Abstract

Surgeons treat cataracts by replacing the clouded lens with an intraocular lens (IOL), but patients are required to wear reading glasses for tasks requiring near vision. We suggest a new voltage-controlled accommodating IOL made of an ionic polymer metal composite (IPMC) actuator to change focus. An in vitro experiment was conducted where an actuator was placed inside the eye and moved with applied voltage. The lens attached to the actuator was deformed by its movement to change the patient’s focus. The results showed that this system can accommodate a change of approximately 0.8 diopters under an applied voltage of ± 1.3 V.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cubic optical elements for an accommodative intraocular lens

Aleksey N. Simonov, Gleb Vdovin, and Michiel C. Rombach
Opt. Express 14(17) 7757-7775 (2006)

Electrically variable liquid crystal lenses for ophthalmic distance accommodation

T. Galstian, K. Asatryan, V. Presniakov, and A. Zohrabyan
Opt. Express 27(13) 18803-18817 (2019)

Combining in vitro test methods for measuring light scatter in intraocular lenses

Marrie van der Mooren, Tom van den Berg, Joris Coppens, and Patricia Piers
Biomed. Opt. Express 2(3) 505-510 (2011)

References

  • View by:
  • |
  • |
  • |

  1. World Health Organization, “Visual impairment and blindness,” http://www.who.int/mediacentre/factsheets/fs282/en/
  2. D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth-of-focus of the eye,” Optom. Vis. Sci. 74(7), 511–520 (1997).
    [Crossref] [PubMed]
  3. K. J. Hoffer and G. Savini, “Multifocal intraocular lenses: historical perspective,” in Multifocal Intraocular Lenses: The Art and the Practice, 1st ed., J. Alió and J. Pikkel, eds. (Springer, 2014).
  4. OcuLentis GmbH, “ LENTIS Mplus (X) Intraokularlinsen,” http://www.oculentis.com/lentis-mplus-x.html
  5. J. S. Pepose, “Design strategies for new accommodating IOLs,” Cataract Refract. Surg. Today 9, 39–45 (2009).
  6. J. L. Alio, A. Simonov, A. B. Plaza-Puche, A. Angelov, Y. Angelov, W. van Lawick, and M. Rombach, “Visual outcomes and accommodative response of the lumina accommodative intraocular lens,” Am. J. Ophthalmol. 164, 37–48 (2016).
    [Crossref] [PubMed]
  7. J. L. Alió, J. Ben-nun, J. L. Rodríguez-Prats, and A. B. Plaza, “Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept,” J. Cataract Refract. Surg. 35(10), 1671–1678 (2009).
    [Crossref] [PubMed]
  8. S. J. McCafferty and J. T. Schwiegerling, “Deformable surface accommodating intraocular lens: second generation prototype design methodology and testing,” Transl. Vis. Sci. Technol. 4(2), 17 (2015).
    [Crossref] [PubMed]
  9. S. Bala, R. Kumar, I. Kaur, J. Singh, P. Kaur, and S. Sharma, “Evaluation of demographic profile of patients with presbyopia and presbycusis,” J. Adv. Med. Dent. Sci. Res. 4(4), 10–13 (2016).
  10. R. Peng, Y. Li, S. Hu, M. Wei, and J. Chen, “Intraocular lens based on double-liquid variable-focus lens,” Appl. Opt. 53(2), 249–253 (2014).
    [Crossref] [PubMed]
  11. N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24(12), 13334–13342 (2016).
    [Crossref] [PubMed]
  12. G. Vdovin, M. Loktev, and A. Naumov, “On the possibility of intraocular adaptive optics,” Opt. Express 11(7), 810–817 (2003).
    [Crossref] [PubMed]
  13. K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
    [Crossref] [PubMed]
  14. K. Oguro, Y. Kawami, and H. Takenaka, “Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage,” Trans. J. Micromach. Soc. 5, 27–30 (1992).
  15. K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhara, and H. Takenaka, “Bending of polyelectrolyte membrane–platinum composites by electric stimuli I: Response characteristics to various waveforms,” Polym. J. 53, 79–84 (1995).
  16. U. K. Bhatt, A. L. Sheppard, S. Shah, H. S. Dua, T. Mihashi, T. Yamaguchi, and J. S. Wolffsohn, “Design and validity of a miniaturized open-field aberrometer,” J. Cataract Refract. Surg. 39(1), 36–40 (2013).
    [Crossref] [PubMed]
  17. D. A. Atchison, “Recent advances in representation of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 87(3), 138–148 (2004).
    [Crossref] [PubMed]
  18. C. M. DeBoer, J. K. Lee, B. P. Wheelan, C. Cable, W. Shi, Y. C. Tai, and M. S. Humayun, “Biomimetic accommodating intraocular lens using a valved deformable liquid balloon,” IEEE Trans. Biomed. Eng. 63(6), 1129–1135 (2016).
    [Crossref] [PubMed]
  19. J. L. Alió and J. Ben-Nun, “Study of the force dynamics at the capsular interface related to ciliary body stimulation in a primate model,” J. Refract. Surg. 31(2), 124–128 (2015).
    [Crossref] [PubMed]

