Abstract

An efficient trellis-based phase noise mitigation algorithm is proposed to highly improve the performance of coherent transmission systems, especially in high order modulation formats. The proposed method targets the coherent optical systems where the performance is limited by various sources of phase noise including laser line-width, fiber non-linearity, and phase noise induced by phase-locked loop. Considering hardware limitations of ultra-high data rate processing in optical systems, a hardware-efficient parallelized and pipelined architecture is utilized. Experimental results in 200 Gb/s DP-16QAM co-propagated with 10-G channels demonstrate significant performance improvement over other existing methods.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Feedforward carrier recovery via pilot-aided transmission for single-carrier systems with arbitrary M-QAM constellations

Mohamed Morsy-Osman, Qunbi Zhuge, Lawrence R. Chen, and David V. Plant
Opt. Express 19(24) 24331-24343 (2011)

Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL

Qunbi Zhuge, Mohamed Morsy-Osman, Xian Xu, Mohammad E. Mousa-Pasandi, Mathieu Chagnon, Ziad A. El-Sahn, and David V. Plant
Opt. Express 20(17) 19599-19609 (2012)

Chip-based Brillouin processing for carrier recovery in self-coherent optical communications

Elias Giacoumidis, Amol Choudhary, Eric Magi, David Marpaung, Khu Vu, Pan Ma, Duk-Yong Choi, Steve Madden, Bill Corcoran, Mark Pelusi, and Benjamin J. Eggleton
Optica 5(10) 1191-1199 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Marsella, M. Secondini, and E. Forestieri, “Maximum likelihood sequence detection for mitigating nonlinear effects,” J. Lightwave Technol. 23(5), 908–916 (2014).
    [Crossref]
  2. M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, and G. Gavioli, “Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems,” Opt. Express 19(23), 22455–22461 (2011).
    [Crossref]
  3. Y. Cai, D. G. Foursa, C. R. Davidson, J.-X. Cai, O. Sinkin, M. Nissov, and A. Pilipetskii, “Experimental demonstration of coherent MAP detection for nonlinearity mitigation in long-haul transmissions,” in OFC/NFOEC (2010), paper OTuE1
  4. X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8 b/s/Hz, PDM-36QAM Transmission Over 320 km Using Both Pre- and Post-Transmission Digital Signal Processing,” J. Lightwave Technol. 31(7), 999–1005 (2013).
    [Crossref]
  5. A. Spalvieri and M. Magarini, “Wiener’s analysis of the discrete-time phase-locked loop with lopp delay,” IEEE Trans. Circuits Sys. 55(6), 596–600 (2008).
    [Crossref]
  6. L. Barletta, M. Magarini, and A. Spalvieri, “Bridging the gap between Kalman filter and Wiener filter in carrier phase tracking,” IEEE Photonics Technol. Lett. 25(11), 1035–1038 (2013).
    [Crossref]
  7. L. Pakala and B. Schmauss, “Extended Kalman fitering for joint mitigation of phase and amplitude noise in coherent QAM systems,” Opt. Express,  24(6), 6391–6401 (2016).
    [Crossref]
  8. E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightwave Technol. 25(9), 2675–2692 (2007).
    [Crossref]
  9. A. J. Viterbi and A. Viterbi, “Non-linear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inform. Theory,  IT-29, pp. 543–551, (1983).
    [Crossref]
  10. X. Zhou, “An improved feed-forward carrier recovery algorithm for coherent receivers with M-QAM modulation format,” IEEE Photonics Technol. Lett. 22(14), 2675–2692 (2010).
    [Crossref]
  11. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  12. X. Zhou and Y. Sun, “Low-complexity, blind phase recovery for coherent receivers using QAM modulation,” in OFC/NFOEC (2011), paper OMJ3
  13. J. H. Ke, K. P. Zhong, Y. Gao, J. C. Cartledge, A. S. Karar, and M. A. Rezania, “Linewidth-tolerant and low-complexity two-stage carrier phase estimation for dual-polarization 16-QAM coherent optical fiber communications,” J. Lightwave Technol. 30(24), 3987–3992 (2012).
    [Crossref]
  14. K. P. Zhong, J. H. Ke, Y. Gao, and J. C. Cartledge, “Linewidth-tolerant and low-complexity two-stage carrier phase estimation based on modified QPSK partitioning for dual-polarization 16-QAM systems,” J. Lightwave Technol. 31(1), 50–57 (2013).
    [Crossref]
  15. K. Piyawanno, M. Kuschnerov, B. Spinnler, and B. Lankl, “Nonlinearity mitigation with carrier phase estimation for coherent receivers with higher-order modulation formats,” in Topic Meeting in Lasers and Electro- Optics Society (2009), pp. 426–427.
  16. W-R. Peng, Z. Li, F. Zhu, Y. Bai, and T. Tsuritani, “Effectiveness of digital fiber nonlinearity mitigations,” in OFC/NFOEC (2014), SW2C.1
  17. Z. Tao, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen, “A simplified model for nonlinear cross-phase modulation in hybrid optical coherent system,” Opt. Express 17(16), 13860–13868 (2009).
    [Crossref]
  18. X. Liang, S. Kumar, J. Shao, M. Malekiha, and D. V. Plant, “Digital compensation of cross-phase modulation distortions using perturbation technique for dispersion-managed fiber-optic systems,” Opt. Express 22(17), 20634–20645 (2014).
    [Crossref]
  19. S. Lin and D. J. Costello, Error Control Coding (Pearson Prentice Hall, 2004).
  20. N. Stojanovic, Y. Huang, F. N. Hauske, Y.-Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK Transmissions with Digital Coherent Receiver,” in OFC/NFOEC (2011), paper OWW6
  21. G. Bosco, I. N. Cano, P. Poggiolini, L. Li, and M. Chen, “MLSE-based DQPSK transmission in 43 Gb/s DWDM long-haul dispersion-managed optical systems,” J. Lightwave Technol. 28(10), 1573–1581 (2010).
    [Crossref]
  22. L. Barletta, F. Bergamelli, M. Magarini, N. Carapellese, and A. Spalvieri, “Pilot-aided trellis-based demodulation,” IEEE Photonics Technol. Lett. 25(13), 1234–1237 (2013).
    [Crossref]
  23. T. Fehenberger, M. P. Yankov, L. Barletta, and N. Hanik, “Compensation of XPM interference by blind tracking of the nonlinear phase in WDM systems with QAM input,” in Proceedings of European Conference on Optical Communications (ECOC) (2015), pp. 1–3.
  24. M. P. Yankov, T. Fehenberger, L. Barletta, and N. Hanik, “Low-complexity tracking of laser and nonlinear phase noise in WDM optical fiber systems,” J. Lightwave Technol. 33(23), 4975–4984 (2015).
    [Crossref]
  25. A. J. Viterbi, “Error bounds for convolution codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inform. Theory,  IT-13, 260–269 (1967).
    [Crossref]

