Abstract

We report the properties of dual phononic-photonic band gaps and localized modes of eightfold lithium niobate (LiNbO3) phoxonic quasicrystals (PhXQCs). Complete and large phoxonic band gaps are easily achieved despite the low refractive index of LiNbO3 substrate. Point defect intentionally introduced can form localized modes within both forbidden and transparency bands over a wide range of geometric parameters. Further analysis indicates that the localized modes within transparency bands originate from the intrinsic high-order rotational symmetry of quasiperiodic structures, which resemble whispering gallery modes. LiNbO3 PhXQCs provide a good candidate to enhance phononic-photonic interaction and show considerable advantage over the periodic counterparts.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals

Tianbao Yu, Zhong Wang, Wenxing Liu, Tongbiao Wang, Nianhua Liu, and Qinghua Liao
Opt. Express 24(8) 7951-7959 (2016)

Simultaneous bandgaps in LiNbO3 phoxonic crystal slab

Quentin Rolland, Samuel Dupont, Joseph Gazalet, Jean-Claude Kastelik, Yan Pennec, Bahram Djafari-Rouhani, and Vincent Laude
Opt. Express 22(13) 16288-16297 (2014)

Mode localization and band-gap formation in defect-free photonic quasicrystals

Khaled Mnaymneh and Robert C. Gauthier
Opt. Express 15(8) 5089-5099 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
    [Crossref]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  3. T. B. Yu, S. Z. Li, N. H. Liu, T. B. Wang, Q. H. Liao, and X. M. Xu, “Highly efficient coupling between inner and surface fields in photonic crystal waveguides,” IEEE Photonics Technol. Lett. 25(15), 1496–1499 (2013).
    [Crossref]
  4. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71(13), 2022–2025 (1993).
    [Crossref] [PubMed]
  5. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
    [Crossref] [PubMed]
  6. Q. S. Zou, T. B. Yu, J. T. Liu, N. H. Liu, T. B. Wang, and Q. H. Liao, “Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides,” J. Phys. D Appl. Phys. 48(34), 345301 (2015).
    [Crossref]
  7. Q. S. Zou, T. B. Yu, T. B. Wang, N. H. Liu, Q. H. Liao, and X. M. Xu, “Novel 1 × N ultrasonic power splitters based on self-imaging effect of phononic crystal waveguide arrays,” J. Appl. Phys. 119(8), 084509 (2016).
    [Crossref]
  8. Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
    [Crossref]
  9. S. He and J. D. Maynard, “Eigenvalue spectrum, density of states, and eigenfunctions in a two-dimensional quasicrystal,” Phys. Rev. Lett. 62(16), 1888–1891 (1989).
    [Crossref] [PubMed]
  10. C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. Z. Zhang, S. Z. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
    [Crossref]
  11. W. Steurer and D. Sutter-Widmer, “Photonic and phononic quasicrystals,” J. Phys. D Appl. Phys. 40(13), R229–R247 (2007).
    [Crossref]
  12. Y. Q. Wang, X. Y. Hu, X. S. Xu, B. Y. Cheng, and D. Z. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68(16), 165106 (2003).
    [Crossref]
  13. M. D. Zhang, W. Zhong, and X. D. Zhang, “Defect-free localized modes and coupled-resonator acoustic waveguides constructed in two-dimensional phononic quasicrystals,” J. Appl. Phys. 111(10), 104314 (2012).
    [Crossref]
  14. T. Yu, Z. Wang, W. Liu, T. Wang, N. Liu, and Q. Liao, “Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals,” Opt. Express 24(8), 7951–7959 (2016).
    [Crossref] [PubMed]
  15. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
    [Crossref] [PubMed]
  16. M. Maldovan and E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett. 88(25), 251907 (2006).
    [Crossref]
  17. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
    [Crossref] [PubMed]
  18. Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Léveque, and B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012).
    [Crossref]
  19. S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martínez, J. M. Escalante, and A. Makhoute, “Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities,” Phys. Rev. B 88(20), 205410 (2013).
    [Crossref]
  20. Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M. Oudich, S. El Jallal, J. C. Beugnot, J. M. Escalante, and A. Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3(6), 413–440 (2014).
    [Crossref]
  21. Z. Huang, K. Cui, Y. Li, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals,” Sci. Rep. 5, 15964 (2015).
    [Crossref] [PubMed]
  22. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [Crossref]
  23. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005).
    [Crossref]
  24. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
    [Crossref]
  25. S. Sadat-Saleh, S. Benchabane, F. I. Baida, M. P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
    [Crossref]
  26. Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
    [Crossref] [PubMed]
  27. D. Yudistira, Y. Pennec, B. Djafari Rouhani, S. Dupont, and V. Laude, “Non-radiative complete surface acoustic wave bandgap for finite-depth holey phononic crystal in lithium niobate,” Appl. Phys. Lett. 100(6), 061912 (2012).
    [Crossref]
  28. A. D. Villa, S. Enoch, G. Tayeb, F. Capolino, V. Pierro, and V. Galdi, “Localized modes in photonic quasicrystals with Penrose-type lattice,” Opt. Express 14(21), 10021–10027 (2006).
    [Crossref] [PubMed]
  29. D. F. Nelson, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45(8), 3688 (1974).
    [Crossref]
  30. M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74(4-5), 407–414 (2002).
    [Crossref]
  31. F. X. Xu, Q. C. Zou, Q. S. Zhou, T. B. Wang, T. B. Yu, and N. H. Liu, “Self-imaging effect in photonic quasicrystal waveguides: Application to 3 dB power splitter for terahertz waves,” Opt. Commun. 367, 108–111 (2016).
    [Crossref]
  32. Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, “Polarization state and level repulsion in two-dimensional phononic crystals and waveguides in the presence of material anisotropy,” J. Phys. D Appl. Phys. 43(18), 185401 (2010).
    [Crossref]
  33. K. Wang, “Light wave states in two-dimensional quasiperiodic media,” Phys. Rev. B 73(23), 235122 (2006).
    [Crossref]
  34. K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 84(24), 4875 (2004).
    [Crossref]
  35. A. Trabattoni, L. Maini, and G. Benedek, “Stopping light in two dimensional quasicrystalline waveguides,” Opt. Express 20(27), 28267–28272 (2012).
    [Crossref] [PubMed]
  36. P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, “Investigation of whispering gallery mode dependence on cavity geometry of quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 89(23), 231111 (2006).
    [Crossref]
  37. Y. B. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, “Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars,” Phys. Rev. B 93(5), 054109 (2016).
    [Crossref]
  38. S. Kaproulias and M. M. Sigalas, “Whispering gallery modes for elastic waves in disk resonators,” AIP Adv. 1(4), 041902 (2011).
    [Crossref]

