Abstract

We investigated the characteristics and behavior of spectral compression in a quasi-dispersion-increasing comb-profile fiber (CPF). A periodical breathing behavior and sidelobe emission process in the CPF were observed in numerical analysis. Then, taking account of the numerical results, we developed an improved CPF in which the sidelobe suppression was dramatically improved to −24.2 dB while keeping a narrow spectral width of ~0.6 nm. As a seed pulse source, we developed a high-repetition-rate Er-doped ultrashort-pulse fiber laser with single-wall carbon nanotubes and used the improved CPF to realize a high-power, narrow-linewidth source with wide wavelength tunability in the 1.62–1.90 μm band.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber

N. Nishizawa, K. Takahashi, Y. Ozeki, and K. Itoh
Opt. Express 18(11) 11700-11706 (2010)

Large-scale and structure-tunable laser spectral compression in an optical dispersion-increasing fiber

Yi-Song Lin and Chen-Bin Huang
Opt. Express 25(15) 18024-18030 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [Crossref] [PubMed]
  2. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  3. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  4. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
    [Crossref]
  5. N. Nishizawa and T. Goto, “Compact system of wavelength tunable ultrashort soliton pulse generation system,” IEEE Photonics Technol. Lett. 11, 325 (1999).
    [Crossref]
  6. J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
    [Crossref] [PubMed]
  7. N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009).
    [Crossref]
  8. K. Sumimura, T. Ohta, and N. Nishizawa, “Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,” Opt. Lett. 33(24), 2892–2894 (2008).
    [Crossref] [PubMed]
  9. M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017 (1993).
    [Crossref]
  10. B. R. Washburn, J. A. Buck, and S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Opt. Lett. 25(7), 445–447 (2000).
    [Crossref] [PubMed]
  11. J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
    [Crossref]
  12. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, E. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett. 30(7), 714–716 (2005).
    [Crossref] [PubMed]
  13. E. R. Andresen, J. Thøgersen, and S. R. Keiding, “Spectral compression of femtosecond pulses in photonic crystal fibers,” Opt. Lett. 30(15), 2025–2027 (2005).
    [Crossref] [PubMed]
  14. D. A. Sidorov-Biryukov, A. Fernandez, L. Zhu, A. Pugzlys, E. E. Serebryannikov, A. Baltuska, and A. M. Zheltikov, “Spectral narrowing of chirp-free light pulses in anomalously dispersive, highly nonlinear photonic-crystal fibers,” Opt. Express 16(4), 2502–2507 (2008).
    [Crossref] [PubMed]
  15. A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, “Spectral compression of frequency-shifting solitons in a photonic-crystal fiber,” Opt. Lett. 34(5), 662–664 (2009).
    [Crossref] [PubMed]
  16. E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
    [Crossref] [PubMed]
  17. N. Nishizawa, K. Takahashi, Y. Ozeki, and K. Itoh, “Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber,” Opt. Express 18(11), 11700–11706 (2010).
    [Crossref] [PubMed]
  18. R. Liang, X. Zhou, Z. Zhang, Z. Qin, H. Li, and Y. Liu, “Numerical investigation on spectral compression of femtosecond soliton in a dispersion-increasing fiber,” Opt. Fiber Technol. 15(5-6), 438–441 (2009).
    [Crossref]
  19. H. P. Chuang and C. B. Huang, “Wavelength-tunable spectral compression in a dispersion-increasing fiber,” Opt. Lett. 36(15), 2848–2850 (2011).
    [Crossref] [PubMed]
  20. S. V. Chernikov, R. Kashyap, and J. R. Taylor, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19(8), 539–541 (1994).
    [Crossref] [PubMed]
  21. K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005).
    [Crossref]
  22. N. Nishizawa and K. Takahashi, “Time-domain near-infrared spectroscopy using a wavelength-tunable narrow-linewidth source by spectral compression of ultrashort soliton pulses,” Opt. Lett. 36(19), 3780–3782 (2011).
    [Crossref] [PubMed]
  23. W. T. Chao, Y. Y. Lin, J. L. Peng, and C. B. Huang, “Adiabatic pulse propagation in a dispersion-increasing fiber for spectral compression exceeding the fiber dispersion ratio limitation,” Opt. Lett. 39(4), 853–856 (2014).
    [Crossref] [PubMed]
  24. C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
    [Crossref] [PubMed]
  25. T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
    [Crossref]
  26. T. Konishi, K. Takahashi, H. Matsui, T. Satoh, and K. Itoh, “Five-bit parallel operation of optical quantization and coding for photonic analog-to-digital conversion,” Opt. Express 19(17), 16106–16114 (2011).
    [Crossref] [PubMed]
  27. K. Takahashi, H. Matsui, T. Nagashima, and T. Konishi, “Resolution upgrade toward 6-bit optical quantization using power-to-wavelength conversion for photonic analog-to-digital conversion,” Opt. Lett. 38(22), 4864–4867 (2013).
    [Crossref] [PubMed]
  28. Y. Chen, Z. Zhang, X. Zhou, X. Chen, and Y. Liu, “Spectral compression in a comb-like distributed fiber and its application in 7-bit all-optical quantization,” Opt. Eng. 53(12), 126106 (2014).
    [Crossref]
  29. S. N. Li, H. P. Li, J. K. Liao, X. G. Tang, R. G. Lu, and Y. Liu, “Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber,” Optik (Stuttg.) 124(16), 2281–2284 (2013).
    [Crossref]
  30. C. Finot and S. Boscolo, “Design rules for nonlinear spectral compression in optical fibers,” J. Opt. Soc. Am. B 33(4), 760 (2016).
    [Crossref]
  31. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007), Ch. 5.
  32. F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibers over the entire spectral range from 1.1 μm to 1.7 μm,” Opt. Commun. 175(1-3), 209–213 (2000).
    [Crossref]
  33. N. Nishizawa, A. Muto, and T. Goto, “Measurement of chromatic dispersion of optical fibers using wavelength-tunable soliton pulses,” Jpn. J. Appl. Phys. 39(1), 4990–4992 (2000).
    [Crossref]
  34. N. Kuwaki and M. Ohashi, “Waveguide dispersion measurement technique for single-mode fibers using wavelength dependence of mode field radius,” J. Lightwave Technol. 7(6), 990–996 (1989).
    [Crossref]
  35. J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 9(1), 91 (1992).
    [Crossref]
  36. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008).
    [Crossref] [PubMed]