2016 (4)

J. L. Alio, A. Simonov, A. B. Plaza-Puche, A. Angelov, Y. Angelov, W. van Lawick, and M. Rombach, “Visual outcomes and accommodative response of the lumina accommodative intraocular lens,” Am. J. Ophthalmol. 164, 37–48 (2016).
[Crossref] [PubMed]

S. Bala, R. Kumar, I. Kaur, J. Singh, P. Kaur, and S. Sharma, “Evaluation of demographic profile of patients with presbyopia and presbycusis,” J. Adv. Med. Dent. Sci. Res. 4(4), 10–13 (2016).

N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24(12), 13334–13342 (2016).
[Crossref] [PubMed]

C. M. DeBoer, J. K. Lee, B. P. Wheelan, C. Cable, W. Shi, Y. C. Tai, and M. S. Humayun, “Biomimetic accommodating intraocular lens using a valved deformable liquid balloon,” IEEE Trans. Biomed. Eng. 63(6), 1129–1135 (2016).
[Crossref] [PubMed]

2015 (2)

J. L. Alió and J. Ben-Nun, “Study of the force dynamics at the capsular interface related to ciliary body stimulation in a primate model,” J. Refract. Surg. 31(2), 124–128 (2015).
[Crossref] [PubMed]

S. J. McCafferty and J. T. Schwiegerling, “Deformable surface accommodating intraocular lens: second generation prototype design methodology and testing,” Transl. Vis. Sci. Technol. 4(2), 17 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

U. K. Bhatt, A. L. Sheppard, S. Shah, H. S. Dua, T. Mihashi, T. Yamaguchi, and J. S. Wolffsohn, “Design and validity of a miniaturized open-field aberrometer,” J. Cataract Refract. Surg. 39(1), 36–40 (2013).
[Crossref] [PubMed]

2009 (2)

J. L. Alió, J. Ben-nun, J. L. Rodríguez-Prats, and A. B. Plaza, “Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept,” J. Cataract Refract. Surg. 35(10), 1671–1678 (2009).
[Crossref] [PubMed]

J. S. Pepose, “Design strategies for new accommodating IOLs,” Cataract Refract. Surg. Today 9, 39–45 (2009).

2004 (1)

D. A. Atchison, “Recent advances in representation of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 87(3), 138–148 (2004).
[Crossref] [PubMed]

2003 (1)

1997 (1)

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth-of-focus of the eye,” Optom. Vis. Sci. 74(7), 511–520 (1997).
[Crossref] [PubMed]

1995 (1)

K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhara, and H. Takenaka, “Bending of polyelectrolyte membrane–platinum composites by electric stimuli I: Response characteristics to various waveforms,” Polym. J. 53, 79–84 (1995).

1992 (1)

K. Oguro, Y. Kawami, and H. Takenaka, “Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage,” Trans. J. Micromach. Soc. 5, 27–30 (1992).

Alio, J. L.

J. L. Alio, A. Simonov, A. B. Plaza-Puche, A. Angelov, Y. Angelov, W. van Lawick, and M. Rombach, “Visual outcomes and accommodative response of the lumina accommodative intraocular lens,” Am. J. Ophthalmol. 164, 37–48 (2016).
[Crossref] [PubMed]

Alió, J. L.