2016 (4)

Q. S. Zou, T. B. Yu, T. B. Wang, N. H. Liu, Q. H. Liao, and X. M. Xu, “Novel 1 × N ultrasonic power splitters based on self-imaging effect of phononic crystal waveguide arrays,” J. Appl. Phys. 119(8), 084509 (2016).
[Crossref]

T. Yu, Z. Wang, W. Liu, T. Wang, N. Liu, and Q. Liao, “Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals,” Opt. Express 24(8), 7951–7959 (2016).
[Crossref] [PubMed]

F. X. Xu, Q. C. Zou, Q. S. Zhou, T. B. Wang, T. B. Yu, and N. H. Liu, “Self-imaging effect in photonic quasicrystal waveguides: Application to 3 dB power splitter for terahertz waves,” Opt. Commun. 367, 108–111 (2016).
[Crossref]

Y. B. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, “Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars,” Phys. Rev. B 93(5), 054109 (2016).
[Crossref]

2015 (2)

Z. Huang, K. Cui, Y. Li, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals,” Sci. Rep. 5, 15964 (2015).
[Crossref] [PubMed]

Q. S. Zou, T. B. Yu, J. T. Liu, N. H. Liu, T. B. Wang, and Q. H. Liao, “Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides,” J. Phys. D Appl. Phys. 48(34), 345301 (2015).
[Crossref]

2014 (2)

Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
[Crossref] [PubMed]

Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M. Oudich, S. El Jallal, J. C. Beugnot, J. M. Escalante, and A. Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3(6), 413–440 (2014).
[Crossref]

2013 (2)

S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martínez, J. M. Escalante, and A. Makhoute, “Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities,” Phys. Rev. B 88(20), 205410 (2013).
[Crossref]

T. B. Yu, S. Z. Li, N. H. Liu, T. B. Wang, Q. H. Liao, and X. M. Xu, “Highly efficient coupling between inner and surface fields in photonic crystal waveguides,” IEEE Photonics Technol. Lett. 25(15), 1496–1499 (2013).
[Crossref]

2012 (4)

M. D. Zhang, W. Zhong, and X. D. Zhang, “Defect-free localized modes and coupled-resonator acoustic waveguides constructed in two-dimensional phononic quasicrystals,” J. Appl. Phys. 111(10), 104314 (2012).
[Crossref]

Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Léveque, and B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012).
[Crossref]

D. Yudistira, Y. Pennec, B. Djafari Rouhani, S. Dupont, and V. Laude, “Non-radiative complete surface acoustic wave bandgap for finite-depth holey phononic crystal in lithium niobate,” Appl. Phys. Lett. 100(6), 061912 (2012).
[Crossref]

A. Trabattoni, L. Maini, and G. Benedek, “Stopping light in two dimensional quasicrystalline waveguides,” Opt. Express 20(27), 28267–28272 (2012).
[Crossref] [PubMed]

2011 (1)

S. Kaproulias and M. M. Sigalas, “Whispering gallery modes for elastic waves in disk resonators,” AIP Adv. 1(4), 041902 (2011).
[Crossref]

2010 (2)

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, “Polarization state and level repulsion in two-dimensional phononic crystals and waveguides in the presence of material anisotropy,” J. Phys. D Appl. Phys. 43(18), 185401 (2010).
[Crossref]

2009 (2)

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M. P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

2007 (2)

W. Steurer and D. Sutter-Widmer, “Photonic and phononic quasicrystals,” J. Phys. D Appl. Phys. 40(13), R229–R247 (2007).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

2006 (4)

A. D. Villa, S. Enoch, G. Tayeb, F. Capolino, V. Pierro, and V. Galdi, “Localized modes in photonic quasicrystals with Penrose-type lattice,” Opt. Express 14(21), 10021–10027 (2006).
[Crossref] [PubMed]