2016 (1)

2014 (2)

W. T. Chao, Y. Y. Lin, J. L. Peng, and C. B. Huang, “Adiabatic pulse propagation in a dispersion-increasing fiber for spectral compression exceeding the fiber dispersion ratio limitation,” Opt. Lett. 39(4), 853–856 (2014).
[Crossref] [PubMed]

Y. Chen, Z. Zhang, X. Zhou, X. Chen, and Y. Liu, “Spectral compression in a comb-like distributed fiber and its application in 7-bit all-optical quantization,” Opt. Eng. 53(12), 126106 (2014).
[Crossref]

2013 (2)

S. N. Li, H. P. Li, J. K. Liao, X. G. Tang, R. G. Lu, and Y. Liu, “Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber,” Optik (Stuttg.) 124(16), 2281–2284 (2013).
[Crossref]

K. Takahashi, H. Matsui, T. Nagashima, and T. Konishi, “Resolution upgrade toward 6-bit optical quantization using power-to-wavelength conversion for photonic analog-to-digital conversion,” Opt. Lett. 38(22), 4864–4867 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (4)

2010 (1)

2009 (3)

A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, “Spectral compression of frequency-shifting solitons in a photonic-crystal fiber,” Opt. Lett. 34(5), 662–664 (2009).
[Crossref] [PubMed]

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009).
[Crossref]

R. Liang, X. Zhou, Z. Zhang, Z. Qin, H. Li, and Y. Liu, “Numerical investigation on spectral compression of femtosecond soliton in a dispersion-increasing fiber,” Opt. Fiber Technol. 15(5-6), 438–441 (2009).
[Crossref]

2008 (5)

2006 (1)

2005 (3)

2003 (2)

2002 (1)

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[Crossref]

2000 (3)

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibers over the entire spectral range from 1.1 μm to 1.7 μm,” Opt. Commun. 175(1-3), 209–213 (2000).
[Crossref]

N. Nishizawa, A. Muto, and T. Goto, “Measurement of chromatic dispersion of optical fibers using wavelength-tunable soliton pulses,” Jpn. J. Appl. Phys. 39(1), 4990–4992 (2000).
[Crossref]

B. R. Washburn, J. A. Buck, and S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Opt. Lett. 25(7), 445–447 (2000).
[Crossref] [PubMed]

1999 (1)

N. Nishizawa and T. Goto, “Compact system of wavelength tunable ultrashort soliton pulse generation system,” IEEE Photonics Technol. Lett. 11, 325 (1999).
[Crossref]

1994 (1)

1993 (1)

M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017 (1993).
[Crossref]

1992 (1)

1989 (1)

N. Kuwaki and M. Ohashi, “Waveguide dispersion measurement technique for single-mode fibers using wavelength dependence of mode field radius,” J. Lightwave Technol. 7(6), 990–996 (1989).
[Crossref]

1987 (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

Andresen, E. R.

