 0 2 ] 8 / 6 ,
Φ 2 ( f < f 0 ) = a 1 cos [ π f / ( 2 f 0 ) ] + a 2
g ( t ) = { k = 0 a k exp ( 2 π i k t Δ f ) } ,

Metrics