K. Wang, “Light wave states in two-dimensional quasiperiodic media,” Phys. Rev. B 73(23), 235122 (2006).
[Crossref]

M. Maldovan and E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett. 88(25), 251907 (2006).
[Crossref]

P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, “Investigation of whispering gallery mode dependence on cavity geometry of quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 89(23), 231111 (2006).
[Crossref]

2005 (2)

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005).
[Crossref]

2004 (1)

K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 84(24), 4875 (2004).
[Crossref]

2003 (1)

Y. Q. Wang, X. Y. Hu, X. S. Xu, B. Y. Cheng, and D. Z. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68(16), 165106 (2003).
[Crossref]

2002 (1)

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74(4-5), 407–414 (2002).
[Crossref]

2000 (1)

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

1999 (1)

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. Z. Zhang, S. Z. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

1998 (1)

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

1993 (1)

M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71(13), 2022–2025 (1993).
[Crossref] [PubMed]

1989 (1)

S. He and J. D. Maynard, “Eigenvalue spectrum, density of states, and eigenfunctions in a two-dimensional quasicrystal,” Phys. Rev. Lett. 62(16), 1888–1891 (1989).
[Crossref] [PubMed]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

1984 (1)

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

1974 (1)

D. F. Nelson, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45(8), 3688 (1974).
[Crossref]

Achaoui, Y.

Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, “Polarization state and level repulsion in two-dimensional phononic crystals and waveguides in the presence of material anisotropy,” J. Phys. D Appl. Phys. 43(18), 185401 (2010).
[Crossref]

Baba, T.

K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 84(24), 4875 (2004).
[Crossref]

Baida, F. I.

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M. P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005).
[Crossref]

Ban, S. Z.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. Z. Zhang, S. Z. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Benchabane, S.

Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, “Polarization state and level repulsion in two-dimensional phononic crystals and waveguides in the presence of material anisotropy,” J. Phys. D Appl. Phys. 43(18), 185401 (2010).
[Crossref]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M. P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

Benedek, G.

Bernal, M. P.

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M. P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

Bernal, M.-P.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005).
[Crossref]

Beugnot, J. C.

Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M. Oudich, S. El Jallal, J. C. Beugnot, J. M. Escalante, and A. Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3(6), 413–440 (2014).
[Crossref]

S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martínez, J. M. Escalante, and A. Makhoute, “Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities,” Phys. Rev. B 88(20), 205410 (2013).
[Crossref]

Blech, I.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Bonello, B.

Y. B. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, “Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars,” Phys. Rev. B 93(5), 054109 (2016).
[Crossref]

Cahn, J. W.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Capolino, F.

Carmon, T.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Chan, C. T.

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

Chan, J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Chan, Y. S.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

Cheng, B. Y.

Y. Q. Wang, X. Y. Hu, X. S. Xu, B. Y. Cheng, and D. Z. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68(16), 165106 (2003).
[Crossref]

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. Z. Zhang, S. Z. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Courjal, N.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005).
[Crossref]

Cui, K.

Z. Huang, K. Cui, Y. Li, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals,” Sci. Rep. 5, 15964 (2015).
[Crossref] [PubMed]

Dahdah, J.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Djafari Rouhani, B.

D. Yudistira, Y. Pennec, B. Djafari Rouhani, S. Dupont, and V. Laude, “Non-radiative complete surface acoustic wave bandgap for finite-depth holey phononic crystal in lithium niobate,” Appl. Phys. Lett. 100(6), 061912 (2012).
[Crossref]

Djafari-Rouhani, B.

Y. B. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, “Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars,” Phys. Rev. B 93(5), 054109 (2016).
[Crossref]

Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
[Crossref] [PubMed]

Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M. Oudich, S. El Jallal, J. C. Beugnot, J. M. Escalante, and A. Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3(6), 413–440 (2014).
[Crossref]

S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martínez, J. M. Escalante, and A. Makhoute, “Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities,” Phys. Rev. B 88(20), 205410 (2013).
[Crossref]

Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Léveque, and B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012).
[Crossref]

M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71(13), 2022–2025 (1993).
[Crossref] [PubMed]

Dobrzynski, L.

M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71(13), 2022–2025 (1993).
[Crossref] [PubMed]

Dupont, S.

Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
[Crossref] [PubMed]

D. Yudistira, Y. Pennec, B. Djafari Rouhani, S. Dupont, and V. Laude, “Non-radiative complete surface acoustic wave bandgap for finite-depth holey phononic crystal in lithium niobate,” Appl. Phys. Lett. 100(6), 061912 (2012).
[Crossref]

Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Léveque, and B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012).
[Crossref]

Eichenfield, M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

El Jallal, S.

Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M. Oudich, S. El Jallal, J. C. Beugnot, J. M. Escalante, and A. Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3(6), 413–440 (2014).
[Crossref]

El-Jallal, S.

S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martínez, J. M. Escalante, and A. Makhoute, “Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities,” Phys. Rev. B 88(20), 205410 (2013).
[Crossref]

Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Léveque, and B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012).
[Crossref]

Enoch, S.

Escalante, J. M.

Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M. Oudich, S. El Jallal, J. C. Beugnot, J. M. Escalante, and A. Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3(6), 413–440 (2014).
[Crossref]

S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martínez, J. M. Escalante, and A. Makhoute, “Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities,” Phys. Rev. B 88(20), 205410 (2013).
[Crossref]

Feng, X.

Z. Huang, K. Cui, Y. Li, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals,” Sci. Rep. 5, 15964 (2015).
[Crossref] [PubMed]

Fernez, N.

Y. B. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, “Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars,” Phys. Rev. B 93(5), 054109 (2016).
[Crossref]

Galdi, V.

Gazalet, J.

Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
[Crossref] [PubMed]

Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Léveque, and B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012).
[Crossref]

Gratias, D.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Gruson, Y.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Halevi, P.

M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71(13), 2022–2025 (1993).
[Crossref] [PubMed]

He, S.

S. He and J. D. Maynard, “Eigenvalue spectrum, density of states, and eigenfunctions in a two-dimensional quasicrystal,” Phys. Rev. Lett. 62(16), 1888–1891 (1989).
[Crossref] [PubMed]

Hémon, S.

Y. B. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, “Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars,” Phys. Rev. B 93(5), 054109 (2016).
[Crossref]

Hu, X. Y.

Y. Q. Wang, X. Y. Hu, X. S. Xu, B. Y. Cheng, and D. Z. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68(16), 165106 (2003).
[Crossref]

Huang, Y.

Z. Huang, K. Cui, Y. Li, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals,” Sci. Rep. 5, 15964 (2015).
[Crossref] [PubMed]

Huang, Z.

Z. Huang, K. Cui, Y. Li, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals,” Sci. Rep. 5, 15964 (2015).
[Crossref] [PubMed]

Jazbinšek, M.

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74(4-5), 407–414 (2002).
[Crossref]

Jin, C. J.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. Z. Zhang, S. Z. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Jin, Y. B.

Y. B. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, “Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars,” Phys. Rev. B 93(5), 054109 (2016).
[Crossref]

Kaproulias, S.

S. Kaproulias and M. M. Sigalas, “Whispering gallery modes for elastic waves in disk resonators,” AIP Adv. 1(4), 041902 (2011).
[Crossref]

Kastelik, J. C.

Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
[Crossref] [PubMed]

Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Léveque, and B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012).
[Crossref]

Khelif, A.

Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, “Polarization state and level repulsion in two-dimensional phononic crystals and waveguides in the presence of material anisotropy,” J. Phys. D Appl. Phys. 43(18), 185401 (2010).
[Crossref]

Kippenberg, T. J.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Kushwaha, M. S.

M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71(13), 2022–2025 (1993).
[Crossref] [PubMed]

Laude, V.

Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M. Oudich, S. El Jallal, J. C. Beugnot, J. M. Escalante, and A. Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3(6), 413–440 (2014).
[Crossref]

Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
[Crossref] [PubMed]

S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martínez, J. M. Escalante, and A. Makhoute, “Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities,” Phys. Rev. B 88(20), 205410 (2013).
[Crossref]

D. Yudistira, Y. Pennec, B. Djafari Rouhani, S. Dupont, and V. Laude, “Non-radiative complete surface acoustic wave bandgap for finite-depth holey phononic crystal in lithium niobate,” Appl. Phys. Lett. 100(6), 061912 (2012).
[Crossref]

Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, “Polarization state and level repulsion in two-dimensional phononic crystals and waveguides in the presence of material anisotropy,” J. Phys. D Appl. Phys. 43(18), 185401 (2010).
[Crossref]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M. P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

Lee, P. T.

P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, “Investigation of whispering gallery mode dependence on cavity geometry of quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 89(23), 231111 (2006).
[Crossref]

Léveque, G.

Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Léveque, and B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012).
[Crossref]

Li, S. Z.

T. B. Yu, S. Z. Li, N. H. Liu, T. B. Wang, Q. H. Liao, and X. M. Xu, “Highly efficient coupling between inner and surface fields in photonic crystal waveguides,” IEEE Photonics Technol. Lett. 25(15), 1496–1499 (2013).
[Crossref]

Li, Y.

Z. Huang, K. Cui, Y. Li, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals,” Sci. Rep. 5, 15964 (2015).
[Crossref] [PubMed]

Li, Z. L.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. Z. Zhang, S. Z. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Liao, Q.

Liao, Q. H.

Q. S. Zou, T. B. Yu, T. B. Wang, N. H. Liu, Q. H. Liao, and X. M. Xu, “Novel 1 × N ultrasonic power splitters based on self-imaging effect of phononic crystal waveguide arrays,” J. Appl. Phys. 119(8), 084509 (2016).
[Crossref]

Q. S. Zou, T. B. Yu, J. T. Liu, N. H. Liu, T. B. Wang, and Q. H. Liao, “Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides,” J. Phys. D Appl. Phys. 48(34), 345301 (2015).
[Crossref]

T. B. Yu, S. Z. Li, N. H. Liu, T. B. Wang, Q. H. Liao, and X. M. Xu, “Highly efficient coupling between inner and surface fields in photonic crystal waveguides,” IEEE Photonics Technol. Lett. 25(15), 1496–1499 (2013).
[Crossref]

Liu, F.

