Abstract

Ultrahigh density data storage is in high demand in the current age of big data and thus motivates many innovative storage technologies. Femtosecond laser induced multi-dimensional optical data storage is an appealing method to fulfill the demand of ultrahigh storage capacity. Here we report a femtosecond laser induced two-stage optical storage in bisazobenzene copolymer films by manipulating the recording energies. Different mechanisms can be selected for specified memory use: two-photon isomerization (TPI) and laser induced surface deformation. Giant birefringence can be generated by TPI and brings about high signal-to-noise ratio (>20 dB) multi-dimensional reversible storage. Polarization-dependent surface deformation arises when increasing the recording energy, which not only facilitates the multi-level storage by black bits (dots), but also enhances the bits’ readout signal and storing stability. This facile bits recording method, which enables completely different recording mechanisms in an identical storage medium, paves the way for sustainable big data storage.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film

Yanlei Hu, Zhoushun Zhang, Yuhang Chen, Qijin Zhang, and Wenhao Huang
Opt. Lett. 35(1) 46-48 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
    [Crossref]
  2. F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R. Toskovic, J. L. Lado, J. Fernández-Rossier, and A. F. Otte, “A kilobyte rewritable atomic memory,” Nat. Nanotechnol.; advance online publication (2016), doi:.
    [Crossref] [PubMed]
  3. P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  4. E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “3D direct laser writing of Petabyte Optical Disk,” Opt. Laser Technol. 71, 45–49 (2015).
    [Crossref]
  5. Y. Hu, Z. Zhang, Y. Chen, Q. Zhang, and W. Huang, “Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film,” Opt. Lett. 35(1), 46–48 (2010).
    [Crossref] [PubMed]
  6. X. Li, Y. Cao, and M. Gu, “Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam,” Opt. Lett. 36(13), 2510–2512 (2011).
    [Crossref] [PubMed]
  7. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
    [Crossref] [PubMed]
  8. E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer,” Opt. Laser Technol. 60, 80–84 (2014).
    [Crossref]
  9. C. Berges, I. Javakhishvili, S. Hvilsted, C. Sánchez-Somolinos, and R. Alcalá, “Holographic storage and multiplexing in azopolyester blends using low energy pulses down to 2 ms,” Appl. Phys. Lett. 102(19), 193303 (2013).
    [Crossref]
  10. T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40(10), 2161–2164 (2015).
    [Crossref] [PubMed]
  11. Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
    [Crossref]
  12. Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
    [Crossref]
  13. P. Wu, Z. Liu, J. J. Yang, A. Flores, and M. R. Wang, “Wavelength-multiplexed submicron holograms for disk-compatible data storage,” Opt. Express 15(26), 17798–17804 (2007).
    [Crossref] [PubMed]
  14. D. Ganic, D. Day, and M. Gu, “Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination,” Opt. Lasers Eng. 38(6), 433–437 (2002).
    [Crossref]
  15. M. C. Spiridon, K. Iliopoulos, F. A. Jerca, V. V. Jerca, D. M. Vuluga, D. S. Vasilescu, D. Gindre, and B. Sahraoui, “Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage,” Dyes Pigments 114, 24–32 (2015).
    [Crossref]
  16. D. Gindre, K. Iliopoulos, O. Krupka, E. Champigny, Y. Morille, and M. Sallé, “Image storage in coumarin-based copolymer thin films by photoinduced dimerization,” Opt. Lett. 38(22), 4636–4639 (2013).
    [Crossref] [PubMed]
  17. Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
    [Crossref] [PubMed]
  18. Z. Zhang, Y. Hu, Y. Luo, Q. Zhang, W. Huang, and G. Zou, “Polarization storage by two-photon-induced anisotropy in bisazobenzene copolymer film,” Opt. Commun. 282(16), 3282–3285 (2009).
    [Crossref]
  19. L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, R. Bozio, A. Daurù, and D. Pedron, “Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties,” Eur. Polym. J. 43(8), 3550–3561 (2007).
    [Crossref]
  20. C. R. Mendonça, L. Misoguti, A. A. Andrade, S. B. Yamaki, V. D. Dias, T. D. Z. Atvars, and O. N. Oliveira., “Photoinduced birefringence in di-azo compounds in polystyrene and poly(methyl methacrylate) guest–host systems,” Opt. Mater. 30(2), 216–221 (2007).
    [Crossref]
  21. M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
    [Crossref]
  22. R. R. McLeod, “Impact of phase aberrations caused by multilayer optical data storage in weakly inhomogeneous media,” J. Opt. Soc. Am. B 26(2), 308–317 (2009).
    [Crossref]
  23. S. Bian, L. Li, J. Kumar, D. Kim, J. Williams, and S. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
    [Crossref]
  24. Y. Hu, Y. Chen, J. Li, D. Hu, J. Chu, Q. Zhang, and W. Huang, “Femtosecond laser induced surface deformation in multi-dimensional data storage,” Appl. Phys. Lett. 101(25), 251116 (2012).
    [Crossref]
  25. N. Zhou, L. M. Traverso, and X. Xu, “Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording,” Nanotechnology 26(13), 134001 (2015).
    [Crossref] [PubMed]
  26. W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
    [Crossref]
  27. J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
    [Crossref] [PubMed]
  28. A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposite for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
    [Crossref]
  29. Y. Hu, Z. Zhang, Y. Chen, W. Huang, and Q. Zhang, “Femtosecond Laser Based Polarization Storage by Direct-Writing in Diazobenzene Copolymer Film,” J. Laser Micro Nanoeng. 5(1), 64–67 (2010).
    [Crossref]