J. L. Alió and J. Ben-Nun, “Study of the force dynamics at the capsular interface related to ciliary body stimulation in a primate model,” J. Refract. Surg. 31(2), 124–128 (2015).
[Crossref] [PubMed]

J. L. Alió, J. Ben-nun, J. L. Rodríguez-Prats, and A. B. Plaza, “Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept,” J. Cataract Refract. Surg. 35(10), 1671–1678 (2009).
[Crossref] [PubMed]

Angelov, A.

J. L. Alio, A. Simonov, A. B. Plaza-Puche, A. Angelov, Y. Angelov, W. van Lawick, and M. Rombach, “Visual outcomes and accommodative response of the lumina accommodative intraocular lens,” Am. J. Ophthalmol. 164, 37–48 (2016).
[Crossref] [PubMed]

Angelov, Y.

J. L. Alio, A. Simonov, A. B. Plaza-Puche, A. Angelov, Y. Angelov, W. van Lawick, and M. Rombach, “Visual outcomes and accommodative response of the lumina accommodative intraocular lens,” Am. J. Ophthalmol. 164, 37–48 (2016).
[Crossref] [PubMed]

Asaka, K.

K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhara, and H. Takenaka, “Bending of polyelectrolyte membrane–platinum composites by electric stimuli I: Response characteristics to various waveforms,” Polym. J. 53, 79–84 (1995).

Atchison, D. A.

D. A. Atchison, “Recent advances in representation of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 87(3), 138–148 (2004).
[Crossref] [PubMed]

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth-of-focus of the eye,” Optom. Vis. Sci. 74(7), 511–520 (1997).
[Crossref] [PubMed]

Bala, S.

S. Bala, R. Kumar, I. Kaur, J. Singh, P. Kaur, and S. Sharma, “Evaluation of demographic profile of patients with presbyopia and presbycusis,” J. Adv. Med. Dent. Sci. Res. 4(4), 10–13 (2016).

Ben-Nun, J.

J. L. Alió and J. Ben-Nun, “Study of the force dynamics at the capsular interface related to ciliary body stimulation in a primate model,” J. Refract. Surg. 31(2), 124–128 (2015).
[Crossref] [PubMed]

J. L. Alió, J. Ben-nun, J. L. Rodríguez-Prats, and A. B. Plaza, “Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept,” J. Cataract Refract. Surg. 35(10), 1671–1678 (2009).
[Crossref] [PubMed]

Bhatt, U. K.

U. K. Bhatt, A. L. Sheppard, S. Shah, H. S. Dua, T. Mihashi, T. Yamaguchi, and J. S. Wolffsohn, “Design and validity of a miniaturized open-field aberrometer,” J. Cataract Refract. Surg. 39(1), 36–40 (2013).
[Crossref] [PubMed]

Cable, C.

C. M. DeBoer, J. K. Lee, B. P. Wheelan, C. Cable, W. Shi, Y. C. Tai, and M. S. Humayun, “Biomimetic accommodating intraocular lens using a valved deformable liquid balloon,” IEEE Trans. Biomed. Eng. 63(6), 1129–1135 (2016).
[Crossref] [PubMed]

Charman, W. N.

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth-of-focus of the eye,” Optom. Vis. Sci. 74(7), 511–520 (1997).
[Crossref] [PubMed]

Chen, J.

DeBoer, C. M.

C. M. DeBoer, J. K. Lee, B. P. Wheelan, C. Cable, W. Shi, Y. C. Tai, and M. S. Humayun, “Biomimetic accommodating intraocular lens using a valved deformable liquid balloon,” IEEE Trans. Biomed. Eng. 63(6), 1129–1135 (2016).
[Crossref] [PubMed]

Domicone, N. W.

Dua, H. S.

U. K. Bhatt, A. L. Sheppard, S. Shah, H. S. Dua, T. Mihashi, T. Yamaguchi, and J. S. Wolffsohn, “Design and validity of a miniaturized open-field aberrometer,” J. Cataract Refract. Surg. 39(1), 36–40 (2013).
[Crossref] [PubMed]

Hasan, N.

Hu, S.

Humayun, M. S.