2016 (1)

2015 (1)

2014 (2)

2013 (4)

2012 (1)

2011 (1)

2010 (2)

X. Zhou, “An improved feed-forward carrier recovery algorithm for coherent receivers with M-QAM modulation format,” IEEE Photonics Technol. Lett. 22(14), 2675–2692 (2010).
[Crossref]

G. Bosco, I. N. Cano, P. Poggiolini, L. Li, and M. Chen, “MLSE-based DQPSK transmission in 43 Gb/s DWDM long-haul dispersion-managed optical systems,” J. Lightwave Technol. 28(10), 1573–1581 (2010).
[Crossref]

2009 (2)

2008 (1)

A. Spalvieri and M. Magarini, “Wiener’s analysis of the discrete-time phase-locked loop with lopp delay,” IEEE Trans. Circuits Sys. 55(6), 596–600 (2008).
[Crossref]

2007 (1)

1983 (1)

A. J. Viterbi and A. Viterbi, “Non-linear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inform. Theory,  IT-29, pp. 543–551, (1983).
[Crossref]

1967 (1)

A. J. Viterbi, “Error bounds for convolution codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inform. Theory,  IT-13, 260–269 (1967).
[Crossref]

Bai, Y.

W-R. Peng, Z. Li, F. Zhu, Y. Bai, and T. Tsuritani, “Effectiveness of digital fiber nonlinearity mitigations,” in OFC/NFOEC (2014), SW2C.1

Barletta, L.

