Abstract

We demonstrate soliton self-frequency-shifted, femtosecond-pulse amplification in a newly-developed, polarization-maintaining, Er-doped, very-large-mode-area fiber amplifier. The PM-VLMA Er fiber had a core diameter of 50 μm, an effective area of ~1050 μm2, and Er absorption of 50 dB/m. The measured birefringence beat length of the PM-VLMA Er fiber was 14.1 mm. The soliton wavelength could be shifted by more than 90 nm. The soliton generation process resulted in remarkably clean, 86 fs pulses with 21 nJ energy at 1650 nm and 244 kW peak power from an all-fiber, fusion spliced system without bulk-optics for pulse compression. The polarization extinction ratio of the soliton was greater than 40 dB, and the M2 was 1.1. The fully polarization-maintaining fiber laser system provides robust and stable soliton generation. Peak-to-peak variation in the soliton wavelength, measured over the course of an hour was only 0.03% and pulse energy variation was only 0.5%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High energy, 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier

J. W. Nicholson, A. DeSantolo, M. F. Yan, P. Wisk, B. Mangan, G. Puc, A. W. Yu, and M. A. Stephen
Opt. Express 24(17) 19961-19968 (2016)

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier

Gong-Ru Lin, Ying-Tsung Lin, and Chao-Kuei Lee
Opt. Express 15(6) 2993-2999 (2007)

Ultrawide tunable Er soliton fiber laser amplified in Yb-doped fiber

M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, and L. Goldberg
Opt. Lett. 24(20) 1428-1430 (1999)

References

  • View by:
  • |
  • |
  • |

  1. M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, “High-power 100-fs pulse generation by frequency doubling of an erbium ytterbium-fiber master oscillator power amplifier,” Opt. Lett. 23(23), 1840–1842 (1998).
    [Crossref] [PubMed]
  2. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref] [PubMed]
  3. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [Crossref] [PubMed]
  4. J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
    [Crossref] [PubMed]
  5. P. Govind, Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  6. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photonics Technol. Lett. 11(3), 325–327 (1999).
    [Crossref]
  7. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
    [Crossref] [PubMed]
  8. K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Topics. In Quantum Elec. 20, 6800311 (2014).
  9. T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
    [Crossref]
  10. S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
    [Crossref] [PubMed]
  11. L. Rishøj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, ~50 fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh3O.3.
    [Crossref]
  12. A. Zach, W. Kaenders, J. W. Nicholson, J. Fini, and A. DeSantolo, “Demonstration of Soliton Self Shifting Employing Er3+ Doped VLMA- and HOM-Fiber Amplifiers” in Conference on Lasers and Electro-Optics (CLEO) (OSA, 2015), paper ATu2M.6.
  13. J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
    [Crossref]
  14. J. W. Nicholson, A. DeSantolo, M. F. Yan, P. Wisk, B. Mangan, G. Puc, A. W. Yu, and M. A. Stephen, “High energy, 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier,” Opt. Express 24(17), 19961–19968 (2016).
    [Crossref] [PubMed]
  15. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett. 35(18), 3069–3071 (2010).
    [Crossref] [PubMed]
  16. Z. Várallyay and J. C. Jasapara, “Comparison of amplification in large area fibers using cladding-pump and fundamental-mode core-pump schemes,” Opt. Express 17(20), 17242–17252 (2009).
    [Crossref] [PubMed]
  17. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [Crossref] [PubMed]
  18. D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (C2) imaging of fiber and waveguide modes,” Opt. Express 19(14), 13008–13019 (2011).
    [Crossref] [PubMed]

2016 (1)

2014 (1)

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

2013 (1)

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

Z. Várallyay and J. C. Jasapara, “Comparison of amplification in large area fibers using cladding-pump and fundamental-mode core-pump schemes,” Opt. Express 17(20), 17242–17252 (2009).
[Crossref] [PubMed]

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[Crossref]

2008 (2)

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[Crossref] [PubMed]

2003 (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

1999 (1)

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photonics Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

1998 (1)

1986 (2)

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Andrejco, M. J.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[Crossref]

Andresen, E. R.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Barankov, R. A.

Bendahmane, A.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Bouwmans, G.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Churin, D.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

DeSantolo, A.

J. W. Nicholson, A. DeSantolo, M. F. Yan, P. Wisk, B. Mangan, G. Puc, A. W. Yu, and M. A. Stephen, “High energy, 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier,” Opt. Express 24(17), 19961–19968 (2016).
[Crossref] [PubMed]

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[Crossref]

DiGiovanni, D. J.

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett. 35(18), 3069–3071 (2010).
[Crossref] [PubMed]

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[Crossref]

DiMarcello, F.

Dimarcello, F. V.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[Crossref]

Fermann, M. E.