Baltuska, A.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

Boscolo, S.

Boudoux, C.

Bouma, B. E.

Buck, J. A.

Cable, A. E.

Chao, W. T.

Chen, X.

Y. Chen, Z. Zhang, X. Zhou, X. Chen, and Y. Liu, “Spectral compression in a comb-like distributed fiber and its application in 7-bit all-optical quantization,” Opt. Eng. 53(12), 126106 (2014).
[Crossref]

Chen, Y.

Y. Chen, Z. Zhang, X. Zhou, X. Chen, and Y. Liu, “Spectral compression in a comb-like distributed fiber and its application in 7-bit all-optical quantization,” Opt. Eng. 53(12), 126106 (2014).
[Crossref]

Chernikov, S. V.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibers over the entire spectral range from 1.1 μm to 1.7 μm,” Opt. Commun. 175(1-3), 209–213 (2000).
[Crossref]

S. V. Chernikov, R. Kashyap, and J. R. Taylor, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19(8), 539–541 (1994).
[Crossref] [PubMed]

Chuang, H. P.

Courjaud, A.

Deguil-Robin, N.

Dudley, J. M.

Duker, J. S.

Fedotov, A. B.

Fedotov, I. V.

Fernandez, A.

Finot, C.

Fujimoto, J. G.

Gabler, T.

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[Crossref]

Gordon, J. P.

Goto, T.

N. Nishizawa, A. Muto, and T. Goto, “Measurement of chromatic dispersion of optical fibers using wavelength-tunable soliton pulses,” Jpn. J. Appl. Phys. 39(1), 4990–4992 (2000).
[Crossref]

N. Nishizawa and T. Goto, “Compact system of wavelength tunable ultrashort soliton pulse generation system,” IEEE Photonics Technol. Lett. 11, 325 (1999).
[Crossref]

Grulkowski, I.

Hiroishi, J.

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005).
[Crossref]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

Hönninger, C.

Hopfel, R. A.

M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017 (1993).
[Crossref]

Huang, C. B.

Huber, R.

Igarashi, K.

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005).
[Crossref]

Itoga, E.

Itoh, K.

Ivanov, A. A.

Jayaraman, V.

Jiang, J.

Kashyap, R.

Kataura, H.

Keiding, S. R.

Koch, F.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibers over the entire spectral range from 1.1 μm to 1.7 μm,” Opt. Commun. 175(1-3), 209–213 (2000).
[Crossref]

Konishi, T.

Kuwaki, N.

N. Kuwaki and M. Ohashi, “Waveguide dispersion measurement technique for single-mode fibers using wavelength dependence of mode field radius,” J. Lightwave Technol. 7(6), 990–996 (1989).
[Crossref]

Lee, J. H.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

Li, H.

R. Liang, X. Zhou, Z. Zhang, Z. Qin, H. Li, and Y. Liu, “Numerical investigation on spectral compression of femtosecond soliton in a dispersion-increasing fiber,” Opt. Fiber Technol. 15(5-6), 438–441 (2009).
[Crossref]

Li, H. P.

S. N. Li, H. P. Li, J. K. Liao, X. G. Tang, R. G. Lu, and Y. Liu, “Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber,” Optik (Stuttg.) 124(16), 2281–2284 (2013).
[Crossref]

Li, S. N.

S. N. Li, H. P. Li, J. K. Liao, X. G. Tang, R. G. Lu, and Y. Liu, “Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber,” Optik (Stuttg.) 124(16), 2281–2284 (2013).
[Crossref]

Liang, R.

R. Liang, X. Zhou, Z. Zhang, Z. Qin, H. Li, and Y. Liu, “Numerical investigation on spectral compression of femtosecond soliton in a dispersion-increasing fiber,” Opt. Fiber Technol. 15(5-6), 438–441 (2009).
[Crossref]

Liao, J. K.

S. N. Li, H. P. Li, J. K. Liao, X. G. Tang, R. G. Lu, and Y. Liu, “Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber,” Optik (Stuttg.) 124(16), 2281–2284 (2013).
[Crossref]

Liem, A.