Z. Huang, K. Cui, Y. Li, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals,” Sci. Rep. 5, 15964 (2015).
[Crossref] [PubMed]

Liu, J. T.

Q. S. Zou, T. B. Yu, J. T. Liu, N. H. Liu, T. B. Wang, and Q. H. Liao, “Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides,” J. Phys. D Appl. Phys. 48(34), 345301 (2015).
[Crossref]

Liu, N.

Liu, N. H.

Q. S. Zou, T. B. Yu, T. B. Wang, N. H. Liu, Q. H. Liao, and X. M. Xu, “Novel 1 × N ultrasonic power splitters based on self-imaging effect of phononic crystal waveguide arrays,” J. Appl. Phys. 119(8), 084509 (2016).
[Crossref]

F. X. Xu, Q. C. Zou, Q. S. Zhou, T. B. Wang, T. B. Yu, and N. H. Liu, “Self-imaging effect in photonic quasicrystal waveguides: Application to 3 dB power splitter for terahertz waves,” Opt. Commun. 367, 108–111 (2016).
[Crossref]

Q. S. Zou, T. B. Yu, J. T. Liu, N. H. Liu, T. B. Wang, and Q. H. Liao, “Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides,” J. Phys. D Appl. Phys. 48(34), 345301 (2015).
[Crossref]

T. B. Yu, S. Z. Li, N. H. Liu, T. B. Wang, Q. H. Liao, and X. M. Xu, “Highly efficient coupling between inner and surface fields in photonic crystal waveguides,” IEEE Photonics Technol. Lett. 25(15), 1496–1499 (2013).
[Crossref]

Liu, W.

Liu, Z.

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Liu, Z. Y.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

Lu, T. C.

P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, “Investigation of whispering gallery mode dependence on cavity geometry of quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 89(23), 231111 (2006).
[Crossref]

Lu, T. W.

P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, “Investigation of whispering gallery mode dependence on cavity geometry of quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 89(23), 231111 (2006).
[Crossref]

Maini, L.

Makhoute, A.

S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martínez, J. M. Escalante, and A. Makhoute, “Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities,” Phys. Rev. B 88(20), 205410 (2013).
[Crossref]

Maldovan, M.

M. Maldovan and E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett. 88(25), 251907 (2006).
[Crossref]

Man, B. Y.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. Z. Zhang, S. Z. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Mao, Y.

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Martínez, A.

Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M. Oudich, S. El Jallal, J. C. Beugnot, J. M. Escalante, and A. Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3(6), 413–440 (2014).
[Crossref]

S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martínez, J. M. Escalante, and A. Makhoute, “Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities,” Phys. Rev. B 88(20), 205410 (2013).
[Crossref]

Maynard, J. D.

S. He and J. D. Maynard, “Eigenvalue spectrum, density of states, and eigenfunctions in a two-dimensional quasicrystal,” Phys. Rev. Lett. 62(16), 1888–1891 (1989).
[Crossref] [PubMed]

Moiseyenko, R. P.

Y. B. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, “Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars,” Phys. Rev. B 93(5), 054109 (2016).
[Crossref]

Nelson, D. F.

D. F. Nelson, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45(8), 3688 (1974).
[Crossref]

Nozaki, K.

K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 84(24), 4875 (2004).
[Crossref]

Oudich, M.

Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M. Oudich, S. El Jallal, J. C. Beugnot, J. M. Escalante, and A. Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3(6), 413–440 (2014).
[Crossref]

S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martínez, J. M. Escalante, and A. Makhoute, “Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities,” Phys. Rev. B 88(20), 205410 (2013).
[Crossref]

Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Léveque, and B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012).
[Crossref]

Painter, O.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Pan, Y.

Y. B. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, “Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars,” Phys. Rev. B 93(5), 054109 (2016).
[Crossref]

Papanikolaou, N.

Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M. Oudich, S. El Jallal, J. C. Beugnot, J. M. Escalante, and A. Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3(6), 413–440 (2014).
[Crossref]

Pennec, Y.

Y. B. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, “Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars,” Phys. Rev. B 93(5), 054109 (2016).
[Crossref]

Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
[Crossref] [PubMed]

Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M. Oudich, S. El Jallal, J. C. Beugnot, J. M. Escalante, and A. Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3(6), 413–440 (2014).
[Crossref]

S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martínez, J. M. Escalante, and A. Makhoute, “Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities,” Phys. Rev. B 88(20), 205410 (2013).
[Crossref]

Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Léveque, and B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012).
[Crossref]

D. Yudistira, Y. Pennec, B. Djafari Rouhani, S. Dupont, and V. Laude, “Non-radiative complete surface acoustic wave bandgap for finite-depth holey phononic crystal in lithium niobate,” Appl. Phys. Lett. 100(6), 061912 (2012).
[Crossref]

Pierro, V.

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Rokhsari, H.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Rolland, Q.

Q. Rolland, S. Dupont, J. Gazalet, J. C. Kastelik, Y. Pennec, B. Djafari-Rouhani, and V. Laude, “Simultaneous bandgaps in LiNbO3 phoxonic crystal slab,” Opt. Express 22(13), 16288–16297 (2014).
[Crossref] [PubMed]

Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Léveque, and B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012).
[Crossref]

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005).
[Crossref]

Sadat-Saleh, S.