2015 (5)

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “3D direct laser writing of Petabyte Optical Disk,” Opt. Laser Technol. 71, 45–49 (2015).
[Crossref]

T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40(10), 2161–2164 (2015).
[Crossref] [PubMed]

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

M. C. Spiridon, K. Iliopoulos, F. A. Jerca, V. V. Jerca, D. M. Vuluga, D. S. Vasilescu, D. Gindre, and B. Sahraoui, “Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage,” Dyes Pigments 114, 24–32 (2015).
[Crossref]

N. Zhou, L. M. Traverso, and X. Xu, “Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording,” Nanotechnology 26(13), 134001 (2015).
[Crossref] [PubMed]

2014 (4)

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer,” Opt. Laser Technol. 60, 80–84 (2014).
[Crossref]

2013 (4)

C. Berges, I. Javakhishvili, S. Hvilsted, C. Sánchez-Somolinos, and R. Alcalá, “Holographic storage and multiplexing in azopolyester blends using low energy pulses down to 2 ms,” Appl. Phys. Lett. 102(19), 193303 (2013).
[Crossref]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

D. Gindre, K. Iliopoulos, O. Krupka, E. Champigny, Y. Morille, and M. Sallé, “Image storage in coumarin-based copolymer thin films by photoinduced dimerization,” Opt. Lett. 38(22), 4636–4639 (2013).
[Crossref] [PubMed]

2012 (1)

Y. Hu, Y. Chen, J. Li, D. Hu, J. Chu, Q. Zhang, and W. Huang, “Femtosecond laser induced surface deformation in multi-dimensional data storage,” Appl. Phys. Lett. 101(25), 251116 (2012).
[Crossref]

2011 (2)

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposite for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[Crossref]

X. Li, Y. Cao, and M. Gu, “Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam,” Opt. Lett. 36(13), 2510–2512 (2011).
[Crossref] [PubMed]

2010 (2)

Y. Hu, Z. Zhang, Y. Chen, Q. Zhang, and W. Huang, “Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film,” Opt. Lett. 35(1), 46–48 (2010).
[Crossref] [PubMed]

Y. Hu, Z. Zhang, Y. Chen, W. Huang, and Q. Zhang, “Femtosecond Laser Based Polarization Storage by Direct-Writing in Diazobenzene Copolymer Film,” J. Laser Micro Nanoeng. 5(1), 64–67 (2010).
[Crossref]

2009 (4)

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

R. R. McLeod, “Impact of phase aberrations caused by multilayer optical data storage in weakly inhomogeneous media,” J. Opt. Soc. Am. B 26(2), 308–317 (2009).
[Crossref]

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Z. Zhang, Y. Hu, Y. Luo, Q. Zhang, W. Huang, and G. Zou, “Polarization storage by two-photon-induced anisotropy in bisazobenzene copolymer film,” Opt. Commun. 282(16), 3282–3285 (2009).
[Crossref]

2007 (3)

L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, R. Bozio, A. Daurù, and D. Pedron, “Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties,” Eur. Polym. J. 43(8), 3550–3561 (2007).
[Crossref]

C. R. Mendonça, L. Misoguti, A. A. Andrade, S. B. Yamaki, V. D. Dias, T. D. Z. Atvars, and O. N. Oliveira., “Photoinduced birefringence in di-azo compounds in polystyrene and poly(methyl methacrylate) guest–host systems,” Opt. Mater. 30(2), 216–221 (2007).
[Crossref]

P. Wu, Z. Liu, J. J. Yang, A. Flores, and M. R. Wang, “Wavelength-multiplexed submicron holograms for disk-compatible data storage,” Opt. Express 15(26), 17798–17804 (2007).
[Crossref] [PubMed]

2004 (1)

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
[Crossref]

2002 (1)

D. Ganic, D. Day, and M. Gu, “Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination,” Opt. Lasers Eng. 38(6), 433–437 (2002).
[Crossref]

1998 (1)

S. Bian, L. Li, J. Kumar, D. Kim, J. Williams, and S. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

Abdolvand, A.

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposite for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[Crossref]

Alcalá, R.