Limpert, J.

Lin, Y. Y.

Liu, J. J.

Liu, X.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

Liu, Y.

Y. Chen, Z. Zhang, X. Zhou, X. Chen, and Y. Liu, “Spectral compression in a comb-like distributed fiber and its application in 7-bit all-optical quantization,” Opt. Eng. 53(12), 126106 (2014).
[Crossref]

S. N. Li, H. P. Li, J. K. Liao, X. G. Tang, R. G. Lu, and Y. Liu, “Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber,” Optik (Stuttg.) 124(16), 2281–2284 (2013).
[Crossref]

R. Liang, X. Zhou, Z. Zhang, Z. Qin, H. Li, and Y. Liu, “Numerical investigation on spectral compression of femtosecond soliton in a dispersion-increasing fiber,” Opt. Fiber Technol. 15(5-6), 438–441 (2009).
[Crossref]

Lu, C. D.

Lu, R. G.

S. N. Li, H. P. Li, J. K. Liao, X. G. Tang, R. G. Lu, and Y. Liu, “Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber,” Optik (Stuttg.) 124(16), 2281–2284 (2013).
[Crossref]

Manek-Hönninger, I.

Matsui, H.

Mottay, E.

Muto, A.

N. Nishizawa, A. Muto, and T. Goto, “Measurement of chromatic dispersion of optical fibers using wavelength-tunable soliton pulses,” Jpn. J. Appl. Phys. 39(1), 4990–4992 (2000).
[Crossref]

Nagashima, T.

Namiki, S.

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005).
[Crossref]

Nishitani, T.

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
[Crossref]

Nishizawa, N.

Oberthaler, M.

M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017 (1993).
[Crossref]

Ohashi, M.

N. Kuwaki and M. Ohashi, “Waveguide dispersion measurement technique for single-mode fibers using wavelength dependence of mode field radius,” J. Lightwave Technol. 7(6), 990–996 (1989).
[Crossref]

Ohta, T.

Oron, D.

Ozeki, Y.

Peng, J. L.

Potsaid, B.

Pugzlys, A.

Qin, Z.

R. Liang, X. Zhou, Z. Zhang, Z. Qin, H. Li, and Y. Liu, “Numerical investigation on spectral compression of femtosecond soliton in a dispersion-increasing fiber,” Opt. Fiber Technol. 15(5-6), 438–441 (2009).
[Crossref]

Ralph, S. E.

Rigneault, H.

Röser, E.

Sakakibara, Y.

Salin, F.

Satoh, T.

Schreiber, T.

Seno, Y.

Serebryannikov, E. E.

Sidorov-Biryukov, D. A.

Sumimura, K.

Takahashi, K.

Tang, X. G.

S. N. Li, H. P. Li, J. K. Liao, X. G. Tang, R. G. Lu, and Y. Liu, “Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber,” Optik (Stuttg.) 124(16), 2281–2284 (2013).
[Crossref]

Taylor, J. R.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibers over the entire spectral range from 1.1 μm to 1.7 μm,” Opt. Commun. 175(1-3), 209–213 (2000).
[Crossref]

S. V. Chernikov, R. Kashyap, and J. R. Taylor, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19(8), 539–541 (1994).
[Crossref] [PubMed]

Tearney, G. J.

Thøgersen, J.

Tunnermann, A.

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[Crossref]

Tünnermann, A.

van Howe, J.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

Voronin, A. A.

Washburn, B. R.

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

Wojtkowski, M.

Xu, C.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

Yagi, T.

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005).
[Crossref]

Yun, S. H.

Zellmer, H.

Zhang, Z.

Y. Chen, Z. Zhang, X. Zhou, X. Chen, and Y. Liu, “Spectral compression in a comb-like distributed fiber and its application in 7-bit all-optical quantization,” Opt. Eng. 53(12), 126106 (2014).
[Crossref]

R. Liang, X. Zhou, Z. Zhang, Z. Qin, H. Li, and Y. Liu, “Numerical investigation on spectral compression of femtosecond soliton in a dispersion-increasing fiber,” Opt. Fiber Technol. 15(5-6), 438–441 (2009).
[Crossref]

Zheltikov, A. M.

Zhou, X.