Ferrand, P.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Fini, J. M.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[Crossref]

Fleming, J.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Galvanauskas, A.

Ghalmi, S.

Gordon, J. P.

Goto, T.

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photonics Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

Harter, D.

Headley, C.

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett. 35(18), 3069–3071 (2010).
[Crossref] [PubMed]

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[Crossref]

Hofer, M.

Jasapara, J. C.

Z. Várallyay and J. C. Jasapara, “Comparison of amplification in large area fibers using cladding-pump and fundamental-mode core-pump schemes,” Opt. Express 17(20), 17242–17252 (2009).
[Crossref] [PubMed]

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[Crossref]

Kieu, K.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Kudlinski, A.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Lee, J. H.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

Liu, X.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

Mangan, B.

Mitschke, F. M.

Miyawaki, M.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Mollenauer, L. F.

Monberg, E.

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett. 35(18), 3069–3071 (2010).
[Crossref] [PubMed]

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[Crossref]

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Mussot, A.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Nguyen, T. N.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Nicholson, J. W.

Nishizawa, N.

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photonics Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

Ota, T.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Peyghambarian, N.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Puc, G.

Ramachandran, S.

Rigneault, H.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Saint-Jalm, S.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Schimpf, D. N.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Stephen, M. A.

Taunay, T.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

van Howe, J.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

Vanvincq, O.

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Varallyay, Z.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[Crossref]

Várallyay, Z.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Windeler, R. S.

Wisk, P.

Xu, C.

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

Yablon, A. D.

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[Crossref]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[Crossref] [PubMed]

Yan, M. F.

Yu, A. W.

IEEE J. Sel. Top. Quantum Electron. (2)

J. H. Lee, J. van Howe, X. Liu, and C. Xu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[Crossref] [PubMed]

J. C. Jasapara, M. J. Andrejco, A. DeSantolo, A. D. Yablon, Z. Varallyay, J. W. Nicholson, J. M. Fini, D. J. DiGiovanni, C. Headley, E. Monberg, and F. V. Dimarcello, “Diffraction-limited fundamental mode operation of core-pumped very-large-mode-area Er fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 3–11 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (2)

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photonics Technol. Lett. 11(3), 325–327 (1999).
[Crossref]

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

J. Biomed. Opt. (1)

S. Saint-Jalm, E. R. Andresen, P. Ferrand, A. Bendahmane, A. Mussot, O. Vanvincq, G. Bouwmans, A. Kudlinski, and H. Rigneault, “Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons,” J. Biomed. Opt. 19(8), 086021 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[Crossref] [PubMed]

Other (4)

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Topics. In Quantum Elec. 20, 6800311 (2014).

P. Govind, Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

L. Rishøj, G. Prabhakar, J. Demas, and S. Ramachandran, “30 nJ, ~50 fs all-fiber source at 1300 nm using soliton shifting in LMA HOM fiber,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh3O.3.
[Crossref]

A. Zach, W. Kaenders, J. W. Nicholson, J. Fini, and A. DeSantolo, “Demonstration of Soliton Self Shifting Employing Er3+ Doped VLMA- and HOM-Fiber Amplifiers” in Conference on Lasers and Electro-Optics (CLEO) (OSA, 2015), paper ATu2M.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup for self-frequency shifted soliton generation in a PM-VLMA Er-doped fiber amplifier.
Fig. 2
Fig. 2 (a) Soliton shifting as a function of the pump power. The unshifted pulses at 1560 nm have been blocked by the high-pass filter. (b) Total signal output power (unshifted 1560 nm signal pulse plus soliton without high-pass filter) compared to power in the soliton, as a function of pump power.
Fig. 3
Fig. 3 Soliton properties for a 3.7 m long PM-VLMA Er fiber amplifier compared to a 3 m long amplifier. (a) Energy in the soliton, (b) center wavelength of the soliton, and (c) pulse FWHM of the soliton.
Fig. 4
Fig. 4 (a) Spectrum, on a linear scale, and (b) interferometric autocorrelation, corresponding to the shortest pulse with 21 nJ energy from the 3 m long amplifier fiber. For comparison, the spectrum from the highest energy soliton obtained in a non-PM amplifier (see [12]) is shown in (c).
Fig. 5
Fig. 5 Measurement of polarization extinction ratio. (a) PER at low power with the amplifier pumped to transparency. (b) PER of the soliton at 12 W of 1480 nm pump power.
Fig. 6
Fig. 6 (a) Beam profile of the soliton, and (b) M2 measurement.
Fig. 7
Fig. 7 Stability of the soliton over time in a 3.7 m long PM VLMA amplifier. (a) Soliton spectra, measured over the course of one hour, and overlaid. (b) Peak soliton wavelength, and (c) soliton energy measured over the course of one hour.

Metrics