C. Berges, I. Javakhishvili, S. Hvilsted, C. Sánchez-Somolinos, and R. Alcalá, “Holographic storage and multiplexing in azopolyester blends using low energy pulses down to 2 ms,” Appl. Phys. Lett. 102(19), 193303 (2013).
[Crossref]

Andrade, A. A.

C. R. Mendonça, L. Misoguti, A. A. Andrade, S. B. Yamaki, V. D. Dias, T. D. Z. Atvars, and O. N. Oliveira., “Photoinduced birefringence in di-azo compounds in polystyrene and poly(methyl methacrylate) guest–host systems,” Opt. Mater. 30(2), 216–221 (2007).
[Crossref]

Angiolini, L.

L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, R. Bozio, A. Daurù, and D. Pedron, “Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties,” Eur. Polym. J. 43(8), 3550–3561 (2007).
[Crossref]

Atvars, T. D. Z.

C. R. Mendonça, L. Misoguti, A. A. Andrade, S. B. Yamaki, V. D. Dias, T. D. Z. Atvars, and O. N. Oliveira., “Photoinduced birefringence in di-azo compounds in polystyrene and poly(methyl methacrylate) guest–host systems,” Opt. Mater. 30(2), 216–221 (2007).
[Crossref]

Benelli, T.

L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, R. Bozio, A. Daurù, and D. Pedron, “Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties,” Eur. Polym. J. 43(8), 3550–3561 (2007).
[Crossref]

Beresna, M.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Berges, C.

C. Berges, I. Javakhishvili, S. Hvilsted, C. Sánchez-Somolinos, and R. Alcalá, “Holographic storage and multiplexing in azopolyester blends using low energy pulses down to 2 ms,” Appl. Phys. Lett. 102(19), 193303 (2013).
[Crossref]

Bian, S.

S. Bian, L. Li, J. Kumar, D. Kim, J. Williams, and S. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

Bozio, R.

L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, R. Bozio, A. Daurù, and D. Pedron, “Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties,” Eur. Polym. J. 43(8), 3550–3561 (2007).
[Crossref]

Cao, Y.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

X. Li, Y. Cao, and M. Gu, “Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam,” Opt. Lett. 36(13), 2510–2512 (2011).
[Crossref] [PubMed]

Challener, W.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Champigny, E.

Chen, Y.

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Y. Hu, Y. Chen, J. Li, D. Hu, J. Chu, Q. Zhang, and W. Huang, “Femtosecond laser induced surface deformation in multi-dimensional data storage,” Appl. Phys. Lett. 101(25), 251116 (2012).
[Crossref]

Y. Hu, Z. Zhang, Y. Chen, Q. Zhang, and W. Huang, “Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film,” Opt. Lett. 35(1), 46–48 (2010).
[Crossref] [PubMed]

Y. Hu, Z. Zhang, Y. Chen, W. Huang, and Q. Zhang, “Femtosecond Laser Based Polarization Storage by Direct-Writing in Diazobenzene Copolymer Film,” J. Laser Micro Nanoeng. 5(1), 64–67 (2010).
[Crossref]

Chon, J. W.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Chu, J.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Y. Hu, Y. Chen, J. Li, D. Hu, J. Chu, Q. Zhang, and W. Huang, “Femtosecond laser induced surface deformation in multi-dimensional data storage,” Appl. Phys. Lett. 101(25), 251116 (2012).
[Crossref]

Cumming, B. P.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Daurù, A.

L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, R. Bozio, A. Daurù, and D. Pedron, “Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties,” Eur. Polym. J. 43(8), 3550–3561 (2007).
[Crossref]

Day, D.

D. Ganic, D. Day, and M. Gu, “Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination,” Opt. Lasers Eng. 38(6), 433–437 (2002).
[Crossref]

Dias, V. D.

C. R. Mendonça, L. Misoguti, A. A. Andrade, S. B. Yamaki, V. D. Dias, T. D. Z. Atvars, and O. N. Oliveira., “Photoinduced birefringence in di-azo compounds in polystyrene and poly(methyl methacrylate) guest–host systems,” Opt. Mater. 30(2), 216–221 (2007).
[Crossref]

Dinescu, A.

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “3D direct laser writing of Petabyte Optical Disk,” Opt. Laser Technol. 71, 45–49 (2015).
[Crossref]

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer,” Opt. Laser Technol. 60, 80–84 (2014).
[Crossref]

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Fahrenfort, E.

F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R. Toskovic, J. L. Lado, J. Fernández-Rossier, and A. F. Otte, “A kilobyte rewritable atomic memory,” Nat. Nanotechnol.; advance online publication (2016), doi:.
[Crossref] [PubMed]

Fernández-Rossier, J.

