Abstract

Benefitted from large fraction of evanescent wave and high endface reflectivity, we have realized mode tailoring in subwavelength-dimensional semiconductor micro/nanowaveguides (MN-WGs) by coupling optical silica microfibers. By investigating the reflection spectra, it was found that the microfiber tips could offer effective reflection and can been used to continuously and reversibly tune the interference wavelengths by changing the contact points with the MN-WGs. The measured extinction ratio in the interference patterns was as high as ~10 dB. In addition, tunable free spectral range of photoluminescence emissions and humidity sensing were also demonstrated. Its advantages of non-destructively tuning, simple fabrication, easy interrogation, and remote monitoring, offer great possible prospects for developing miniature tunable lasers, sensors, and biological endoscopy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanowires/microfiber hybrid structure multicolor laser

Ye Ding, Qing Yang, Xin Guo, Shanshan Wang, Fuxing Gu, Jian Fu, Qing Wan, Jipeng Cheng, and Limin Tong
Opt. Express 17(24) 21813-21818 (2009)

In situ fine tailoring of group velocity dispersion in optical microfibers via nanocoatings

Z. Y. Xu, Y. H. Li, and L. J. Wang
Opt. Express 22(23) 28338-28345 (2014)

Efficient higher-order nonlinear optical effects in CdSe nanowaveguides

Jiaxin Yu, Fang Liu, Zhaoqi Gu, Fuxing Gu, and Songlin Zhuang
Opt. Express 26(6) 6880-6889 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [Crossref]
  2. R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
    [Crossref]
  3. X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
    [Crossref] [PubMed]
  4. A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
    [Crossref]
  5. S. Wang, Z. Hu, H. Yu, W. Fang, M. Qiu, and L. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
    [Crossref] [PubMed]
  6. L. Sun, M.-L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
    [Crossref] [PubMed]
  7. F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top Quantum Electron. 21(1), 7600106 (2015).
  8. F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
    [Crossref] [PubMed]
  9. H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
    [Crossref] [PubMed]
  10. J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
    [Crossref] [PubMed]
  11. Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
    [Crossref] [PubMed]
  12. X. Liu, Q. Zhang, Q. Xiong, and T. C. Sum, “Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption,” Nano Lett. 13(3), 1080–1085 (2013).
    [Crossref] [PubMed]
  13. X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. 24(1), 13–33 (2012).
    [Crossref] [PubMed]
  14. S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett. 34(3), 253–255 (2009).
    [Crossref] [PubMed]
  15. X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
    [Crossref] [PubMed]
  16. F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38(11), 1826–1828 (2013).
    [Crossref] [PubMed]
  17. R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
    [Crossref] [PubMed]
  18. J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
    [Crossref] [PubMed]
  19. Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11(10), 4270–4274 (2011).
    [Crossref] [PubMed]
  20. F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
    [Crossref] [PubMed]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991)
  22. F. Gu, L. Zhang, Y. Zhu, and H. Zeng, “Free-space coupling of nanoantennas and whispering-gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
    [Crossref]
  23. Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
    [Crossref] [PubMed]
  24. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [Crossref]
  25. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [Crossref] [PubMed]
  26. Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sensor. Actuat. Biol. Chem. 155(1), 258–263 (2011).
  27. L. Zhang, G. Wu, F. Gu, and H. Zeng, “Single MoO3 nanoribbon waveguides: good building blocks as elements and interconnects for nanophotonic applications,” Sci. Rep. 5, 17388 (2015).
    [Crossref] [PubMed]
  28. L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
    [Crossref] [PubMed]
  29. F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
    [Crossref] [PubMed]
  30. Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. Wang, P. Shum, and X. Zhang, “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Opt. Express 18(25), 26345–26350 (2010).
    [Crossref] [PubMed]

2015 (3)

F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top Quantum Electron. 21(1), 7600106 (2015).

F. Gu, L. Zhang, Y. Zhu, and H. Zeng, “Free-space coupling of nanoantennas and whispering-gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
[Crossref]

L. Zhang, G. Wu, F. Gu, and H. Zeng, “Single MoO3 nanoribbon waveguides: good building blocks as elements and interconnects for nanophotonic applications,” Sci. Rep. 5, 17388 (2015).
[Crossref] [PubMed]

2014 (4)

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

L. Sun, M.-L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
[Crossref] [PubMed]

2013 (5)

F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38(11), 1826–1828 (2013).
[Crossref] [PubMed]

X. Liu, Q. Zhang, Q. Xiong, and T. C. Sum, “Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption,” Nano Lett. 13(3), 1080–1085 (2013).
[Crossref] [PubMed]

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref] [PubMed]

2012 (1)

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. 24(1), 13–33 (2012).
[Crossref] [PubMed]

2011 (4)

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sensor. Actuat. Biol. Chem. 155(1), 258–263 (2011).

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11(10), 4270–4274 (2011).
[Crossref] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (3)

2008 (4)

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[Crossref] [PubMed]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

2005 (1)

2003 (1)

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
[Crossref]

Agarwal, R.

