Abstract

A continuous-wave microchip dual-frequency laser (DFL) with well balanced intensity was presented. In order to obtain such a balanced intensity distribution of the two frequency components, the DFL wavelengths were precisely tuned and spectrally matched with the emission cross section (ECS) spectrum of the gain medium by employing a temperature controller. Finally, when the heat sink temperature was controlled at −5.6°C, a 264 mW DFL signal was achieved with frequency separation at 67.52 GHz and intensity balance ratio (IBR) at 0.991.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable dual-wavelength laser based on Nd:YVO4/Nd:GdVO4 combined crystal

Miao Hu, Yizhi Ke, Qiliang Li, Xuefang Zhou, Yang Lu, Guowei Yang, and Meihua Bi
Opt. Express 27(10) 13773-13780 (2019)

Dual-polarization microchip laser at 1.53??m

Marc Brunel, Axelle Amon, and Marc Vallet
Opt. Lett. 30(18) 2418-2420 (2005)

Dual synchronization of chaos in microchip lasers

A. Uchida, S. Kinugawa, T. Matsuura, and S. Yoshimori
Opt. Lett. 28(1) 19-21 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “TeraHertz photonics for wireless communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
    [Crossref]
  2. G. Kervella, J. Maxin, M. Faugeron, P. Berger, H. Lanctuit, G. Pillet, L. Morvan, F. van Dijk, and D. Dolfi, “Laser sources for microwave to millimeter-wave applications [Invited],” Photon. Res. 2(4), B70–B79 (2014).
    [Crossref]
  3. G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
    [Crossref] [PubMed]
  4. M. Vallet, J. Barreaux, M. Romanelli, G. Pillet, J. Thévenin, L. Wang, and M. Brunel, “Lidar-radar velocimetry using a pulse-to-pulse coherent rf-modulated Q-switched laser,” Appl. Opt. 52(22), 5402–5410 (2013).
    [Crossref] [PubMed]
  5. L. Morvan, D. Dolfi, and J. P. Huignard, “RF photonics for lidar systems optically pre-Amplified dual-frequency lidar-radar,” IEEE LEOS Newslett. 19, 12–13 (2015).
  6. C. H. Cheng, L. C. Lin, and F. Y. Lin, “Self-mixing dual-frequency laser Doppler velocimeter,” Opt. Express 22(3), 3600–3610 (2014).
    [Crossref] [PubMed]
  7. C. H. Cheng, C. W. Lee, T. W. Lin, and F. Y. Lin, “Dual-frequency laser Doppler velocimeter for speckle noise reduction and coherence enhancement,” Opt. Express 20(18), 20255–20265 (2012).
    [Crossref] [PubMed]
  8. S. De, G. Loas, A. El Amili, M. Alouini, and F. Bretenaker, “Theoretical and experimental analysis of intensity noise correlations in an optically pumped, dual-frequency Nd:YAG laser,” J. Opt. Soc. Am. B 30(11), 2830–2839 (2013).
    [Crossref]
  9. A. El Amili, G. Loas, S. De, S. Schwartz, G. Feugnet, J. P. Pocholle, F. Bretenaker, and M. Alouini, “Experimental demonstration of a dual-frequency laser free from antiphase noise,” Opt. Lett. 37(23), 4901–4903 (2012).
    [Crossref] [PubMed]
  10. J. Thévenin, M. Vallet, M. Brunel, H. Gilles, and S. Girard, “Beat-note locking in dual-polarization lasers submitted to frequency-shifted optical feedback,” J. Opt. Soc. Am. B 28(5), 1104–1110 (2011).
    [Crossref]
  11. Y. Qiao, S. Zheng, H. Chi, X. Jin, and X. Zhang, “Electro-optically tunable microwave source based on composite-cavity microchip laser,” Opt. Express 20(27), 29090–29095 (2012).
    [Crossref] [PubMed]
  12. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
    [Crossref]
  13. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
    [Crossref] [PubMed]
  14. A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
    [Crossref]
  15. C. Ren and S. L. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D Appl. Phys. 42(15), 155107 (2009).
    [Crossref]
  16. A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photonics Technol. Lett. 21(7), 480–482 (2009).
    [Crossref]
  17. M. Tani, O. Morikawa, S. J. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual-and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
    [Crossref]
  18. Q. Yang, Y. J. Huo, Y. S. Duan, and Y. Y. Zhan, “Double-longitudinal-mode continuous-wave laser with ultra-large frequency difference used for narrowband terahertz-wave generation,” Acta Opt. Sin. 33(5), 0514002 (2013).
    [Crossref]
  19. M. Hu, Y. Zheng, J. Cai, G. Zhang, Q. Li, X. Zhou, Y. Wei, and Y. Lu, “CW dual-frequency MOPA laser with frequency separation of 45 GHz,” Opt. Express 23(8), 9881–9889 (2015).
    [Crossref] [PubMed]
  20. Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
    [Crossref] [PubMed]
  21. S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
    [Crossref]
  22. G. Shayeganrad and L. Mashhadi, “Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm,” Appl. Phys. B 111(2), 189–194 (2013).
    [Crossref]
  23. B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009).
    [Crossref] [PubMed]
  24. C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
    [Crossref] [PubMed]
  25. M. Hu, R. D. An, H. Zhang, Q. F. Huang, and J. H. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
    [Crossref]
  26. X. Délen, F. Balembois, and P. Georges, “Temperature dependence of the emission cross section of Nd:YVO4 around 1064 nm and consequences on laser operation,” J. Opt. Soc. Am. B 28(5), 972–976 (2011).
    [Crossref]
  27. Y. Sato and T. Taira, “Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials,” Opt. Mater. Express 2(8), 1076–1087 (2012).
    [Crossref]
  28. T. Yoshino and Y. Kobayashi, “Temperature characteristics and stabilization of orthogonal polarization two-frequency Nd3+:YAG microchip lasers,” Appl. Opt. 38(15), 3266–3270 (1999).
    [Crossref] [PubMed]