F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R. Toskovic, J. L. Lado, J. Fernández-Rossier, and A. F. Otte, “A kilobyte rewritable atomic memory,” Nat. Nanotechnol.; advance online publication (2016), doi:.
[Crossref] [PubMed]

Flores, A.

Gage, E. C.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Ganic, D.

D. Ganic, D. Day, and M. Gu, “Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination,” Opt. Lasers Eng. 38(6), 433–437 (2002).
[Crossref]

Gecevicius, M.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Gindre, D.

M. C. Spiridon, K. Iliopoulos, F. A. Jerca, V. V. Jerca, D. M. Vuluga, D. S. Vasilescu, D. Gindre, and B. Sahraoui, “Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage,” Dyes Pigments 114, 24–32 (2015).
[Crossref]

D. Gindre, K. Iliopoulos, O. Krupka, E. Champigny, Y. Morille, and M. Sallé, “Image storage in coumarin-based copolymer thin films by photoinduced dimerization,” Opt. Lett. 38(22), 4636–4639 (2013).
[Crossref] [PubMed]

Giorgini, L.

L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, R. Bozio, A. Daurù, and D. Pedron, “Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties,” Eur. Polym. J. 43(8), 3550–3561 (2007).
[Crossref]

Girovsky, J.

F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R. Toskovic, J. L. Lado, J. Fernández-Rossier, and A. F. Otte, “A kilobyte rewritable atomic memory,” Nat. Nanotechnol.; advance online publication (2016), doi:.
[Crossref] [PubMed]

Gokemeijer, N.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Gu, M.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

X. Li, Y. Cao, and M. Gu, “Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam,” Opt. Lett. 36(13), 2510–2512 (2011).
[Crossref] [PubMed]

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

D. Ganic, D. Day, and M. Gu, “Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination,” Opt. Lasers Eng. 38(6), 433–437 (2002).
[Crossref]

Hsia, Y.-T.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Hu, D.

Y. Hu, Y. Chen, J. Li, D. Hu, J. Chu, Q. Zhang, and W. Huang, “Femtosecond laser induced surface deformation in multi-dimensional data storage,” Appl. Phys. Lett. 101(25), 251116 (2012).
[Crossref]

Hu, Y.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Y. Hu, Y. Chen, J. Li, D. Hu, J. Chu, Q. Zhang, and W. Huang, “Femtosecond laser induced surface deformation in multi-dimensional data storage,” Appl. Phys. Lett. 101(25), 251116 (2012).
[Crossref]

Y. Hu, Z. Zhang, Y. Chen, Q. Zhang, and W. Huang, “Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film,” Opt. Lett. 35(1), 46–48 (2010).
[Crossref] [PubMed]

Y. Hu, Z. Zhang, Y. Chen, W. Huang, and Q. Zhang, “Femtosecond Laser Based Polarization Storage by Direct-Writing in Diazobenzene Copolymer Film,” J. Laser Micro Nanoeng. 5(1), 64–67 (2010).
[Crossref]

Z. Zhang, Y. Hu, Y. Luo, Q. Zhang, W. Huang, and G. Zou, “Polarization storage by two-photon-induced anisotropy in bisazobenzene copolymer film,” Opt. Commun. 282(16), 3282–3285 (2009).
[Crossref]

Huang, W.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Y. Hu, Y. Chen, J. Li, D. Hu, J. Chu, Q. Zhang, and W. Huang, “Femtosecond laser induced surface deformation in multi-dimensional data storage,” Appl. Phys. Lett. 101(25), 251116 (2012).
[Crossref]

Y. Hu, Z. Zhang, Y. Chen, Q. Zhang, and W. Huang, “Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film,” Opt. Lett. 35(1), 46–48 (2010).
[Crossref] [PubMed]

Y. Hu, Z. Zhang, Y. Chen, W. Huang, and Q. Zhang, “Femtosecond Laser Based Polarization Storage by Direct-Writing in Diazobenzene Copolymer Film,” J. Laser Micro Nanoeng. 5(1), 64–67 (2010).
[Crossref]

Z. Zhang, Y. Hu, Y. Luo, Q. Zhang, W. Huang, and G. Zou, “Polarization storage by two-photon-induced anisotropy in bisazobenzene copolymer film,” Opt. Commun. 282(16), 3282–3285 (2009).
[Crossref]

Hvilsted, S.

C. Berges, I. Javakhishvili, S. Hvilsted, C. Sánchez-Somolinos, and R. Alcalá, “Holographic storage and multiplexing in azopolyester blends using low energy pulses down to 2 ms,” Appl. Phys. Lett. 102(19), 193303 (2013).
[Crossref]

Iliopoulos, K.