Y. Chen, Z. Zhang, X. Zhou, X. Chen, and Y. Liu, “Spectral compression in a comb-like distributed fiber and its application in 7-bit all-optical quantization,” Opt. Eng. 53(12), 126106 (2014).
[Crossref]

R. Liang, X. Zhou, Z. Zhang, Z. Qin, H. Li, and Y. Liu, “Numerical investigation on spectral compression of femtosecond soliton in a dispersion-increasing fiber,” Opt. Fiber Technol. 15(5-6), 438–441 (2009).
[Crossref]

Zhu, L.

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

Appl. Phys. B (1)

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[Crossref]

Appl. Phys. Lett. (1)

M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017 (1993).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (1)

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
[Crossref]

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

N. Nishizawa and T. Goto, “Compact system of wavelength tunable ultrashort soliton pulse generation system,” IEEE Photonics Technol. Lett. 11, 325 (1999).
[Crossref]

J. Lightwave Technol. (1)

N. Kuwaki and M. Ohashi, “Waveguide dispersion measurement technique for single-mode fibers using wavelength dependence of mode field radius,” J. Lightwave Technol. 7(6), 990–996 (1989).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

N. Nishizawa, A. Muto, and T. Goto, “Measurement of chromatic dispersion of optical fibers using wavelength-tunable soliton pulses,” Jpn. J. Appl. Phys. 39(1), 4990–4992 (2000).
[Crossref]

Opt. Commun. (1)

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibers over the entire spectral range from 1.1 μm to 1.7 μm,” Opt. Commun. 175(1-3), 209–213 (2000).
[Crossref]

Opt. Eng. (1)

Y. Chen, Z. Zhang, X. Zhou, X. Chen, and Y. Liu, “Spectral compression in a comb-like distributed fiber and its application in 7-bit all-optical quantization,” Opt. Eng. 53(12), 126106 (2014).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

R. Liang, X. Zhou, Z. Zhang, Z. Qin, H. Li, and Y. Liu, “Numerical investigation on spectral compression of femtosecond soliton in a dispersion-increasing fiber,” Opt. Fiber Technol. 15(5-6), 438–441 (2009).
[Crossref]

Opt. Lett. (13)

H. P. Chuang and C. B. Huang, “Wavelength-tunable spectral compression in a dispersion-increasing fiber,” Opt. Lett. 36(15), 2848–2850 (2011).
[Crossref] [PubMed]

S. V. Chernikov, R. Kashyap, and J. R. Taylor, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19(8), 539–541 (1994).
[Crossref] [PubMed]

A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, “Spectral compression of frequency-shifting solitons in a photonic-crystal fiber,” Opt. Lett. 34(5), 662–664 (2009).
[Crossref] [PubMed]

E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
[Crossref] [PubMed]

J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, E. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett. 30(7), 714–716 (2005).
[Crossref] [PubMed]

E. R. Andresen, J. Thøgersen, and S. R. Keiding, “Spectral compression of femtosecond pulses in photonic crystal fibers,” Opt. Lett. 30(15), 2025–2027 (2005).
[Crossref] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
[Crossref] [PubMed]

K. Sumimura, T. Ohta, and N. Nishizawa, “Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,” Opt. Lett. 33(24), 2892–2894 (2008).
[Crossref] [PubMed]

B. R. Washburn, J. A. Buck, and S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Opt. Lett. 25(7), 445–447 (2000).
[Crossref] [PubMed]

K. Takahashi, H. Matsui, T. Nagashima, and T. Konishi, “Resolution upgrade toward 6-bit optical quantization using power-to-wavelength conversion for photonic analog-to-digital conversion,” Opt. Lett. 38(22), 4864–4867 (2013).
[Crossref] [PubMed]

N. Nishizawa and K. Takahashi, “Time-domain near-infrared spectroscopy using a wavelength-tunable narrow-linewidth source by spectral compression of ultrashort soliton pulses,” Opt. Lett. 36(19), 3780–3782 (2011).
[Crossref] [PubMed]

W. T. Chao, Y. Y. Lin, J. L. Peng, and C. B. Huang, “Adiabatic pulse propagation in a dispersion-increasing fiber for spectral compression exceeding the fiber dispersion ratio limitation,” Opt. Lett. 39(4), 853–856 (2014).
[Crossref] [PubMed]

C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
[Crossref] [PubMed]

Optik (Stuttg.) (1)

S. N. Li, H. P. Li, J. K. Liao, X. G. Tang, R. G. Lu, and Y. Liu, “Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber,” Optik (Stuttg.) 124(16), 2281–2284 (2013).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007), Ch. 5.