2016 (1)

2015 (3)

2014 (4)

2013 (5)

M. Vallet, J. Barreaux, M. Romanelli, G. Pillet, J. Thévenin, L. Wang, and M. Brunel, “Lidar-radar velocimetry using a pulse-to-pulse coherent rf-modulated Q-switched laser,” Appl. Opt. 52(22), 5402–5410 (2013).
[Crossref] [PubMed]

S. De, G. Loas, A. El Amili, M. Alouini, and F. Bretenaker, “Theoretical and experimental analysis of intensity noise correlations in an optically pumped, dual-frequency Nd:YAG laser,” J. Opt. Soc. Am. B 30(11), 2830–2839 (2013).
[Crossref]

G. Shayeganrad and L. Mashhadi, “Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm,” Appl. Phys. B 111(2), 189–194 (2013).
[Crossref]

M. Hu, R. D. An, H. Zhang, Q. F. Huang, and J. H. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Q. Yang, Y. J. Huo, Y. S. Duan, and Y. Y. Zhan, “Double-longitudinal-mode continuous-wave laser with ultra-large frequency difference used for narrowband terahertz-wave generation,” Acta Opt. Sin. 33(5), 0514002 (2013).
[Crossref]

2012 (4)

2011 (4)

2010 (2)

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

2009 (3)

B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009).
[Crossref] [PubMed]

C. Ren and S. L. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D Appl. Phys. 42(15), 155107 (2009).
[Crossref]

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photonics Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

2005 (1)

M. Tani, O. Morikawa, S. J. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual-and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

1999 (1)

Alouini, M.

An, R. D.

M. Hu, R. D. An, H. Zhang, Q. F. Huang, and J. H. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Balembois, F.

Barreaux, J.

Berger, P.

Bondu, F.

G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref] [PubMed]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Bretenaker, F.

Brunel, M.

Cai, J.

Chen, T.

Chen, Y. F.

Cheng, C. H.

Cheng, H. P.

Chi, H.

Chiang, S. Y.

Cho, C. Y.

Danion, G.

Dawes, J. M.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photonics Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

De, S.

Délen, X.

Ding, Y. J.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Dolfi, D.