M. C. Spiridon, K. Iliopoulos, F. A. Jerca, V. V. Jerca, D. M. Vuluga, D. S. Vasilescu, D. Gindre, and B. Sahraoui, “Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage,” Dyes Pigments 114, 24–32 (2015).
[Crossref]

D. Gindre, K. Iliopoulos, O. Krupka, E. Champigny, Y. Morille, and M. Sallé, “Image storage in coumarin-based copolymer thin films by photoinduced dimerization,” Opt. Lett. 38(22), 4636–4639 (2013).
[Crossref] [PubMed]

Ishitobi, H.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
[Crossref]

Itagi, A.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Javakhishvili, I.

C. Berges, I. Javakhishvili, S. Hvilsted, C. Sánchez-Somolinos, and R. Alcalá, “Holographic storage and multiplexing in azopolyester blends using low energy pulses down to 2 ms,” Appl. Phys. Lett. 102(19), 193303 (2013).
[Crossref]

Jerca, F. A.

M. C. Spiridon, K. Iliopoulos, F. A. Jerca, V. V. Jerca, D. M. Vuluga, D. S. Vasilescu, D. Gindre, and B. Sahraoui, “Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage,” Dyes Pigments 114, 24–32 (2015).
[Crossref]

Jerca, V. V.

M. C. Spiridon, K. Iliopoulos, F. A. Jerca, V. V. Jerca, D. M. Vuluga, D. S. Vasilescu, D. Gindre, and B. Sahraoui, “Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage,” Dyes Pigments 114, 24–32 (2015).
[Crossref]

Jinga, S.

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “3D direct laser writing of Petabyte Optical Disk,” Opt. Laser Technol. 71, 45–49 (2015).
[Crossref]

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer,” Opt. Laser Technol. 60, 80–84 (2014).
[Crossref]

Ju, G.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Kalff, F. E.

F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R. Toskovic, J. L. Lado, J. Fernández-Rossier, and A. F. Otte, “A kilobyte rewritable atomic memory,” Nat. Nanotechnol.; advance online publication (2016), doi:.
[Crossref] [PubMed]

Karns, D.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Kawata, S.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
[Crossref]

Kazansky, P. G.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Kim, D.

S. Bian, L. Li, J. Kumar, D. Kim, J. Williams, and S. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

Krupka, O.

Kumar, J.

S. Bian, L. Li, J. Kumar, D. Kim, J. Williams, and S. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

Lado, J. L.

F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R. Toskovic, J. L. Lado, J. Fernández-Rossier, and A. F. Otte, “A kilobyte rewritable atomic memory,” Nat. Nanotechnol.; advance online publication (2016), doi:.
[Crossref] [PubMed]

Lao, Z.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Li, J.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Y. Hu, Y. Chen, J. Li, D. Hu, J. Chu, Q. Zhang, and W. Huang, “Femtosecond laser induced surface deformation in multi-dimensional data storage,” Appl. Phys. Lett. 101(25), 251116 (2012).
[Crossref]

Li, L.

S. Bian, L. Li, J. Kumar, D. Kim, J. Williams, and S. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

Li, X.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

X. Li, Y. Cao, and M. Gu, “Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam,” Opt. Lett. 36(13), 2510–2512 (2011).
[Crossref] [PubMed]

Liang, H.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Liu, Z.

Luo, Y.

Z. Zhang, Y. Hu, Y. Luo, Q. Zhang, W. Huang, and G. Zou, “Polarization storage by two-photon-induced anisotropy in bisazobenzene copolymer film,” Opt. Commun. 282(16), 3282–3285 (2009).
[Crossref]

Ma, J.

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

Maeda, M.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
[Crossref]

Marinescu, V.

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “3D direct laser writing of Petabyte Optical Disk,” Opt. Laser Technol. 71, 45–49 (2015).
[Crossref]

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer,” Opt. Laser Technol. 60, 80–84 (2014).
[Crossref]

Mauriello, F.

L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, R. Bozio, A. Daurù, and D. Pedron, “Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties,” Eur. Polym. J. 43(8), 3550–3561 (2007).
[Crossref]

McLeod, R. R.

Mendonça, C. R.

C. R. Mendonça, L. Misoguti, A. A. Andrade, S. B. Yamaki, V. D. Dias, T. D. Z. Atvars, and O. N. Oliveira., “Photoinduced birefringence in di-azo compounds in polystyrene and poly(methyl methacrylate) guest–host systems,” Opt. Mater. 30(2), 216–221 (2007).
[Crossref]

Misoguti, L.

C. R. Mendonça, L. Misoguti, A. A. Andrade, S. B. Yamaki, V. D. Dias, T. D. Z. Atvars, and O. N. Oliveira., “Photoinduced birefringence in di-azo compounds in polystyrene and poly(methyl methacrylate) guest–host systems,” Opt. Mater. 30(2), 216–221 (2007).
[Crossref]

Morille, Y.

Nobukawa, T.

Nomura, T.

Oliveira, O. N.