M. P. Yankov, T. Fehenberger, L. Barletta, and N. Hanik, “Low-complexity tracking of laser and nonlinear phase noise in WDM optical fiber systems,” J. Lightwave Technol. 33(23), 4975–4984 (2015).
[Crossref]

L. Barletta, M. Magarini, and A. Spalvieri, “Bridging the gap between Kalman filter and Wiener filter in carrier phase tracking,” IEEE Photonics Technol. Lett. 25(11), 1035–1038 (2013).
[Crossref]

L. Barletta, F. Bergamelli, M. Magarini, N. Carapellese, and A. Spalvieri, “Pilot-aided trellis-based demodulation,” IEEE Photonics Technol. Lett. 25(13), 1234–1237 (2013).
[Crossref]

T. Fehenberger, M. P. Yankov, L. Barletta, and N. Hanik, “Compensation of XPM interference by blind tracking of the nonlinear phase in WDM systems with QAM input,” in Proceedings of European Conference on Optical Communications (ECOC) (2015), pp. 1–3.

Bergamelli, F.

L. Barletta, F. Bergamelli, M. Magarini, N. Carapellese, and A. Spalvieri, “Pilot-aided trellis-based demodulation,” IEEE Photonics Technol. Lett. 25(13), 1234–1237 (2013).
[Crossref]

Bertolini, M.

Birk, M.

Borel, P. I.

Bosco, G.

Cai, J.-X.

Y. Cai, D. G. Foursa, C. R. Davidson, J.-X. Cai, O. Sinkin, M. Nissov, and A. Pilipetskii, “Experimental demonstration of coherent MAP detection for nonlinearity mitigation in long-haul transmissions,” in OFC/NFOEC (2010), paper OTuE1

Cai, Y.

Y. Cai, D. G. Foursa, C. R. Davidson, J.-X. Cai, O. Sinkin, M. Nissov, and A. Pilipetskii, “Experimental demonstration of coherent MAP detection for nonlinearity mitigation in long-haul transmissions,” in OFC/NFOEC (2010), paper OTuE1

Cano, I. N.

Carapellese, N.

L. Barletta, F. Bergamelli, M. Magarini, N. Carapellese, and A. Spalvieri, “Pilot-aided trellis-based demodulation,” IEEE Photonics Technol. Lett. 25(13), 1234–1237 (2013).
[Crossref]

Cartledge, J. C.

Chen, M.

G. Bosco, I. N. Cano, P. Poggiolini, L. Li, and M. Chen, “MLSE-based DQPSK transmission in 43 Gb/s DWDM long-haul dispersion-managed optical systems,” J. Lightwave Technol. 28(10), 1573–1581 (2010).
[Crossref]

N. Stojanovic, Y. Huang, F. N. Hauske, Y.-Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK Transmissions with Digital Coherent Receiver,” in OFC/NFOEC (2011), paper OWW6

Costello, D. J.

S. Lin and D. J. Costello, Error Control Coding (Pearson Prentice Hall, 2004).

Davidson, C. R.

Y. Cai, D. G. Foursa, C. R. Davidson, J.-X. Cai, O. Sinkin, M. Nissov, and A. Pilipetskii, “Experimental demonstration of coherent MAP detection for nonlinearity mitigation in long-haul transmissions,” in OFC/NFOEC (2010), paper OTuE1

Fang, Y.-Y.

N. Stojanovic, Y. Huang, F. N. Hauske, Y.-Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK Transmissions with Digital Coherent Receiver,” in OFC/NFOEC (2011), paper OWW6

Fehenberger, T.

M. P. Yankov, T. Fehenberger, L. Barletta, and N. Hanik, “Low-complexity tracking of laser and nonlinear phase noise in WDM optical fiber systems,” J. Lightwave Technol. 33(23), 4975–4984 (2015).
[Crossref]

T. Fehenberger, M. P. Yankov, L. Barletta, and N. Hanik, “Compensation of XPM interference by blind tracking of the nonlinear phase in WDM systems with QAM input,” in Proceedings of European Conference on Optical Communications (ECOC) (2015), pp. 1–3.

Forestieri, E.

D. Marsella, M. Secondini, and E. Forestieri, “Maximum likelihood sequence detection for mitigating nonlinear effects,” J. Lightwave Technol. 23(5), 908–916 (2014).
[Crossref]

Foursa, D. G.

