Abstract

We propose and demonstrate a novel design of contradirectional couplers in which a subwavelength grating (SWG) waveguide replaces one of the asymmetric waveguides of the conventional designs. The fabricated devices in silicon-on-insulator (SOI) platform show over 35 dB suppression of undesired codirectional coupling and larger than 120 nm operating range free from the interference of intrawaveguide reflections thanks to the large optical phase-mismatch between the segmented SWG waveguide and its nearby continuous waveguide. We study the effects of tailoring the period of the SWG waveguide, the gap distance between the two waveguides, and the coupling length on the spectral characteristics of the device where changing the gap distance from 100 nm up to 500 nm allows for bandwidths from 18.2 nm down to 0.9 nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral engineering of subwavelength-grating-based contradirectional couplers

Behnam Naghdi and Lawrence R. Chen
Opt. Express 25(21) 25310-25317 (2017)

Silicon photonic bandpass filter based on apodized subwavelength grating with high suppression ratio and short coupling length

Boyu Liu, Yong Zhang, Yu He, Xinhong Jiang, Jizong Peng, Ciyuan Qiu, and Yikai Su
Opt. Express 25(10) 11359-11364 (2017)

Subwavelength-grating contradirectional couplers for large stopband filters

Dominique Charron, Jonathan St-Yves, Omid Jafari, Sophie LaRochelle, and Wei Shi
Opt. Lett. 43(4) 895-898 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18(19), 19541–19557 (2010).
    [Crossref] [PubMed]
  2. J. Wang, R. Ashrafi, M. Rochette, and L. R. Chen, “Chirped microwave pulse generation using an integrated SiP Bragg grating in a Sagnac loop,” IEEE Photonics Technol. Lett. 27(17), 1876–1879 (2015).
    [Crossref]
  3. A. D. Simard, M. J. Strain, L. Meriggi, M. Sorel, and S. LaRochelle, “Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses,” Opt. Lett. 40(5), 736–739 (2015).
    [Crossref] [PubMed]
  4. J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22(13), 15335–15345 (2014).
    [Crossref] [PubMed]
  5. X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics 6(10), 821–828 (2013).
    [PubMed]
  6. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
    [Crossref] [PubMed]
  7. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
    [Crossref] [PubMed]
  8. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
    [Crossref] [PubMed]
  9. W. Shi, V. Veerasubramanian, D. Patel, and D. V. Plant, “Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings,” Opt. Lett. 39(3), 701–703 (2014).
    [Crossref] [PubMed]
  10. W. Shi, M. Greenberg, X. Wang, Y. Wang, C. Lin, N. A. F. Jaeger, and L. Chrostowski, “Single-band add-drop filters using anti-reflection, contradirectional couplers,” IEEE Group IV Photonics Conference (San Diego, CA, USA 2012), paper WA7 (2012).
    [Crossref]
  11. H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
    [Crossref] [PubMed]
  12. K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008).
    [Crossref]
  13. W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011).
    [Crossref] [PubMed]
  14. M. Caverley, R. Boeck, L. Chrostowski, and N. A. Jaeger, “High-speed data transmission through Silicon contra-directional grating coupler optical add-drop multiplexers,” in Conference on Lasers and Electro-Optics (Optical Society of America, San Jose, California, 2015), paper JTh2A.41.
    [Crossref]
  15. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011).
    [Crossref] [PubMed]
  16. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
    [Crossref] [PubMed]
  17. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
    [Crossref] [PubMed]
  18. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. 29, 06F309 (2011).
  19. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  20. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
    [Crossref]
  21. Z. Weissman and A. Hardy, “Modes of periodically segmented waveguides,” J. Lightwave Technol. 11(11), 1831–1838 (1993).
    [Crossref]
  22. S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  23. J.-M. Liu, Photonic Devices (Cambridge University, 2009).
  24. R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23(8), 10573–10588 (2015).
    [Crossref] [PubMed]
  25. W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
    [Crossref] [PubMed]

2015 (4)

J. Wang, R. Ashrafi, M. Rochette, and L. R. Chen, “Chirped microwave pulse generation using an integrated SiP Bragg grating in a Sagnac loop,” IEEE Photonics Technol. Lett. 27(17), 1876–1879 (2015).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

A. D. Simard, M. J. Strain, L. Meriggi, M. Sorel, and S. LaRochelle, “Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses,” Opt. Lett. 40(5), 736–739 (2015).
[Crossref] [PubMed]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23(8), 10573–10588 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (5)

2011 (4)

2010 (2)

2008 (1)

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008).
[Crossref]

1993 (1)

Z. Weissman and A. Hardy, “Modes of periodically segmented waveguides,” J. Lightwave Technol. 11(11), 1831–1838 (1993).
[Crossref]

1956 (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Adibi, A.