C. M. DeBoer, J. K. Lee, B. P. Wheelan, C. Cable, W. Shi, Y. C. Tai, and M. S. Humayun, “Biomimetic accommodating intraocular lens using a valved deformable liquid balloon,” IEEE Trans. Biomed. Eng. 63(6), 1129–1135 (2016).
[Crossref] [PubMed]

Kaur, I.

S. Bala, R. Kumar, I. Kaur, J. Singh, P. Kaur, and S. Sharma, “Evaluation of demographic profile of patients with presbyopia and presbycusis,” J. Adv. Med. Dent. Sci. Res. 4(4), 10–13 (2016).

Kaur, P.

S. Bala, R. Kumar, I. Kaur, J. Singh, P. Kaur, and S. Sharma, “Evaluation of demographic profile of patients with presbyopia and presbycusis,” J. Adv. Med. Dent. Sci. Res. 4(4), 10–13 (2016).

Kawami, Y.

K. Oguro, Y. Kawami, and H. Takenaka, “Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage,” Trans. J. Micromach. Soc. 5, 27–30 (1992).

Kim, H.

Kumar, R.

S. Bala, R. Kumar, I. Kaur, J. Singh, P. Kaur, and S. Sharma, “Evaluation of demographic profile of patients with presbyopia and presbycusis,” J. Adv. Med. Dent. Sci. Res. 4(4), 10–13 (2016).

Lee, J. K.

C. M. DeBoer, J. K. Lee, B. P. Wheelan, C. Cable, W. Shi, Y. C. Tai, and M. S. Humayun, “Biomimetic accommodating intraocular lens using a valved deformable liquid balloon,” IEEE Trans. Biomed. Eng. 63(6), 1129–1135 (2016).
[Crossref] [PubMed]

Li, Y.

Loktev, M.

Mastrangelo, C. H.

McCafferty, S. J.

S. J. McCafferty and J. T. Schwiegerling, “Deformable surface accommodating intraocular lens: second generation prototype design methodology and testing,” Transl. Vis. Sci. Technol. 4(2), 17 (2015).
[Crossref] [PubMed]

Mihashi, T.

U. K. Bhatt, A. L. Sheppard, S. Shah, H. S. Dua, T. Mihashi, T. Yamaguchi, and J. S. Wolffsohn, “Design and validity of a miniaturized open-field aberrometer,” J. Cataract Refract. Surg. 39(1), 36–40 (2013).
[Crossref] [PubMed]

Mizuhara, M.

K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhara, and H. Takenaka, “Bending of polyelectrolyte membrane–platinum composites by electric stimuli I: Response characteristics to various waveforms,” Polym. J. 53, 79–84 (1995).

Naumov, A.

Nishimura, Y.

K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhara, and H. Takenaka, “Bending of polyelectrolyte membrane–platinum composites by electric stimuli I: Response characteristics to various waveforms,” Polym. J. 53, 79–84 (1995).

Oguro, K.

K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhara, and H. Takenaka, “Bending of polyelectrolyte membrane–platinum composites by electric stimuli I: Response characteristics to various waveforms,” Polym. J. 53, 79–84 (1995).

K. Oguro, Y. Kawami, and H. Takenaka, “Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage,” Trans. J. Micromach. Soc. 5, 27–30 (1992).

Peng, R.

Pepose, J. S.

J. S. Pepose, “Design strategies for new accommodating IOLs,” Cataract Refract. Surg. Today 9, 39–45 (2009).

Plaza, A. B.

J. L. Alió, J. Ben-nun, J. L. Rodríguez-Prats, and A. B. Plaza, “Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept,” J. Cataract Refract. Surg. 35(10), 1671–1678 (2009).
[Crossref] [PubMed]

Plaza-Puche, A. B.

J. L. Alio, A. Simonov, A. B. Plaza-Puche, A. Angelov, Y. Angelov, W. van Lawick, and M. Rombach, “Visual outcomes and accommodative response of the lumina accommodative intraocular lens,” Am. J. Ophthalmol. 164, 37–48 (2016).
[Crossref] [PubMed]

Rodríguez-Prats, J. L.

J. L. Alió, J. Ben-nun, J. L. Rodríguez-Prats, and A. B. Plaza, “Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept,” J. Cataract Refract. Surg. 35(10), 1671–1678 (2009).
[Crossref] [PubMed]

Rombach, M.

