Abstract

A compact efficient high-repetition-rate doubly-resonant dual-wavelength KTP optical parametric oscillator (OPO), with output power up to 3.65 W and tuning ranges of 2.088-2.133 μm/2.171-2.122 μm for signal/idler waves, was deployed for terahertz (THz) generation in a GaSe crystal. Based on difference frequency generation (DFG), the THz wave was continuously tunable from 730.9 μm (0.41 THz) to 80.8 μm (3.71 THz), believed to be the first report of a compact high-repetition-rate widely-tunable THz source. The maximum THz average power reached 1.2 μW at 1.54 THz and the corresponding DFG efficiency was 7.8 × 10−7, entirely suitable for portable applications. The utility of the THz source was also demonstrated through spectroscopy and imaging experiments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2  μm dual-wavelength intracavity KTP optical parametric oscillator

Dexian Yan, Yuye Wang, Degang Xu, Pengxiang Liu, Chao Yan, Jia Shi, Hongxiang Liu, Yixin He, Longhuang Tang, Jianchen Feng, Jianqin Guo, Wei Shi, Kai Zhong, Yuen H. Tsang, and Jianquan Yao
Photon. Res. 5(2) 82-87 (2017)

Compact and stable high-repetition-rate terahertz generation based on an efficient coaxially pumped dual-wavelength laser

Yang Liu, Kai Zhong, Jialin Mei, Chu Liu, Jie Shi, Xin Ding, Degang Xu, Wei Shi, and Jianquan Yao
Opt. Express 25(25) 31988-31996 (2017)

Compact self-cascaded KTA-OPO for 2.6 μm laser generation

Yanmin Duan, Haiyong Zhu, Changwen Xu, Xiukai Ruan, Guihua Cui, Yaoju Zhang, Dingyuan Tang, and Dianyuan Fan
Opt. Express 24(23) 26529-26535 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
    [Crossref]
  2. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
    [Crossref] [PubMed]
  3. W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
    [Crossref]
  4. K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, “High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter,” Opt. Lett. 32(19), 2885–2887 (2007).
    [Crossref] [PubMed]
  5. T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency-tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93(8), 4610–4615 (2003).
    [Crossref]
  6. E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
    [Crossref]
  7. S. Y. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, and K. L. Vodopyanov, “High-power tunable, 0.5–3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines,” J. Opt. Soc. Am. B 24(9), 2509–2516 (2007).
    [Crossref]
  8. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32(10), 1284–1286 (2007).
    [Crossref] [PubMed]
  9. C. W. Chen, T. T. Tang, S. H. Lin, J. Y. Huang, C. S. Chang, P. K. Chung, S. T. Yen, and C. L. Pan, “Optical properties and potential applications of ε-GaSe at terahertz frequencies,” J. Opt. Soc. Am. B 26(9), A58–A65 (2009).
    [Crossref]
  10. Y. Jiang and Y. J. Ding, “Efficient terahertz generation from two collinearly propagating CO2 laser pulses,” Appl. Phys. Lett. 91(9), 091108 (2007).
    [Crossref]
  11. J. Kiessling, I. Breunig, P. G. Schunemann, K. Buse, and K. L. Vodopyanov, “High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy,” New J. Phys. 15(10), 105014 (2013).
    [Crossref]
  12. K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
    [Crossref]
  13. J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
    [Crossref]
  14. J. F. Molloy, M. Naftaly, Y. Andreev, K. Kokh, G. Lanskii, and V. Svetlichnyi, “Absorption anisotropy in sulfur doped gallium selenide crystals studied by THz-TDS,” Opt. Mater. Express 4(11), 2451–2459 (2014).
    [Crossref]
  15. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  16. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009), Chap. 5.
  17. R. M. Smith and M. A. Arnold, “Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges,” Appl. Spectrosc. Rev. 46(8), 636–679 (2011).
    [Crossref]

2016 (1)

J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
[Crossref]

2014 (1)

2013 (1)

J. Kiessling, I. Breunig, P. G. Schunemann, K. Buse, and K. L. Vodopyanov, “High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy,” New J. Phys. 15(10), 105014 (2013).
[Crossref]

2011 (2)

R. M. Smith and M. A. Arnold, “Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges,” Appl. Spectrosc. Rev. 46(8), 636–679 (2011).
[Crossref]

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

2010 (1)

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

2009 (1)

2007 (4)

2003 (2)

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[Crossref]

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency-tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93(8), 4610–4615 (2003).
[Crossref]

2002 (2)

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
[Crossref]

Andreev, Y.

Arnold, M. A.

R. M. Smith and M. A. Arnold, “Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges,” Appl. Spectrosc. Rev. 46(8), 636–679 (2011).
[Crossref]

Breunig, I.

J. Kiessling, I. Breunig, P. G. Schunemann, K. Buse, and K. L. Vodopyanov, “High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy,” New J. Phys. 15(10), 105014 (2013).
[Crossref]

Buse, K.

J. Kiessling, I. Breunig, P. G. Schunemann, K. Buse, and K. L. Vodopyanov, “High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy,” New J. Phys. 15(10), 105014 (2013).
[Crossref]

Chang, C. S.

Chavez-Pirson, A.

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

Chen, C. W.

Chung, P. K.

Cooney, A. T.

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

Ding, Y. J.

Y. Jiang and Y. J. Ding, “Efficient terahertz generation from two collinearly propagating CO2 laser pulses,” Appl. Phys. Lett. 91(9), 091108 (2007).
[Crossref]

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[Crossref]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

Fejer, M. M.

Fernelius, N.

Huang, J. Y.