C. R. Mendonça, L. Misoguti, A. A. Andrade, S. B. Yamaki, V. D. Dias, T. D. Z. Atvars, and O. N. Oliveira., “Photoinduced birefringence in di-azo compounds in polystyrene and poly(methyl methacrylate) guest–host systems,” Opt. Mater. 30(2), 216–221 (2007).
[Crossref]

Otte, A. F.

F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R. Toskovic, J. L. Lado, J. Fernández-Rossier, and A. F. Otte, “A kilobyte rewritable atomic memory,” Nat. Nanotechnol.; advance online publication (2016), doi:.
[Crossref] [PubMed]

Pavel, E.

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “3D direct laser writing of Petabyte Optical Disk,” Opt. Laser Technol. 71, 45–49 (2015).
[Crossref]

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer,” Opt. Laser Technol. 60, 80–84 (2014).
[Crossref]

Pedron, D.

L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, R. Bozio, A. Daurù, and D. Pedron, “Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties,” Eur. Polym. J. 43(8), 3550–3561 (2007).
[Crossref]

Peng, C.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Peng, W.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Peng, Y.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Rebergen, M. P.

F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R. Toskovic, J. L. Lado, J. Fernández-Rossier, and A. F. Otte, “A kilobyte rewritable atomic memory,” Nat. Nanotechnol.; advance online publication (2016), doi:.
[Crossref] [PubMed]

Rottmayer, R. E.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Sahraoui, B.

M. C. Spiridon, K. Iliopoulos, F. A. Jerca, V. V. Jerca, D. M. Vuluga, D. S. Vasilescu, D. Gindre, and B. Sahraoui, “Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage,” Dyes Pigments 114, 24–32 (2015).
[Crossref]

Salatelli, E.

L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, R. Bozio, A. Daurù, and D. Pedron, “Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties,” Eur. Polym. J. 43(8), 3550–3561 (2007).
[Crossref]

Sallé, M.

Sánchez-Somolinos, C.

C. Berges, I. Javakhishvili, S. Hvilsted, C. Sánchez-Somolinos, and R. Alcalá, “Holographic storage and multiplexing in azopolyester blends using low energy pulses down to 2 ms,” Appl. Phys. Lett. 102(19), 193303 (2013).
[Crossref]

Seifert, G.

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposite for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[Crossref]

Seigler, M. A.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Sekkat, Z.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
[Crossref]

Spiridon, M. C.

M. C. Spiridon, K. Iliopoulos, F. A. Jerca, V. V. Jerca, D. M. Vuluga, D. S. Vasilescu, D. Gindre, and B. Sahraoui, “Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage,” Dyes Pigments 114, 24–32 (2015).
[Crossref]

Stalmashonak, A.

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposite for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[Crossref]

Tosa, N.

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “3D direct laser writing of Petabyte Optical Disk,” Opt. Laser Technol. 71, 45–49 (2015).
[Crossref]

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer,” Opt. Laser Technol. 60, 80–84 (2014).
[Crossref]

Toskovic, R.

F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R. Toskovic, J. L. Lado, J. Fernández-Rossier, and A. F. Otte, “A kilobyte rewritable atomic memory,” Nat. Nanotechnol.; advance online publication (2016), doi:.
[Crossref] [PubMed]

Traverso, L. M.

N. Zhou, L. M. Traverso, and X. Xu, “Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording,” Nanotechnology 26(13), 134001 (2015).
[Crossref] [PubMed]

Tripathy, S.

S. Bian, L. Li, J. Kumar, D. Kim, J. Williams, and S. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

Trusca, R.

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “3D direct laser writing of Petabyte Optical Disk,” Opt. Laser Technol. 71, 45–49 (2015).
[Crossref]

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer,” Opt. Laser Technol. 60, 80–84 (2014).
[Crossref]

Vasile, B. S.

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “3D direct laser writing of Petabyte Optical Disk,” Opt. Laser Technol. 71, 45–49 (2015).
[Crossref]

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer,” Opt. Laser Technol. 60, 80–84 (2014).
[Crossref]

Vasilescu, D. S.

M. C. Spiridon, K. Iliopoulos, F. A. Jerca, V. V. Jerca, D. M. Vuluga, D. S. Vasilescu, D. Gindre, and B. Sahraoui, “Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage,” Dyes Pigments 114, 24–32 (2015).
[Crossref]

Vuluga, D. M.

M. C. Spiridon, K. Iliopoulos, F. A. Jerca, V. V. Jerca, D. M. Vuluga, D. S. Vasilescu, D. Gindre, and B. Sahraoui, “Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage,” Dyes Pigments 114, 24–32 (2015).
[Crossref]

Wang, M. R.

Wani, Y.

Williams, J.

S. Bian, L. Li, J. Kumar, D. Kim, J. Williams, and S. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

Wu, D.

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Wu, P.

Xu, X.

N. Zhou, L. M. Traverso, and X. Xu, “Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording,” Nanotechnology 26(13), 134001 (2015).
[Crossref] [PubMed]

Yamaki, S. B.