Y. Cai, D. G. Foursa, C. R. Davidson, J.-X. Cai, O. Sinkin, M. Nissov, and A. Pilipetskii, “Experimental demonstration of coherent MAP detection for nonlinearity mitigation in long-haul transmissions,” in OFC/NFOEC (2010), paper OTuE1

Gao, Y.

Gavioli, G.

Hanik, N.

M. P. Yankov, T. Fehenberger, L. Barletta, and N. Hanik, “Low-complexity tracking of laser and nonlinear phase noise in WDM optical fiber systems,” J. Lightwave Technol. 33(23), 4975–4984 (2015).
[Crossref]

T. Fehenberger, M. P. Yankov, L. Barletta, and N. Hanik, “Compensation of XPM interference by blind tracking of the nonlinear phase in WDM systems with QAM input,” in Proceedings of European Conference on Optical Communications (ECOC) (2015), pp. 1–3.

Hauske, F. N.

N. Stojanovic, Y. Huang, F. N. Hauske, Y.-Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK Transmissions with Digital Coherent Receiver,” in OFC/NFOEC (2011), paper OWW6

Hoffmann, S.

Hoshida, T.

Huang, M.-F.

Huang, Y.

N. Stojanovic, Y. Huang, F. N. Hauske, Y.-Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK Transmissions with Digital Coherent Receiver,” in OFC/NFOEC (2011), paper OWW6

Ip, E.

Kahn, J. M.

Karar, A. S.

Ke, J. H.

Kumar, S.

Kuschnerov, M.

K. Piyawanno, M. Kuschnerov, B. Spinnler, and B. Lankl, “Nonlinearity mitigation with carrier phase estimation for coherent receivers with higher-order modulation formats,” in Topic Meeting in Lasers and Electro- Optics Society (2009), pp. 426–427.

Lankl, B.

K. Piyawanno, M. Kuschnerov, B. Spinnler, and B. Lankl, “Nonlinearity mitigation with carrier phase estimation for coherent receivers with higher-order modulation formats,” in Topic Meeting in Lasers and Electro- Optics Society (2009), pp. 426–427.

Li, L.

Li, Z.

W-R. Peng, Z. Li, F. Zhu, Y. Bai, and T. Tsuritani, “Effectiveness of digital fiber nonlinearity mitigations,” in OFC/NFOEC (2014), SW2C.1

Liang, X.

Lin, S.

S. Lin and D. J. Costello, Error Control Coding (Pearson Prentice Hall, 2004).

Lingle, R.

Magarini, M.

L. Barletta, M. Magarini, and A. Spalvieri, “Bridging the gap between Kalman filter and Wiener filter in carrier phase tracking,” IEEE Photonics Technol. Lett. 25(11), 1035–1038 (2013).
[Crossref]

L. Barletta, F. Bergamelli, M. Magarini, N. Carapellese, and A. Spalvieri, “Pilot-aided trellis-based demodulation,” IEEE Photonics Technol. Lett. 25(13), 1234–1237 (2013).
[Crossref]

M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, and G. Gavioli, “Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems,” Opt. Express 19(23), 22455–22461 (2011).
[Crossref]

A. Spalvieri and M. Magarini, “Wiener’s analysis of the discrete-time phase-locked loop with lopp delay,” IEEE Trans. Circuits Sys. 55(6), 596–600 (2008).
[Crossref]

Magill, P.

Malekiha, M.

Marsella, D.

D. Marsella, M. Secondini, and E. Forestieri, “Maximum likelihood sequence detection for mitigating nonlinear effects,” J. Lightwave Technol. 23(5), 908–916 (2014).
[Crossref]

Nelson, L.

Nissov, M.

Y. Cai, D. G. Foursa, C. R. Davidson, J.-X. Cai, O. Sinkin, M. Nissov, and A. Pilipetskii, “Experimental demonstration of coherent MAP detection for nonlinearity mitigation in long-haul transmissions,” in OFC/NFOEC (2010), paper OTuE1

Noe, R.

Oda, S.

Pakala, L.

Peckham, D. W.

Peng, W-R.