L. Sun, M.-L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
[Crossref] [PubMed]

Andrews, S. C.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Belal, M.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

Brambilla, G.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[Crossref] [PubMed]

Choi, Y.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Dai, L.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref] [PubMed]

Ding, M.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

Fang, W.

Feng, X.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11(10), 4270–4274 (2011).
[Crossref] [PubMed]

Fu, A.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Gao, H.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Gong, Y.

Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sensor. Actuat. Biol. Chem. 155(1), 258–263 (2011).

Gu, F.

L. Zhang, G. Wu, F. Gu, and H. Zeng, “Single MoO3 nanoribbon waveguides: good building blocks as elements and interconnects for nanophotonic applications,” Sci. Rep. 5, 17388 (2015).
[Crossref] [PubMed]

F. Gu, L. Zhang, Y. Zhu, and H. Zeng, “Free-space coupling of nanoantennas and whispering-gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
[Crossref]

F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top Quantum Electron. 21(1), 7600106 (2015).

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38(11), 1826–1828 (2013).
[Crossref] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
[Crossref] [PubMed]

Guo, X.

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Hasan, T.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Heo, C.-J.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Horak, P.

Hu, Z.

Hu, Z. F.

Ismaeel, R.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

Jia, J.-F.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11(10), 4270–4274 (2011).
[Crossref] [PubMed]

Jiang, X. S.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Lee, L. P.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Lee, T.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

Li, B.

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Li, J.

J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref] [PubMed]

Li, Y.

Li, Y. H.

Lin, B.

Liu, W.

L. Sun, M.-L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
[Crossref] [PubMed]

Liu, X.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

X. Liu, Q. Zhang, Q. Xiong, and T. C. Sum, “Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption,” Nano Lett. 13(3), 1080–1085 (2013).
[Crossref] [PubMed]

J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref] [PubMed]

Liu, Y.

J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref] [PubMed]

Lou, J.

Lu, Y.

J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref] [PubMed]

Ma, Y.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Maslov, A. V.

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
[Crossref]

Meng, C.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref] [PubMed]

Ning, C. Z.

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. 24(1), 13–33 (2012).
[Crossref] [PubMed]

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
[Crossref]

Pan, A.

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. 24(1), 13–33 (2012).
[Crossref] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

Park, J.-H.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Qiu, M.

Rao, Y.

Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sensor. Actuat. Biol. Chem. 155(1), 258–263 (2011).

Ren, M.-L.

L. Sun, M.-L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
[Crossref] [PubMed]

Shan, X.-Y.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11(10), 4270–4274 (2011).
[Crossref] [PubMed]

Shum, P.

Sum, T. C.

X. Liu, Q. Zhang, Q. Xiong, and T. C. Sum, “Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption,” Nano Lett. 13(3), 1080–1085 (2013).
[Crossref] [PubMed]

Sun, L.

L. Sun, M.-L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
[Crossref] [PubMed]

Tjin, S. C.

Tong, L.

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref] [PubMed]

F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38(11), 1826–1828 (2013).
[Crossref] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

S. Wang, Z. Hu, H. Yu, W. Fang, M. Qiu, and L. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
[Crossref] [PubMed]

Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[Crossref] [PubMed]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
[Crossref] [PubMed]

Tong, L. M.

S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett. 34(3), 253–255 (2009).
[Crossref] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Vienne, G.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Wang, C.-X.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11(10), 4270–4274 (2011).
[Crossref] [PubMed]

Wang, D.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Wang, G.

Wang, P.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

Wang, Q.-Q.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11(10), 4270–4274 (2011).
[Crossref] [PubMed]

Wang, S.

Wang, S. S.

Wang, Y.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Wu, G.

F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top Quantum Electron. 21(1), 7600106 (2015).

L. Zhang, G. Wu, F. Gu, and H. Zeng, “Single MoO3 nanoribbon waveguides: good building blocks as elements and interconnects for nanophotonic applications,” Sci. Rep. 5, 17388 (2015).
[Crossref] [PubMed]

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

Wu, X.

J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sensor. Actuat. Biol. Chem. 155(1), 258–263 (2011).

Wu, Z.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Xing, X.

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Xiong, Q.

X. Liu, Q. Zhang, Q. Xiong, and T. C. Sum, “Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption,” Nano Lett. 13(3), 1080–1085 (2013).
[Crossref] [PubMed]

Xu, F.

Xu, J.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

Xue, Q.-K.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11(10), 4270–4274 (2011).
[Crossref] [PubMed]

Yan, R.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Yang, D. R.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Yang, P.

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Yang, Q.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Yang, S.-M.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Yang, Z.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

Ye, Y.

J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref] [PubMed]

Ye, Z.

Yin, X.

Ying, Y.

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

Yu, H.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

S. Wang, Z. Hu, H. Yu, W. Fang, M. Qiu, and L. Tong, “Endface reflectivities of optical nanowires,” Opt. Express 17(13), 10881–10886 (2009).
[Crossref] [PubMed]

Zeng, H.