L. Morvan, D. Dolfi, and J. P. Huignard, “RF photonics for lidar systems optically pre-Amplified dual-frequency lidar-radar,” IEEE LEOS Newslett. 19, 12–13 (2015).

G. Kervella, J. Maxin, M. Faugeron, P. Berger, H. Lanctuit, G. Pillet, L. Morvan, F. van Dijk, and D. Dolfi, “Laser sources for microwave to millimeter-wave applications [Invited],” Photon. Res. 2(4), B70–B79 (2014).
[Crossref]

Duan, Y. S.

Q. Yang, Y. J. Huo, Y. S. Duan, and Y. Y. Zhan, “Double-longitudinal-mode continuous-wave laser with ultra-large frequency difference used for narrowband terahertz-wave generation,” Acta Opt. Sin. 33(5), 0514002 (2013).
[Crossref]

El Amili, A.

Faugeron, M.

Feugnet, G.

Fice, M. J.

Frein, L.

G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref] [PubMed]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Ge, J. H.

M. Hu, R. D. An, H. Zhang, Q. F. Huang, and J. H. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Georges, P.

Gilles, H.

Girard, S.

Hamel, C.

Hangyo, M.

M. Tani, O. Morikawa, S. J. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual-and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

Hu, M.

M. Hu, Y. Zheng, J. Cai, G. Zhang, Q. Li, X. Zhou, Y. Wei, and Y. Lu, “CW dual-frequency MOPA laser with frequency separation of 45 GHz,” Opt. Express 23(8), 9881–9889 (2015).
[Crossref] [PubMed]

M. Hu, R. D. An, H. Zhang, Q. F. Huang, and J. H. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Huang, Q. F.

M. Hu, R. D. An, H. Zhang, Q. F. Huang, and J. H. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Huang, Y. J.

Huignard, J. P.

L. Morvan, D. Dolfi, and J. P. Huignard, “RF photonics for lidar systems optically pre-Amplified dual-frequency lidar-radar,” IEEE LEOS Newslett. 19, 12–13 (2015).

Huo, Y. J.

Q. Yang, Y. J. Huo, Y. S. Duan, and Y. Y. Zhan, “Double-longitudinal-mode continuous-wave laser with ultra-large frequency difference used for narrowband terahertz-wave generation,” Acta Opt. Sin. 33(5), 0514002 (2013).
[Crossref]

Jiang, P.

Jin, X.

Kervella, G.

Kobayashi, Y.

Kong, J.

Lanctuit, H.

Lee, C. W.

Lee, C. Y.

Li, Q.

Li, Y.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Liang, H. C.

Lin, F. Y.

Lin, L. C.

Lin, T. W.

Loas, G.

Lu, Y.

Mashhadi, L.

G. Shayeganrad and L. Mashhadi, “Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm,” Appl. Phys. B 111(2), 189–194 (2013).
[Crossref]

Matsuura, S. J.

M. Tani, O. Morikawa, S. J. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual-and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

Maxin, J.

McKay, A.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photonics Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

Merlet, T.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Morikawa, O.

M. Tani, O. Morikawa, S. J. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual-and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

Morvan, L.

L. Morvan, D. Dolfi, and J. P. Huignard, “RF photonics for lidar systems optically pre-Amplified dual-frequency lidar-radar,” IEEE LEOS Newslett. 19, 12–13 (2015).

G. Kervella, J. Maxin, M. Faugeron, P. Berger, H. Lanctuit, G. Pillet, L. Morvan, F. van Dijk, and D. Dolfi, “Laser sources for microwave to millimeter-wave applications [Invited],” Photon. Res. 2(4), B70–B79 (2014).
[Crossref]

Pillet, G.

Pocholle, J. P.

Qiao, Y.

Ragam, S.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Ren, C.

C. Ren and S. L. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D Appl. Phys. 42(15), 155107 (2009).
[Crossref]

Renaud, C. C.

Rolland, A.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

Romanelli, M.

Sato, Y.

Schwartz, S.

Seeds, A. J.

Shams, H.

Shayeganrad, G.

G. Shayeganrad and L. Mashhadi, “Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm,” Appl. Phys. B 111(2), 189–194 (2013).
[Crossref]

Shen, Y.