W-R. Peng, Z. Li, F. Zhu, Y. Bai, and T. Tsuritani, “Effectiveness of digital fiber nonlinearity mitigations,” in OFC/NFOEC (2014), SW2C.1

Pepe, M.

Pfau, T.

Pilipetskii, A.

Y. Cai, D. G. Foursa, C. R. Davidson, J.-X. Cai, O. Sinkin, M. Nissov, and A. Pilipetskii, “Experimental demonstration of coherent MAP detection for nonlinearity mitigation in long-haul transmissions,” in OFC/NFOEC (2010), paper OTuE1

Piyawanno, K.

K. Piyawanno, M. Kuschnerov, B. Spinnler, and B. Lankl, “Nonlinearity mitigation with carrier phase estimation for coherent receivers with higher-order modulation formats,” in Topic Meeting in Lasers and Electro- Optics Society (2009), pp. 426–427.

Plant, D. V.

Poggiolini, P.

Rasmussen, J. C.

Rezania, M. A.

Schmauss, B.

Secondini, M.

D. Marsella, M. Secondini, and E. Forestieri, “Maximum likelihood sequence detection for mitigating nonlinear effects,” J. Lightwave Technol. 23(5), 908–916 (2014).
[Crossref]

Shao, J.

Shao, Y.

Sinkin, O.

Y. Cai, D. G. Foursa, C. R. Davidson, J.-X. Cai, O. Sinkin, M. Nissov, and A. Pilipetskii, “Experimental demonstration of coherent MAP detection for nonlinearity mitigation in long-haul transmissions,” in OFC/NFOEC (2010), paper OTuE1

Spalvieri, A.

L. Barletta, M. Magarini, and A. Spalvieri, “Bridging the gap between Kalman filter and Wiener filter in carrier phase tracking,” IEEE Photonics Technol. Lett. 25(11), 1035–1038 (2013).
[Crossref]

L. Barletta, F. Bergamelli, M. Magarini, N. Carapellese, and A. Spalvieri, “Pilot-aided trellis-based demodulation,” IEEE Photonics Technol. Lett. 25(13), 1234–1237 (2013).
[Crossref]

M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, and G. Gavioli, “Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems,” Opt. Express 19(23), 22455–22461 (2011).
[Crossref]

A. Spalvieri and M. Magarini, “Wiener’s analysis of the discrete-time phase-locked loop with lopp delay,” IEEE Trans. Circuits Sys. 55(6), 596–600 (2008).
[Crossref]

Spinnler, B.

K. Piyawanno, M. Kuschnerov, B. Spinnler, and B. Lankl, “Nonlinearity mitigation with carrier phase estimation for coherent receivers with higher-order modulation formats,” in Topic Meeting in Lasers and Electro- Optics Society (2009), pp. 426–427.

Stojanovic, N.

N. Stojanovic, Y. Huang, F. N. Hauske, Y.-Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK Transmissions with Digital Coherent Receiver,” in OFC/NFOEC (2011), paper OWW6

Sun, Y.

X. Zhou and Y. Sun, “Low-complexity, blind phase recovery for coherent receivers using QAM modulation,” in OFC/NFOEC (2011), paper OMJ3

Tao, Z.

Tsuritani, T.

W-R. Peng, Z. Li, F. Zhu, Y. Bai, and T. Tsuritani, “Effectiveness of digital fiber nonlinearity mitigations,” in OFC/NFOEC (2014), SW2C.1

Vacondio, F.

Viterbi, A.

A. J. Viterbi and A. Viterbi, “Non-linear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inform. Theory,  IT-29, pp. 543–551, (1983).
[Crossref]

Viterbi, A. J.

A. J. Viterbi and A. Viterbi, “Non-linear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inform. Theory,  IT-29, pp. 543–551, (1983).
[Crossref]

A. J. Viterbi, “Error bounds for convolution codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inform. Theory,  IT-13, 260–269 (1967).
[Crossref]

Wang, T.

Xie, C.

N. Stojanovic, Y. Huang, F. N. Hauske, Y.-Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK Transmissions with Digital Coherent Receiver,” in OFC/NFOEC (2011), paper OWW6

Xiong, Q.

N. Stojanovic, Y. Huang, F. N. Hauske, Y.-Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK Transmissions with Digital Coherent Receiver,” in OFC/NFOEC (2011), paper OWW6

Yan, W.