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M. P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

Shechtman, D.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

Sheng, P.

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Sigalas, M. M.

S. Kaproulias and M. M. Sigalas, “Whispering gallery modes for elastic waves in disk resonators,” AIP Adv. 1(4), 041902 (2011).
[Crossref]

Steurer, W.

W. Steurer and D. Sutter-Widmer, “Photonic and phononic quasicrystals,” J. Phys. D Appl. Phys. 40(13), R229–R247 (2007).
[Crossref]

Sun, B.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. Z. Zhang, S. Z. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Sutter-Widmer, D.

W. Steurer and D. Sutter-Widmer, “Photonic and phononic quasicrystals,” J. Phys. D Appl. Phys. 40(13), R229–R247 (2007).
[Crossref]

Tayeb, G.

Thomas, E. L.

M. Maldovan and E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett. 88(25), 251907 (2006).
[Crossref]

Trabattoni, A.

Tsai, F. M.

P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, “Investigation of whispering gallery mode dependence on cavity geometry of quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 89(23), 231111 (2006).
[Crossref]

Ulliac, G.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

Vahala, K. J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Villa, A. D.

Wang, K.

K. Wang, “Light wave states in two-dimensional quasiperiodic media,” Phys. Rev. B 73(23), 235122 (2006).
[Crossref]

Wang, T.

Wang, T. B.

F. X. Xu, Q. C. Zou, Q. S. Zhou, T. B. Wang, T. B. Yu, and N. H. Liu, “Self-imaging effect in photonic quasicrystal waveguides: Application to 3 dB power splitter for terahertz waves,” Opt. Commun. 367, 108–111 (2016).
[Crossref]

Q. S. Zou, T. B. Yu, T. B. Wang, N. H. Liu, Q. H. Liao, and X. M. Xu, “Novel 1 × N ultrasonic power splitters based on self-imaging effect of phononic crystal waveguide arrays,” J. Appl. Phys. 119(8), 084509 (2016).
[Crossref]

Q. S. Zou, T. B. Yu, J. T. Liu, N. H. Liu, T. B. Wang, and Q. H. Liao, “Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides,” J. Phys. D Appl. Phys. 48(34), 345301 (2015).
[Crossref]

T. B. Yu, S. Z. Li, N. H. Liu, T. B. Wang, Q. H. Liao, and X. M. Xu, “Highly efficient coupling between inner and surface fields in photonic crystal waveguides,” IEEE Photonics Technol. Lett. 25(15), 1496–1499 (2013).
[Crossref]

Wang, Y. Q.

Y. Q. Wang, X. Y. Hu, X. S. Xu, B. Y. Cheng, and D. Z. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68(16), 165106 (2003).
[Crossref]

Wang, Z.

Xu, F. X.

F. X. Xu, Q. C. Zou, Q. S. Zhou, T. B. Wang, T. B. Yu, and N. H. Liu, “Self-imaging effect in photonic quasicrystal waveguides: Application to 3 dB power splitter for terahertz waves,” Opt. Commun. 367, 108–111 (2016).
[Crossref]

Xu, X. M.

Q. S. Zou, T. B. Yu, T. B. Wang, N. H. Liu, Q. H. Liao, and X. M. Xu, “Novel 1 × N ultrasonic power splitters based on self-imaging effect of phononic crystal waveguide arrays,” J. Appl. Phys. 119(8), 084509 (2016).
[Crossref]

T. B. Yu, S. Z. Li, N. H. Liu, T. B. Wang, Q. H. Liao, and X. M. Xu, “Highly efficient coupling between inner and surface fields in photonic crystal waveguides,” IEEE Photonics Technol. Lett. 25(15), 1496–1499 (2013).
[Crossref]

Xu, X. S.

Y. Q. Wang, X. Y. Hu, X. S. Xu, B. Y. Cheng, and D. Z. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68(16), 165106 (2003).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yang, L.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Yang, Z.

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Yu, T.

Yu, T. B.

Q. S. Zou, T. B. Yu, T. B. Wang, N. H. Liu, Q. H. Liao, and X. M. Xu, “Novel 1 × N ultrasonic power splitters based on self-imaging effect of phononic crystal waveguide arrays,” J. Appl. Phys. 119(8), 084509 (2016).
[Crossref]

F. X. Xu, Q. C. Zou, Q. S. Zhou, T. B. Wang, T. B. Yu, and N. H. Liu, “Self-imaging effect in photonic quasicrystal waveguides: Application to 3 dB power splitter for terahertz waves,” Opt. Commun. 367, 108–111 (2016).
[Crossref]

Q. S. Zou, T. B. Yu, J. T. Liu, N. H. Liu, T. B. Wang, and Q. H. Liao, “Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides,” J. Phys. D Appl. Phys. 48(34), 345301 (2015).
[Crossref]

T. B. Yu, S. Z. Li, N. H. Liu, T. B. Wang, Q. H. Liao, and X. M. Xu, “Highly efficient coupling between inner and surface fields in photonic crystal waveguides,” IEEE Photonics Technol. Lett. 25(15), 1496–1499 (2013).
[Crossref]

Yudistira, D.