Supplementary Material (7)

NameDescription
» Visualization 1: MOV (1413 KB)      Spectral compression in DIF
» Visualization 2: MOV (1843 KB)      Spectral compression in CPF
» Visualization 3: MOV (2939 KB)      Initial spectral variation in CPF
» Visualization 4: MOV (2909 KB)      Initial temporal variation in CPF
» Visualization 5: MOV (2167 KB)      Spectral compression in new CPF
» Visualization 6: MOV (2978 KB)      Initial spectral variation in new CPF
» Visualization 7: MOV (3112 KB)      Initial temporal variation in new CPF

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Characteristics of spectral compression in DIF at λ = 1620 nm; propagation characteristics for (a) spectral width and β2, (b) temporal width and soliton order N. (c),(d) input and output pulse spectra on (c) linear (Visualization 1) and (d) log scales, (e),(f) instantaneous wavelength and temporal shapes of output pulse on (e) linear and (f) log scales.
Fig. 2
Fig. 2 Characteristics of spectral compression in original CPF at λ = 1620 nm; propagation characteristics for (a) spectral width and β2, and (b) temporal width and soliton order. (c),(d) Input and output pulse spectra on (c) linear (Visualization 2) and (d) log scales. (e),(f) Instantaneous wavelength and temporal shapes and of output pulse on (e) linear and (f) log scales.
Fig. 3
Fig. 3 Characteristics of initial process of spectral compression in original CPF at λ = 1620 nm: (a) spectral (Visualization 3) and (b) temporal shape and instantaneous wavelength (Visualization 4) of propagating pulse at 25 m length; and (c)(d) propagation characteristics for pulse duration and soliton order.
Fig. 4
Fig. 4 Characteristics of spectral compression in improved CPF at λ = 1620 nm; propagation characteristics for (a) spectral width and b2, (b) temporal width and soliton order. (c),(d) Input and output pulse spectra on (c) linear (Visualization 5) and (d) log scales. (e),(f) Instantaneous wavelength and temporal shape of output pulse on (e) linear and (f) log scales.
Fig. 5
Fig. 5 Characteristics of initial process of spectral compression in improved CPF at λ = 1620 nm: (a) spectral (Visualization 6) and (b) temporal shape and instantaneous wavelength (Visualization 7) of propagating pulse at 25 m length; and (c)(d) propagation characteristics for pulse duration and soliton order.
Fig. 6
Fig. 6 Characteristics of spectral compression in improved CPF at λ = 1770 nm: propagation characteristics for (a) spectral width and β2, (b) temporal width and soliton order N; (c) output pulse spectra; and (d) temporal pulse shape and instantaneous wavelength of output pulse.
Fig. 7
Fig. 7 Experimentally measured fiber parameters in SMF and DSF as a function of wavelength, (a) second-order dispersions β2, and (b) mode field diameter (MFD).
Fig. 8
Fig. 8 Numerical results of compressed spectral width and side lobe level of output pulses from improved CPF as a function of wavelength.
Fig. 9
Fig. 9 Experimental setup of wavelength-tunable narrow-linewidth source using CPF and SWNT fiber laser. PBC: polarization beam combinor, LPF: long pass filter, VA: variable attenuator.
Fig. 10
Fig. 10 Characteristics of output pulses: (a) optical spectra, (b) autocorrelation trace, (c) pulse train observed with fast photodiode and digital oscilloscope, and (d) rf spectrum of pulse train.
Fig. 11
Fig. 11 Characteristics of generated wavelength-tunable soliton pulses: (a) optical spectra, and (b) wavelength dependence of average output power when passively mode-locked ultrashort-pulse fiber lasers with repetition rates of 50 and 95 MHz were used.
Fig. 12
Fig. 12 Observed optical spectra at output of improved CPF for wavelengths of (a) 1620, (b) 1660, and (c) 1770 nm.
Fig. 13
Fig. 13 Characteristics of generated spectral compressed pulse with original and improved CPFs; (a) optical spectra of spectral compressed pulse in improved CPF, (b)-(d) wavelength dependence of (a) compressed spectral width, (b) output power, and (c) sidelobe level.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A z + i 2 β 2 2 A T 2 1 6 β 3 3 A T 3 + α 2 A=iγ[ | A | 2 A+ i ω 0 T ( | A | 2 A ) T R A | A | 2 T ],
β 2 ( x )= β 2L Δ β 2 ( Lx L ) 2 ,

Metrics