Aers, G. C.

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. 29, 06F309 (2011).

Alonso-Ramos, C.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Ashrafi, R.

J. Wang, R. Ashrafi, M. Rochette, and L. R. Chen, “Chirped microwave pulse generation using an integrated SiP Bragg grating in a Sagnac loop,” IEEE Photonics Technol. Lett. 27(17), 1876–1879 (2015).
[Crossref]

Baehr-Jones, T.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. 29, 06F309 (2011).

Bock, P. J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Boeck, R.

Bojko, R.

Bojko, R. J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. 29, 06F309 (2011).

Bowers, J. E.

Caverley, M.

Cheben, P.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Chen, L. R.

J. Wang, R. Ashrafi, M. Rochette, and L. R. Chen, “Chirped microwave pulse generation using an integrated SiP Bragg grating in a Sagnac loop,” IEEE Photonics Technol. Lett. 27(17), 1876–1879 (2015).
[Crossref]

J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22(13), 15335–15345 (2014).
[Crossref] [PubMed]

Cheung, K. C.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics 6(10), 821–828 (2013).
[PubMed]

Chrostowski, L.

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23(8), 10573–10588 (2015).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics 6(10), 821–828 (2013).
[PubMed]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011).
[Crossref] [PubMed]

Cunningham, J. E.

Delâge, A.

Densmore, A.

Doerfler, M.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics 6(10), 821–828 (2013).
[PubMed]

Fainman, Y.

Fard, S. T.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics 6(10), 821–828 (2013).
[PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

Flueckiger, J.

Glesk, I.

Greenberg, M.

Grist, S.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics 6(10), 821–828 (2013).
[PubMed]

Halir, R.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Hall, T. J.

Hardy, A.

Z. Weissman and A. Hardy, “Modes of periodically segmented waveguides,” J. Lightwave Technol. 11(11), 1831–1838 (1993).
[Crossref]

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. 29, 06F309 (2011).

Hochberg, M.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. 29, 06F309 (2011).

Hu, T.

Ikeda, K.

Jaeger, N. A.

Jaeger, N. A. F.

Janz, S.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Jiang, G.

Jiang, X.

Kirk, J.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics 6(10), 821–828 (2013).
[PubMed]

Krishnamoorthy, A. V.

Kromer, H.

Lapointe, J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

LaRochelle, S.

Li, J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. 29, 06F309 (2011).

Li, Q.

Lin, C.

Liu, Y.

Luo, Y.

Meriggi, L.

Mizrahi, A.

Mizumoto, T.

Molina-Fernández, Í.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Nezhad, M.

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008).
[Crossref]

Nezhad, M. P.

Ortega-Moñux, A.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Patel, D.

Pintus, P.

Plant, D. V.

Qiu, H.

Raj, K.

Ratner, D. M.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics 6(10), 821–828 (2013).
[PubMed]

Rochette, M.

J. Wang, R. Ashrafi, M. Rochette, and L. R. Chen, “Chirped microwave pulse generation using an integrated SiP Bragg grating in a Sagnac loop,” IEEE Photonics Technol. Lett. 27(17), 1876–1879 (2015).
[Crossref]

Rytov, S.

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Schmid, J. H.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

Schmidt, S.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics 6(10), 821–828 (2013).
[PubMed]

Shao, H.

Shi, W.

Shubin, I.

Simard, A. D.

Soltani, M.

Sorel, M.

Strain, M. J.

Tan, D. T. H.

Tien, M.-C.

Veerasubramanian, V.

Wang, J.

J. Wang, R. Ashrafi, M. Rochette, and L. R. Chen, “Chirped microwave pulse generation using an integrated SiP Bragg grating in a Sagnac loop,” IEEE Photonics Technol. Lett. 27(17), 1876–1879 (2015).
[Crossref]

J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22(13), 15335–15345 (2014).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

Wangüemert-Pérez, J. G.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Weissman, Z.

Z. Weissman and A. Hardy, “Modes of periodically segmented waveguides,” J. Lightwave Technol. 11(11), 1831–1838 (1993).
[Crossref]

Xu, D. X.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Xu, D.-X.

Yang, J.

Yegnanarayanan, S.

Yu, P.

Yun, H.

Zamek, S.

Zhang, W.

Zheng, X.

” J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. (1)

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. 29, 06F309 (2011).