Yankov, M. P.

M. P. Yankov, T. Fehenberger, L. Barletta, and N. Hanik, “Low-complexity tracking of laser and nonlinear phase noise in WDM optical fiber systems,” J. Lightwave Technol. 33(23), 4975–4984 (2015).
[Crossref]

T. Fehenberger, M. P. Yankov, L. Barletta, and N. Hanik, “Compensation of XPM interference by blind tracking of the nonlinear phase in WDM systems with QAM input,” in Proceedings of European Conference on Optical Communications (ECOC) (2015), pp. 1–3.

Yu, J.

Zhong, K. P.

Zhou, X.

X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8 b/s/Hz, PDM-36QAM Transmission Over 320 km Using Both Pre- and Post-Transmission Digital Signal Processing,” J. Lightwave Technol. 31(7), 999–1005 (2013).
[Crossref]

X. Zhou, “An improved feed-forward carrier recovery algorithm for coherent receivers with M-QAM modulation format,” IEEE Photonics Technol. Lett. 22(14), 2675–2692 (2010).
[Crossref]

X. Zhou and Y. Sun, “Low-complexity, blind phase recovery for coherent receivers using QAM modulation,” in OFC/NFOEC (2011), paper OMJ3

Zhu, B.

Zhu, F.

W-R. Peng, Z. Li, F. Zhu, Y. Bai, and T. Tsuritani, “Effectiveness of digital fiber nonlinearity mitigations,” in OFC/NFOEC (2014), SW2C.1

IEEE Photonics Technol. Lett. (3)

L. Barletta, M. Magarini, and A. Spalvieri, “Bridging the gap between Kalman filter and Wiener filter in carrier phase tracking,” IEEE Photonics Technol. Lett. 25(11), 1035–1038 (2013).
[Crossref]

X. Zhou, “An improved feed-forward carrier recovery algorithm for coherent receivers with M-QAM modulation format,” IEEE Photonics Technol. Lett. 22(14), 2675–2692 (2010).
[Crossref]

L. Barletta, F. Bergamelli, M. Magarini, N. Carapellese, and A. Spalvieri, “Pilot-aided trellis-based demodulation,” IEEE Photonics Technol. Lett. 25(13), 1234–1237 (2013).
[Crossref]

IEEE Trans. Circuits Sys. (1)

A. Spalvieri and M. Magarini, “Wiener’s analysis of the discrete-time phase-locked loop with lopp delay,” IEEE Trans. Circuits Sys. 55(6), 596–600 (2008).
[Crossref]

IEEE Trans. Inform. Theory (2)

A. J. Viterbi and A. Viterbi, “Non-linear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inform. Theory,  IT-29, pp. 543–551, (1983).
[Crossref]

A. J. Viterbi, “Error bounds for convolution codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inform. Theory,  IT-13, 260–269 (1967).
[Crossref]

J. Lightwave Technol. (8)

G. Bosco, I. N. Cano, P. Poggiolini, L. Li, and M. Chen, “MLSE-based DQPSK transmission in 43 Gb/s DWDM long-haul dispersion-managed optical systems,” J. Lightwave Technol. 28(10), 1573–1581 (2010).
[Crossref]

M. P. Yankov, T. Fehenberger, L. Barletta, and N. Hanik, “Low-complexity tracking of laser and nonlinear phase noise in WDM optical fiber systems,” J. Lightwave Technol. 33(23), 4975–4984 (2015).
[Crossref]

T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
[Crossref]

E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightwave Technol. 25(9), 2675–2692 (2007).
[Crossref]

X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8 b/s/Hz, PDM-36QAM Transmission Over 320 km Using Both Pre- and Post-Transmission Digital Signal Processing,” J. Lightwave Technol. 31(7), 999–1005 (2013).
[Crossref]

D. Marsella, M. Secondini, and E. Forestieri, “Maximum likelihood sequence detection for mitigating nonlinear effects,” J. Lightwave Technol. 23(5), 908–916 (2014).
[Crossref]