D. Yudistira, Y. Pennec, B. Djafari Rouhani, S. Dupont, and V. Laude, “Non-radiative complete surface acoustic wave bandgap for finite-depth holey phononic crystal in lithium niobate,” Appl. Phys. Lett. 100(6), 061912 (2012).
[Crossref]

Zgonik, M.

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74(4-5), 407–414 (2002).
[Crossref]

Zhang, D. Z.

Y. Q. Wang, X. Y. Hu, X. S. Xu, B. Y. Cheng, and D. Z. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68(16), 165106 (2003).
[Crossref]

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. Z. Zhang, S. Z. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

Zhang, M. D.

M. D. Zhang, W. Zhong, and X. D. Zhang, “Defect-free localized modes and coupled-resonator acoustic waveguides constructed in two-dimensional phononic quasicrystals,” J. Appl. Phys. 111(10), 104314 (2012).
[Crossref]

Zhang, W.

Z. Huang, K. Cui, Y. Li, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals,” Sci. Rep. 5, 15964 (2015).
[Crossref] [PubMed]

Zhang, X.

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Zhang, X. D.

M. D. Zhang, W. Zhong, and X. D. Zhang, “Defect-free localized modes and coupled-resonator acoustic waveguides constructed in two-dimensional phononic quasicrystals,” J. Appl. Phys. 111(10), 104314 (2012).
[Crossref]

Zhong, W.

M. D. Zhang, W. Zhong, and X. D. Zhang, “Defect-free localized modes and coupled-resonator acoustic waveguides constructed in two-dimensional phononic quasicrystals,” J. Appl. Phys. 111(10), 104314 (2012).
[Crossref]

Zhou, Q. S.

F. X. Xu, Q. C. Zou, Q. S. Zhou, T. B. Wang, T. B. Yu, and N. H. Liu, “Self-imaging effect in photonic quasicrystal waveguides: Application to 3 dB power splitter for terahertz waves,” Opt. Commun. 367, 108–111 (2016).
[Crossref]

Zhu, Y. Y.

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Zou, Q. C.

F. X. Xu, Q. C. Zou, Q. S. Zhou, T. B. Wang, T. B. Yu, and N. H. Liu, “Self-imaging effect in photonic quasicrystal waveguides: Application to 3 dB power splitter for terahertz waves,” Opt. Commun. 367, 108–111 (2016).
[Crossref]

Zou, Q. S.

Q. S. Zou, T. B. Yu, T. B. Wang, N. H. Liu, Q. H. Liao, and X. M. Xu, “Novel 1 × N ultrasonic power splitters based on self-imaging effect of phononic crystal waveguide arrays,” J. Appl. Phys. 119(8), 084509 (2016).
[Crossref]

Q. S. Zou, T. B. Yu, J. T. Liu, N. H. Liu, T. B. Wang, and Q. H. Liao, “Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides,” J. Phys. D Appl. Phys. 48(34), 345301 (2015).
[Crossref]

AIP Adv. (1)

S. Kaproulias and M. M. Sigalas, “Whispering gallery modes for elastic waves in disk resonators,” AIP Adv. 1(4), 041902 (2011).
[Crossref]

Appl. Phys. B (1)

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74(4-5), 407–414 (2002).
[Crossref]

Appl. Phys. Lett. (8)

K. Nozaki and T. Baba, “Quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 84(24), 4875 (2004).
[Crossref]

P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, “Investigation of whispering gallery mode dependence on cavity geometry of quasiperiodic photonic crystal microcavity lasers,” Appl. Phys. Lett. 89(23), 231111 (2006).
[Crossref]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005).
[Crossref]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett. 96(13), 131103 (2010).
[Crossref]

D. Yudistira, Y. Pennec, B. Djafari Rouhani, S. Dupont, and V. Laude, “Non-radiative complete surface acoustic wave bandgap for finite-depth holey phononic crystal in lithium niobate,” Appl. Phys. Lett. 100(6), 061912 (2012).
[Crossref]

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. Z. Zhang, S. Z. Ban, and B. Sun, “Band gap and wave guiding effect in a quasiperiodic photonic crystal,” Appl. Phys. Lett. 75(13), 1848–1850 (1999).
[Crossref]

M. Maldovan and E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett. 88(25), 251907 (2006).
[Crossref]

Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Léveque, and B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. B. Yu, S. Z. Li, N. H. Liu, T. B. Wang, Q. H. Liao, and X. M. Xu, “Highly efficient coupling between inner and surface fields in photonic crystal waveguides,” IEEE Photonics Technol. Lett. 25(15), 1496–1499 (2013).
[Crossref]

J. Appl. Phys. (4)

Q. S. Zou, T. B. Yu, T. B. Wang, N. H. Liu, Q. H. Liao, and X. M. Xu, “Novel 1 × N ultrasonic power splitters based on self-imaging effect of phononic crystal waveguide arrays,” J. Appl. Phys. 119(8), 084509 (2016).
[Crossref]

M. D. Zhang, W. Zhong, and X. D. Zhang, “Defect-free localized modes and coupled-resonator acoustic waveguides constructed in two-dimensional phononic quasicrystals,” J. Appl. Phys. 111(10), 104314 (2012).
[Crossref]