Appl. Phys. Lett. (1)

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 201111 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Wang, R. Ashrafi, M. Rochette, and L. R. Chen, “Chirped microwave pulse generation using an integrated SiP Bragg grating in a Sagnac loop,” IEEE Photonics Technol. Lett. 27(17), 1876–1879 (2015).
[Crossref]

J. Biophotonics (1)

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics 6(10), 821–828 (2013).
[PubMed]

J. Lightwave Technol. (1)

Z. Weissman and A. Hardy, “Modes of periodically segmented waveguides,” J. Lightwave Technol. 11(11), 1831–1838 (1993).
[Crossref]

Laser Photonics Rev. (1)

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub‐wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Opt. Express (9)

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23(8), 10573–10588 (2015).
[Crossref] [PubMed]

J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22(13), 15335–15345 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18(19), 19541–19557 (2010).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19(3), 2401–2409 (2011).
[Crossref] [PubMed]

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

Opt. Lett. (5)

Sov. Phys. JETP (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (4)

J.-M. Liu, Photonic Devices (Cambridge University, 2009).

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

W. Shi, M. Greenberg, X. Wang, Y. Wang, C. Lin, N. A. F. Jaeger, and L. Chrostowski, “Single-band add-drop filters using anti-reflection, contradirectional couplers,” IEEE Group IV Photonics Conference (San Diego, CA, USA 2012), paper WA7 (2012).
[Crossref]

M. Caverley, R. Boeck, L. Chrostowski, and N. A. Jaeger, “High-speed data transmission through Silicon contra-directional grating coupler optical add-drop multiplexers,” in Conference on Lasers and Electro-Optics (Optical Society of America, San Jose, California, 2015), paper JTh2A.41.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic top view of the proposed contradirectional coupler in SOI; (b) layout of a device with LC = 50 μm; (c) cross-section of the strip waveguide; (d) schematic top view of the SWG tapers.
Fig. 2
Fig. 2 Full 3D FDTD simulation of the spectral responses of a device with Λ = 378 nm, LC = 100 μm and g = 200 nm. For comparison, values of λR2, λC, λR1 have also been calculated from the simplified model using the average permittivity.
Fig. 3
Fig. 3 Measured drop-port and through-port spectra for devices with labeled values of LC and g parameters while Λ = 378 nm, η = 50%, and light is injected into the input port. Arrows indicate the FWHM bandwidth.
Fig. 4
Fig. 4 Measured through-port and drop-port spectra for devices with labeled values of LC and g parameters while Λ = 378 nm, η = 50%, and light is injected into the add port.
Fig. 5
Fig. 5 (a) Measured FWHM bandwidth versus gap distance for devices with four different values of coupling length while Λ = 378 nm and η = 50%; (b) calculated coupling coefficients using values of FWHM bandwidth.
Fig. 6
Fig. 6 (a) Extinction ratio versus gap distance for four different values of coupling length while Λ = 378 nm and η = 50%; (b) Measured add-port and drop-port spectra for a device with LC = 200 μm, g = 250 nm, Λ = 378 nm, and η = 50%; dash line highlights −35 dB normalized power.

Tables (1)

Tables Icon

Table 1 Effect of period, Λ, on central coupling wavelength, λC, extracted from measurements, 3D FDTD simulations, and predictions of the model using either average permittivity or average refractive index while LC = 400 μm, g = 400 nm and η = 50%.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ε avg =η ε Si +( 1η ) ε Si O 2 n eq 2 =η n Si 2 +( 1η ) n Si O 2 2
n avg =η n Si +( 1η ) n Si O 2
β 1 ( λ C )+ β 2 ( λ C )= 2π /Λ
2 β 1 ( λ R1 )= 2π /Λ
2 β 2 ( λ R2 )= 2π /Λ
s 2 = | κ | 2 ( Δβ 2 ) 2 and Δβ= β 1 + β 2 2π Λ . κ= ω 4 E ^ 1 * (x,y). ε 1 (x,y) E ^ 2 (x,y)dxdy
| κ c | 2 = P 2 (0) P 1 (0) = | κ | 2 sin h 2 (s L C ) s 2 cos h 2 (s L C )+ ( Δβ 2 ) 2 sinh 2 (s L C )
| t c | 2 = P 1 ( L C ) P 1 (0) = s 2 s 2 cos h 2 (s L C )+ ( Δβ 2 ) 2 sin h 2 (s L C )
| κ c | max 2 = | κ | 2 sin h 2 (| κ | L C ) | κ | 2 cos h 2 (| κ | L C ) =tan h 2 (| κ | L C )
| κ | 2 sinh 2 (s L C ) s 2 cos h 2 (s L C )+ ( Δ β avg 2 ) 2 sinh 2 (s L C ) = 1 2 | κ c | max 2 = 1 2 tan h 2 (| κ | L C )

Metrics