J. H. Ke, K. P. Zhong, Y. Gao, J. C. Cartledge, A. S. Karar, and M. A. Rezania, “Linewidth-tolerant and low-complexity two-stage carrier phase estimation for dual-polarization 16-QAM coherent optical fiber communications,” J. Lightwave Technol. 30(24), 3987–3992 (2012).
[Crossref]

K. P. Zhong, J. H. Ke, Y. Gao, and J. C. Cartledge, “Linewidth-tolerant and low-complexity two-stage carrier phase estimation based on modified QPSK partitioning for dual-polarization 16-QAM systems,” J. Lightwave Technol. 31(1), 50–57 (2013).
[Crossref]

Opt. Express (4)

Other (7)

Y. Cai, D. G. Foursa, C. R. Davidson, J.-X. Cai, O. Sinkin, M. Nissov, and A. Pilipetskii, “Experimental demonstration of coherent MAP detection for nonlinearity mitigation in long-haul transmissions,” in OFC/NFOEC (2010), paper OTuE1

S. Lin and D. J. Costello, Error Control Coding (Pearson Prentice Hall, 2004).

N. Stojanovic, Y. Huang, F. N. Hauske, Y.-Y. Fang, M. Chen, C. Xie, and Q. Xiong, “MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK Transmissions with Digital Coherent Receiver,” in OFC/NFOEC (2011), paper OWW6

K. Piyawanno, M. Kuschnerov, B. Spinnler, and B. Lankl, “Nonlinearity mitigation with carrier phase estimation for coherent receivers with higher-order modulation formats,” in Topic Meeting in Lasers and Electro- Optics Society (2009), pp. 426–427.

W-R. Peng, Z. Li, F. Zhu, Y. Bai, and T. Tsuritani, “Effectiveness of digital fiber nonlinearity mitigations,” in OFC/NFOEC (2014), SW2C.1

X. Zhou and Y. Sun, “Low-complexity, blind phase recovery for coherent receivers using QAM modulation,” in OFC/NFOEC (2011), paper OMJ3

T. Fehenberger, M. P. Yankov, L. Barletta, and N. Hanik, “Compensation of XPM interference by blind tracking of the nonlinear phase in WDM systems with QAM input,” in Proceedings of European Conference on Optical Communications (ECOC) (2015), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A simple schematic diagram of Rx-DSP including the proposed TCR
Fig. 2
Fig. 2 A trellis structure example for TCR
Fig. 3
Fig. 3 Super-symbol-based TCR processing
Fig. 4
Fig. 4 A schematic diagram of super-symbol metric calculation
Fig. 5
Fig. 5 Simulation results for ROSNR versus laser LW in back-to-back
Fig. 6
Fig. 6 System setup of 200 Gb/s DP-16QAM co-propagation with 10 Gb/s OOK channels; DCF: dispersion compensation fiber, EDFA: erbium doped fiber amplifier, SSMF: standard single mode fiber, MUX: multiplexer, DeMUX: demultiplexer, CoTx: coherent transmitter.
Fig. 7
Fig. 7 Experimental results for raw BER versus OSNR in 200 Gb/s DP-16QAM co-propagated with 10-G channels

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r [ ] = s [ ] e j ϕ [ ] + w [ ] ,
ϕ [ ] = ϕ [ 1 ] + δ [ ] ,
L ϕ ( f ) = 4 σ Δ 2 T σ Δ 2 + 16 π 2 f 2 T 2 ,
f F W H M = σ Δ 2 2 π T .
f R , Δ | Φ ( r [ ] , δ [ ] | ϕ [ 1 ] ) = E s [ 1 2 π σ Δ σ w e δ [ ] 2 2 σ Δ 2 e | r [ ] e j ( ϕ [ 1 ] + δ [ ] ) s [ ] | 2 2 σ w 2 ] ,
Γ [ k , m , ] = ln i = 1 Q e | r [ ] e j ϕ m s [ i ] | 2 2 σ w 2 Term 1 + | ϕ m ϕ k m | 2 2 σ Δ 2 Term 2 , k = 1 , , K , m = 1 , , M , = 1 , , L ,
Γ [ k , m , ] | r [ ] e j ϕ m s ^ [ ] | 2 Term 1 + | ϕ m ϕ k m | 2 σ 2 Term 2 , k = 1 , , K , m = 1 , , M , = 1 , , L ,

Metrics