S. Sadat-Saleh, S. Benchabane, F. I. Baida, M. P. Bernal, and V. Laude, “Tailoring simultaneous photonic and phononic band gaps,” J. Appl. Phys. 106(7), 074912 (2009).
[Crossref]

D. F. Nelson, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45(8), 3688 (1974).
[Crossref]

J. Phys. D Appl. Phys. (3)

Q. S. Zou, T. B. Yu, J. T. Liu, N. H. Liu, T. B. Wang, and Q. H. Liao, “Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides,” J. Phys. D Appl. Phys. 48(34), 345301 (2015).
[Crossref]

Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, “Polarization state and level repulsion in two-dimensional phononic crystals and waveguides in the presence of material anisotropy,” J. Phys. D Appl. Phys. 43(18), 185401 (2010).
[Crossref]

W. Steurer and D. Sutter-Widmer, “Photonic and phononic quasicrystals,” J. Phys. D Appl. Phys. 40(13), R229–R247 (2007).
[Crossref]

Nanophotonics (1)

Y. Pennec, V. Laude, N. Papanikolaou, B. Djafari-Rouhani, M. Oudich, S. El Jallal, J. C. Beugnot, J. M. Escalante, and A. Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3(6), 413–440 (2014).
[Crossref]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Nature (1)

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

F. X. Xu, Q. C. Zou, Q. S. Zhou, T. B. Wang, T. B. Yu, and N. H. Liu, “Self-imaging effect in photonic quasicrystal waveguides: Application to 3 dB power splitter for terahertz waves,” Opt. Commun. 367, 108–111 (2016).
[Crossref]

Opt. Express (4)

Phys. Rev. B (4)

S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martínez, J. M. Escalante, and A. Makhoute, “Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities,” Phys. Rev. B 88(20), 205410 (2013).
[Crossref]

Y. Q. Wang, X. Y. Hu, X. S. Xu, B. Y. Cheng, and D. Z. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68(16), 165106 (2003).
[Crossref]

Y. B. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S. Hémon, Y. Pan, and B. Djafari-Rouhani, “Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars,” Phys. Rev. B 93(5), 054109 (2016).
[Crossref]

K. Wang, “Light wave states in two-dimensional quasiperiodic media,” Phys. Rev. B 73(23), 235122 (2006).
[Crossref]

Phys. Rev. Lett. (6)

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[Crossref]

S. He and J. D. Maynard, “Eigenvalue spectrum, density of states, and eigenfunctions in a two-dimensional quasicrystal,” Phys. Rev. Lett. 62(16), 1888–1891 (1989).
[Crossref] [PubMed]

M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71(13), 2022–2025 (1993).
[Crossref] [PubMed]

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53(20), 1951–1953 (1984).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94(22), 223902 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

Z. Huang, K. Cui, Y. Li, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals,” Sci. Rep. 5, 15964 (2015).
[Crossref] [PubMed]

Science (1)

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289(5485), 1734–1736 (2000).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Eightfold quasiperiodic arrays of air holes in lithium niobate (LiNbO3) material. A point defect is created via removing a hole in the middle.
Fig. 2
Fig. 2 Phoxonic band gaps and localized modes formed via a point defect in LiNbO3 phoxonic quasicrystal (PhXQCs). (a) Normalized photonic frequencies (ωa/2πc) for transverse electric (TE) and transverse magnetic (TM) band gaps (filled color) and the localized TE and TM modes (symbols) vs. r/a0 within and outside photonic band gaps, where c is the light speed in air. (b) Normalized phononic frequencies (ωa/2πcT,LiNbO3) for phononic band gaps (filled color) and localized in-plane and out-of-plane modes (symbols) vs. r/a0 within and outside phononic band gaps, where cT,LiNbO3 is the transverse sound speed in LiNbO3 material. r is the radius of air holes.
Fig. 3
Fig. 3 Field distribution of localized modes with frequencies within the forbidden bands of PhXQCs having a middle point defect; the radius r is 0.375a0. These localized modes are indicated in Fig. 2: (a) electric field profile for the TE mode, (b) magnetic field profile for the first TM mode indicated by TM 1, and (c) displacement uz for the first out-of-plane phononic mode indicated by OUT 1.
Fig. 4
Fig. 4 Field distribution of the localized modes with frequencies within the transparency band of PhXQCs having a middle defect; the radius r is 0.375a0. These localized modes are indicated in Fig. 2: (a) magnetic field profile for the second TM mode indicated by TM 2; displacement uz of two out-of-plane phononic modes indicated by (b) OUT 2 and (c) OUT 3, respectively; and (d) total displacement u = [(ux)2 + (uy)2]1/2 for the in-plane phononic mode.
Fig. 5
Fig. 5 (a) Normalized frequencies of the localized photonic and phononic modes vs. r/a0 in octagonal rings, as shown in the inset. The field distribution of the localized modes indicated in Fig. 5(a), where the radius is 0.375a0: (b) magnetic field profile for the TM modes indicated by TM 2; displacement uz of two out-of-plane phononic modes indicated by (d) OUT 2 and (d) OUT 3, respectively; and (e) total displacement u = [(ux)2 + (uy)2]1/2 for the in-plane phononic mode.

Metrics