L. Zhang, G. Wu, F. Gu, and H. Zeng, “Single MoO3 nanoribbon waveguides: good building blocks as elements and interconnects for nanophotonic applications,” Sci. Rep. 5, 17388 (2015).
[Crossref] [PubMed]

F. Gu, L. Zhang, Y. Zhu, and H. Zeng, “Free-space coupling of nanoantennas and whispering-gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
[Crossref]

F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top Quantum Electron. 21(1), 7600106 (2015).

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

F. Gu, H. Zeng, L. Tong, and S. Zhuang, “Metal single-nanowire plasmonic sensors,” Opt. Lett. 38(11), 1826–1828 (2013).
[Crossref] [PubMed]

Zhang, H.

Zhang, L.

L. Zhang, G. Wu, F. Gu, and H. Zeng, “Single MoO3 nanoribbon waveguides: good building blocks as elements and interconnects for nanophotonic applications,” Sci. Rep. 5, 17388 (2015).
[Crossref] [PubMed]

F. Gu, L. Zhang, Y. Zhu, and H. Zeng, “Free-space coupling of nanoantennas and whispering-gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
[Crossref]

F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top Quantum Electron. 21(1), 7600106 (2015).

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
[Crossref] [PubMed]

Zhang, Q.

X. Liu, Q. Zhang, Q. Xiong, and T. C. Sum, “Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption,” Nano Lett. 13(3), 1080–1085 (2013).
[Crossref] [PubMed]

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11(10), 4270–4274 (2011).
[Crossref] [PubMed]

Zhang, T.

Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sensor. Actuat. Biol. Chem. 155(1), 258–263 (2011).

Zhang, X.

Zhang, Y.

Zhu, H.

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

Zhu, Y.

F. Gu, L. Zhang, Y. Zhu, and H. Zeng, “Free-space coupling of nanoantennas and whispering-gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
[Crossref]

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

Zhuang, S.

Zhuang, X.

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. 24(1), 13–33 (2012).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[Crossref] [PubMed]

Adv. Mater. (2)

J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, and Q. Yang, “Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process,” Adv. Mater. 25(6), 833–837 (2013).
[Crossref] [PubMed]

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. 24(1), 13–33 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83(6), 1237–1239 (2003).
[Crossref]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

IEEE J. Sel. Top Quantum Electron. (1)

F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top Quantum Electron. 21(1), 7600106 (2015).

J. Am. Chem. Soc. (1)

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

F. Gu, L. Zhang, Y. Zhu, and H. Zeng, “Free-space coupling of nanoantennas and whispering-gallery microcavities with narrowed linewidth and enhanced sensitivity,” Laser Photonics Rev. 9(6), 682–688 (2015).
[Crossref]

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

Nano Lett. (6)

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

X. Liu, Q. Zhang, Q. Xiong, and T. C. Sum, “Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption,” Nano Lett. 13(3), 1080–1085 (2013).
[Crossref] [PubMed]

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett. 8(9), 2839–2843 (2008).
[Crossref] [PubMed]

L. Sun, M.-L. Ren, W. Liu, and R. Agarwal, “Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young’s interference experiment revisited,” Nano Lett. 14(11), 6564–6571 (2014).
[Crossref] [PubMed]

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11(10), 4270–4274 (2011).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Nanoscale (1)

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

L. Zhang, G. Wu, F. Gu, and H. Zeng, “Single MoO3 nanoribbon waveguides: good building blocks as elements and interconnects for nanophotonic applications,” Sci. Rep. 5, 17388 (2015).
[Crossref] [PubMed]

Sensor. Actuat. Biol. Chem. (1)

Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sensor. Actuat. Biol. Chem. 155(1), 258–263 (2011).

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Micrographs of cutting a CdS MN-WG by a bend-to-fracture method using two nanotaper probes. (b) TEM image of a fractured CdS nanowire. (c) Schematic diagram of the semiconductor MN-WG/silica microfiber system, in which the reflected light is collected and investigated.
Fig. 2
Fig. 2 Interference spectra using a CdS nanoribbon with different suspended lengths of (a, red line) 93.2 μm, (b) 70.6 μm and (c) 46.1 μm, and using a bare microfiber (a, black line); Schematic diagrams and micrographs of the CdS nanoribbon with different suspended lengths. The white arrows point out the microfiber tips in each case.
Fig. 3
Fig. 3 (a) FSR and FWHM around 1584 nm of the CdS nanoribbon as a function of Leff. (b) Reflectivity of guided fundamental modes at the endface and microfiber tip, and fractions of evanescent wave outside CdS MN-WGs with different diameters. (c) Interference spectra using a 1.8-μm-diameter CdS microwire, with different suspended lengths of 18.5 and 22.3 μm, respectively. (d) Interference spectrum using a CdS wire, with a gradually varied diameter from 1.5 μm to less than 0.3 μm.
Fig. 4
Fig. 4 (a) Schematic diagram of an experimental setup for investigating active cavity effect. (b) Interference spectra of PL emissions using a CdSe nanowire, with different suspended lengths of 16.4 and 28.5 μm, respectively. Insets show the micrographs of PL emissions. (c) Interference spectra shift of a CdS microwire as humidity varying from 33% to 69%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F S R = λ R 2 / 2 n g L e f f

Metrics