C. R. Mendonça, L. Misoguti, A. A. Andrade, S. B. Yamaki, V. D. Dias, T. D. Z. Atvars, and O. N. Oliveira., “Photoinduced birefringence in di-azo compounds in polystyrene and poly(methyl methacrylate) guest–host systems,” Opt. Mater. 30(2), 216–221 (2007).
[Crossref]

Yang, J. J.

Yang, X.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Zhang, J.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Zhang, Q.

Y. Hu, Y. Chen, J. Li, D. Hu, J. Chu, Q. Zhang, and W. Huang, “Femtosecond laser induced surface deformation in multi-dimensional data storage,” Appl. Phys. Lett. 101(25), 251116 (2012).
[Crossref]

Y. Hu, Z. Zhang, Y. Chen, Q. Zhang, and W. Huang, “Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film,” Opt. Lett. 35(1), 46–48 (2010).
[Crossref] [PubMed]

Y. Hu, Z. Zhang, Y. Chen, W. Huang, and Q. Zhang, “Femtosecond Laser Based Polarization Storage by Direct-Writing in Diazobenzene Copolymer Film,” J. Laser Micro Nanoeng. 5(1), 64–67 (2010).
[Crossref]

Z. Zhang, Y. Hu, Y. Luo, Q. Zhang, W. Huang, and G. Zou, “Polarization storage by two-photon-induced anisotropy in bisazobenzene copolymer film,” Opt. Commun. 282(16), 3282–3285 (2009).
[Crossref]

Zhang, Z.

Y. Hu, Z. Zhang, Y. Chen, Q. Zhang, and W. Huang, “Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film,” Opt. Lett. 35(1), 46–48 (2010).
[Crossref] [PubMed]

Y. Hu, Z. Zhang, Y. Chen, W. Huang, and Q. Zhang, “Femtosecond Laser Based Polarization Storage by Direct-Writing in Diazobenzene Copolymer Film,” J. Laser Micro Nanoeng. 5(1), 64–67 (2010).
[Crossref]

Z. Zhang, Y. Hu, Y. Luo, Q. Zhang, W. Huang, and G. Zou, “Polarization storage by two-photon-induced anisotropy in bisazobenzene copolymer film,” Opt. Commun. 282(16), 3282–3285 (2009).
[Crossref]

Zhou, N.

N. Zhou, L. M. Traverso, and X. Xu, “Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording,” Nanotechnology 26(13), 134001 (2015).
[Crossref] [PubMed]

Zhu, X.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Zijlstra, P.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Zou, G.

Z. Zhang, Y. Hu, Y. Luo, Q. Zhang, W. Huang, and G. Zou, “Polarization storage by two-photon-induced anisotropy in bisazobenzene copolymer film,” Opt. Commun. 282(16), 3282–3285 (2009).
[Crossref]

Appl. Phys. Lett. (6)

Y. Hu, Y. Chen, J. Ma, J. Li, W. Huang, and J. Chu, “High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization,” Appl. Phys. Lett. 103(14), 141112 (2013).
[Crossref]

C. Berges, I. Javakhishvili, S. Hvilsted, C. Sánchez-Somolinos, and R. Alcalá, “Holographic storage and multiplexing in azopolyester blends using low energy pulses down to 2 ms,” Appl. Phys. Lett. 102(19), 193303 (2013).
[Crossref]

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
[Crossref]

S. Bian, L. Li, J. Kumar, D. Kim, J. Williams, and S. Tripathy, “Single laser beam-induced surface deformation on azobenzene polymer films,” Appl. Phys. Lett. 73(13), 1817–1819 (1998).
[Crossref]

Y. Hu, Y. Chen, J. Li, D. Hu, J. Chu, Q. Zhang, and W. Huang, “Femtosecond laser induced surface deformation in multi-dimensional data storage,” Appl. Phys. Lett. 101(25), 251116 (2012).
[Crossref]

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposite for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[Crossref]

Dyes Pigments (1)

M. C. Spiridon, K. Iliopoulos, F. A. Jerca, V. V. Jerca, D. M. Vuluga, D. S. Vasilescu, D. Gindre, and B. Sahraoui, “Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage,” Dyes Pigments 114, 24–32 (2015).
[Crossref]

Eur. Polym. J. (1)

L. Angiolini, T. Benelli, L. Giorgini, F. Mauriello, E. Salatelli, R. Bozio, A. Daurù, and D. Pedron, “Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties,” Eur. Polym. J. 43(8), 3550–3561 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Hu, J. Ma, Y. Chen, J. Li, W. Huang, and J. Chu, “Fast bits recording in photoisomeric polymers by phase-modulated femtosecond laser,” IEEE Photonics Technol. Lett. 26(11), 1154–1156 (2014).
[Crossref]