Sung, C. L.

Taira, T.

Tan, Y. D.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Tang, C. Y.

Tani, M.

M. Tani, O. Morikawa, S. J. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual-and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

Thévenin, J.

Tzeng, Y. S.

Vallet, M.

van Dijk, F.

Wang, L.

Wei, Y.

Wu, B.

Yang, D.

Yang, Q.

Q. Yang, Y. J. Huo, Y. S. Duan, and Y. Y. Zhan, “Double-longitudinal-mode continuous-wave laser with ultra-large frequency difference used for narrowband terahertz-wave generation,” Acta Opt. Sin. 33(5), 0514002 (2013).
[Crossref]

Yoshino, T.

Zhan, Y. Y.

Q. Yang, Y. J. Huo, Y. S. Duan, and Y. Y. Zhan, “Double-longitudinal-mode continuous-wave laser with ultra-large frequency difference used for narrowband terahertz-wave generation,” Acta Opt. Sin. 33(5), 0514002 (2013).
[Crossref]

Zhang, G.

Zhang, H.

M. Hu, R. D. An, H. Zhang, Q. F. Huang, and J. H. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Zhang, S. L.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

C. Ren and S. L. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D Appl. Phys. 42(15), 155107 (2009).
[Crossref]

Zhang, X.

Zhao, P.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

Zheng, S.

Zheng, Y.

Zhou, X.

Zotova, I. B.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
[Crossref] [PubMed]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

Acta Opt. Sin. (1)

Q. Yang, Y. J. Huo, Y. S. Duan, and Y. Y. Zhan, “Double-longitudinal-mode continuous-wave laser with ultra-large frequency difference used for narrowband terahertz-wave generation,” Acta Opt. Sin. 33(5), 0514002 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

G. Shayeganrad and L. Mashhadi, “Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm,” Appl. Phys. B 111(2), 189–194 (2013).
[Crossref]

Appl. Phys. Lett. (1)

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid state lasers,” Appl. Phys. Lett. 98(13), 131106 (2011).
[Crossref]

IEEE LEOS Newslett. (1)

L. Morvan, D. Dolfi, and J. P. Huignard, “RF photonics for lidar systems optically pre-Amplified dual-frequency lidar-radar,” IEEE LEOS Newslett. 19, 12–13 (2015).

IEEE Photonics Technol. Lett. (2)

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photonics Technol. Lett. 22(23), 1738–1740 (2010).
[Crossref]

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photonics Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

J. Phys. D Appl. Phys. (1)

C. Ren and S. L. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D Appl. Phys. 42(15), 155107 (2009).
[Crossref]

Laser Phys. Lett. (1)

M. Hu, R. D. An, H. Zhang, Q. F. Huang, and J. H. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Meas. Sci. Technol. (1)

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. Express (1)

Photon. Res. (1)

Semicond. Sci. Technol. (1)

M. Tani, O. Morikawa, S. J. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual-and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The experimental setup used for DFL output spectra acquisition.
Fig. 2
Fig. 2 (a) Normalized laser spectra with Tc from −4°C to 96°C; (b) Laser wavelengths λq and SEC wavelength λSEC vs. Tc, q = −1, 0, 1. SEC: spectral envelope centre.
Fig. 3
Fig. 3 (a) Normalized fluorescence spectra vs. wavelength at Tc = 50°C; (b) Normalized ECS spectra vs. wavelength at Tc = 0°C, 50°C, and 100°C; (c) The ECS spectral peak wavelength λσmax with Tc from 0 to 100°C; (d) Normalized ECS spectral peak value σeff and FWHM with Tc from 0 to 100°C.
Fig. 4
Fig. 4 (a) The λSEC and λσmax vs. the heat sink temperature Tc; (b) The laser spectra and the compensated ECS spectra at Tc = −4°C, 16°C, and 36°C; (c) The balanced intensity DFL signals at Tc = −5.6°C and 70.2°C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dλ/dT=λ[ α e +( 1/n )*dn/dT]
σ(λ,T)= ( λ ) 4 8πc n 2 (T) τ rad (T) I(λ,T) I(λ,T)dλ

Metrics