Ito, H.

K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, “High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter,” Opt. Lett. 32(19), 2885–2887 (2007).
[Crossref] [PubMed]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
[Crossref]

Jiang, Y.

Y. Jiang and Y. J. Ding, “Efficient terahertz generation from two collinearly propagating CO2 laser pulses,” Appl. Phys. Lett. 91(9), 091108 (2007).
[Crossref]

Joshi, C.

Kawase, K.

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
[Crossref]

Kiessling, J.

J. Kiessling, I. Breunig, P. G. Schunemann, K. Buse, and K. L. Vodopyanov, “High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy,” New J. Phys. 15(10), 105014 (2013).
[Crossref]

Kimura, T.

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency-tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93(8), 4610–4615 (2003).
[Crossref]

Kokh, K.

Lanskii, G.

Li, Z.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Lin, S. H.

Liu, P.

J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
[Crossref]

Mei, J.

J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
[Crossref]

Miyamoto, K.

Molloy, J. F.

Naftaly, M.

Nishizawa, J.

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency-tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93(8), 4610–4615 (2003).
[Crossref]

Norwood, R. A.

J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
[Crossref]

Pan, C. L.

Petersen, E. B.

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

Peyghambarian, N.

J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
[Crossref]

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

Saito, K.

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency-tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93(8), 4610–4615 (2003).
[Crossref]

Sasaki, Y.

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
[Crossref]

Schaar, J. E.

Schunemann, P. G.

J. Kiessling, I. Breunig, P. G. Schunemann, K. Buse, and K. L. Vodopyanov, “High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy,” New J. Phys. 15(10), 105014 (2013).
[Crossref]

Shi, W.

J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
[Crossref]

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[Crossref]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
[Crossref] [PubMed]

Smith, R. M.

R. M. Smith and M. A. Arnold, “Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges,” Appl. Spectrosc. Rev. 46(8), 636–679 (2011).
[Crossref]

Suizu, K.

Sung, C.

Suto, K.

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency-tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93(8), 4610–4615 (2003).
[Crossref]

Svetlichnyi, V.

Tanabe, T.

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency-tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93(8), 4610–4615 (2003).
[Crossref]

Tang, T. T.

Tochitsky, S. Y.

Trubnick, S. E.

Vodopyanov, K.

Vodopyanov, K. L.

Wang, M.

J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
[Crossref]

Wang, P.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Wang, Y.

J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
[Crossref]

Wang, Z.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Xu, D.

J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
[Crossref]

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Yamashita, T.

Yao, J.

J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
[Crossref]

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Yen, S. T.

Yuri, A.

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
[Crossref]

Zhang, H.

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Zhong, K.

J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
[Crossref]

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Appl. Phys. Lett. (4)

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
[Crossref]

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[Crossref]

E. B. Petersen, W. Shi, A. Chavez-Pirson, N. Peyghambarian, and A. T. Cooney, “Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation,” Appl. Phys. Lett. 98(12), 121119 (2011).
[Crossref]

Y. Jiang and Y. J. Ding, “Efficient terahertz generation from two collinearly propagating CO2 laser pulses,” Appl. Phys. Lett. 91(9), 091108 (2007).
[Crossref]

Appl. Spectrosc. Rev. (1)

R. M. Smith and M. A. Arnold, “Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges,” Appl. Spectrosc. Rev. 46(8), 636–679 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Mei, K. Zhong, M. Wang, P. Liu, D. Xu, Y. Wang, W. Shi, J. Yao, R. A. Norwood, and N. Peyghambarian, “High-Repetition-Rate Terahertz Generation in QPM GaAs With a Compact Efficient 2 μm KTP OPO,” IEEE Photonics Technol. Lett. 28(14), 1501–1504 (2016).
[Crossref]

J. Appl. Phys. (1)

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency-tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93(8), 4610–4615 (2003).
[Crossref]

J. Opt. Soc. Am. B (2)

New J. Phys. (1)

J. Kiessling, I. Breunig, P. G. Schunemann, K. Buse, and K. L. Vodopyanov, “High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy,” New J. Phys. 15(10), 105014 (2013).
[Crossref]

Opt. Commun. (1)

K. Zhong, J. Yao, D. Xu, Z. Wang, Z. Li, H. Zhang, and P. Wang, “Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO,” Opt. Commun. 283(18), 3520–3524 (2010).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Other (2)

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup for the DFG system based on a 2-μm KTP OPO and GaSe crystal.
Fig. 2
Fig. 2 Output characteristics of the Q-switched Nd:YVO4 laser and KTP OPO.
Fig. 3
Fig. 3 Output spectra at different PM angle of KTP.
Fig. 4
Fig. 4 Tuning characteristics of the 2-μm KTP OPO in the x-z plane.
Fig. 5
Fig. 5 THz-wave tuning characteristics in wavelength and frequency (inset).
Fig. 6
Fig. 6 Maximum THz output voltage versus frequency for an 8-mm-long GaSe crystal. The inset shows a typical THz signal from the bolometer.
Fig. 7
Fig. 7 THz intensity generated for different pump intensity (each pump wavelength), crystal length and absorption coefficient. (a) and (b) are calculated for GaSe absorption coefficients of 4 cm−1 and 1 cm−1, respectively.
Fig. 8
Fig. 8 THz transmission spectra of white and black PE samples measured with tunable THz source and TDS.
Fig. 9
Fig. 9 THz imaging for a white PE sample at different frequencies: (a) 1.5 THz; (b) 2.2 THz. The scale values of the coordinates are scanning steps of 400 μm.

Metrics