J. Laser Micro Nanoeng. (1)

Y. Hu, Z. Zhang, Y. Chen, W. Huang, and Q. Zhang, “Femtosecond Laser Based Polarization Storage by Direct-Writing in Diazobenzene Copolymer Film,” J. Laser Micro Nanoeng. 5(1), 64–67 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Nanotechnology (1)

N. Zhou, L. M. Traverso, and X. Xu, “Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording,” Nanotechnology 26(13), 134001 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[Crossref]

Nature (1)

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Zhang, Y. Hu, Y. Luo, Q. Zhang, W. Huang, and G. Zou, “Polarization storage by two-photon-induced anisotropy in bisazobenzene copolymer film,” Opt. Commun. 282(16), 3282–3285 (2009).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (2)

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “3D direct laser writing of Petabyte Optical Disk,” Opt. Laser Technol. 71, 45–49 (2015).
[Crossref]

E. Pavel, S. Jinga, B. S. Vasile, A. Dinescu, V. Marinescu, R. Trusca, and N. Tosa, “Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer,” Opt. Laser Technol. 60, 80–84 (2014).
[Crossref]

Opt. Lasers Eng. (1)

D. Ganic, D. Day, and M. Gu, “Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination,” Opt. Lasers Eng. 38(6), 433–437 (2002).
[Crossref]

Opt. Lett. (4)

Opt. Mater. (1)

C. R. Mendonça, L. Misoguti, A. A. Andrade, S. B. Yamaki, V. D. Dias, T. D. Z. Atvars, and O. N. Oliveira., “Photoinduced birefringence in di-azo compounds in polystyrene and poly(methyl methacrylate) guest–host systems,” Opt. Mater. 30(2), 216–221 (2007).
[Crossref]

Phys. Rev. Lett. (1)

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Hu, Z. Lao, B. P. Cumming, D. Wu, J. Li, H. Liang, J. Chu, W. Huang, and M. Gu, “Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly,” Proc. Natl. Acad. Sci. U.S.A. 112(22), 6876–6881 (2015).
[Crossref] [PubMed]

Other (1)

F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R. Toskovic, J. L. Lado, J. Fernández-Rossier, and A. F. Otte, “A kilobyte rewritable atomic memory,” Nat. Nanotechnol.; advance online publication (2016), doi:.
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (1770 KB)      Readout of multi-level bits by changing the reading beam polarization. The bits intensities smoothly transit from one state (bright or dack) to the other (dack or bright).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Illustration of the optical setup for polarization recording and readout. (b) Schematic diagram of the readout configuration. (c) Bits readout results when rotating the sample at different angles to the polarization of P1. Here a laser power of 20 mW and an exposure time of 50 ms are used for bits recording. The interval between neighboring bits is 4 μm.
Fig. 2
Fig. 2 (a-d) Demonstration of four-dimensional bits storage. (a) and (b) are recorded in the same region of the first layer with 0° and 45° angular polarizations, respectively. (c) and (d) are recorded in the second layer. The interval between neighboring bits is 4 μm. Reading beams with corresponding polarizations are used. Pseudo-colors are used to indicate different layers. (e) and (f) are the line plot of the normalized bits intensity along the dashed lines for the first and the second layer, respectively. Four-dimensional data storage with more layers can be achieved using the polarization-multiplexing technique.
Fig. 3
Fig. 3 (a) Optical electrical field distribution calculated for focused linearly and circularly polarized lasers inside the polymer. LP_Ex and LP_Ey are the components of electric field distribution in the directions along and perpendicular to the linear polarization, respectively. CP_Ex and CP_Ey are the components of electric field in two orthogonal directions for circularly polarized light. (b-e) Surface profiles of the bits recorded by femtosecond lasers with circular and linear polarization, respectively. Insets show the three-dimensional topology measured by AFM.
Fig. 4
Fig. 4 (a) Mapping of the recording polarizations for a pattern and (b) the corresponding laser-induced surface deformation. Scale bar: 5 μm. The readout results are shown with different reading beams with (c) horizontal and (d) vertical polarizations. Scale bar: 5 μm.
Fig. 5
Fig. 5 Bits size dependence on (a) exposure time and (b) recording power. Constant laser power of 15 mW and exposure time of 200 ms are used respectively for (a) and (b). Microscopic objectives with different magnification and NA can be chosen for bits reading. Inset of (b) shows an individual bit and its intensity distribution.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I o u t = I i n sin 2 ( 2 θ ) sin 2 ( δ / 2 )
E = [ E x E y E z ] = i C Ω sin ( θ ) a ( θ , φ ) cos ( θ ) [ 1 + ( cos θ 1 ) cos 2 φ ( cos θ 1 ) cos φ sin φ sin θ cos φ ] exp { i k n [ z 2 cos θ + r 2 sin θ cos ( φ φ 2 ) ] } d θ d φ

Metrics