J. L. Alio, A. Simonov, A. B. Plaza-Puche, A. Angelov, Y. Angelov, W. van Lawick, and M. Rombach, “Visual outcomes and accommodative response of the lumina accommodative intraocular lens,” Am. J. Ophthalmol. 164, 37–48 (2016).
[Crossref] [PubMed]

Schwiegerling, J. T.

S. J. McCafferty and J. T. Schwiegerling, “Deformable surface accommodating intraocular lens: second generation prototype design methodology and testing,” Transl. Vis. Sci. Technol. 4(2), 17 (2015).
[Crossref] [PubMed]

Shah, S.

U. K. Bhatt, A. L. Sheppard, S. Shah, H. S. Dua, T. Mihashi, T. Yamaguchi, and J. S. Wolffsohn, “Design and validity of a miniaturized open-field aberrometer,” J. Cataract Refract. Surg. 39(1), 36–40 (2013).
[Crossref] [PubMed]

Sharma, S.

S. Bala, R. Kumar, I. Kaur, J. Singh, P. Kaur, and S. Sharma, “Evaluation of demographic profile of patients with presbyopia and presbycusis,” J. Adv. Med. Dent. Sci. Res. 4(4), 10–13 (2016).

Sheppard, A. L.

U. K. Bhatt, A. L. Sheppard, S. Shah, H. S. Dua, T. Mihashi, T. Yamaguchi, and J. S. Wolffsohn, “Design and validity of a miniaturized open-field aberrometer,” J. Cataract Refract. Surg. 39(1), 36–40 (2013).
[Crossref] [PubMed]

Shi, W.

C. M. DeBoer, J. K. Lee, B. P. Wheelan, C. Cable, W. Shi, Y. C. Tai, and M. S. Humayun, “Biomimetic accommodating intraocular lens using a valved deformable liquid balloon,” IEEE Trans. Biomed. Eng. 63(6), 1129–1135 (2016).
[Crossref] [PubMed]

Simonov, A.

J. L. Alio, A. Simonov, A. B. Plaza-Puche, A. Angelov, Y. Angelov, W. van Lawick, and M. Rombach, “Visual outcomes and accommodative response of the lumina accommodative intraocular lens,” Am. J. Ophthalmol. 164, 37–48 (2016).
[Crossref] [PubMed]

Singh, J.

S. Bala, R. Kumar, I. Kaur, J. Singh, P. Kaur, and S. Sharma, “Evaluation of demographic profile of patients with presbyopia and presbycusis,” J. Adv. Med. Dent. Sci. Res. 4(4), 10–13 (2016).

Tai, Y. C.

C. M. DeBoer, J. K. Lee, B. P. Wheelan, C. Cable, W. Shi, Y. C. Tai, and M. S. Humayun, “Biomimetic accommodating intraocular lens using a valved deformable liquid balloon,” IEEE Trans. Biomed. Eng. 63(6), 1129–1135 (2016).
[Crossref] [PubMed]

Takenaka, H.

K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhara, and H. Takenaka, “Bending of polyelectrolyte membrane–platinum composites by electric stimuli I: Response characteristics to various waveforms,” Polym. J. 53, 79–84 (1995).

K. Oguro, Y. Kawami, and H. Takenaka, “Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage,” Trans. J. Micromach. Soc. 5, 27–30 (1992).

van Lawick, W.

J. L. Alio, A. Simonov, A. B. Plaza-Puche, A. Angelov, Y. Angelov, W. van Lawick, and M. Rombach, “Visual outcomes and accommodative response of the lumina accommodative intraocular lens,” Am. J. Ophthalmol. 164, 37–48 (2016).
[Crossref] [PubMed]

Vdovin, G.

Wei, K.

Wei, M.

Wheelan, B. P.

C. M. DeBoer, J. K. Lee, B. P. Wheelan, C. Cable, W. Shi, Y. C. Tai, and M. S. Humayun, “Biomimetic accommodating intraocular lens using a valved deformable liquid balloon,” IEEE Trans. Biomed. Eng. 63(6), 1129–1135 (2016).
[Crossref] [PubMed]

Wolffsohn, J. S.

U. K. Bhatt, A. L. Sheppard, S. Shah, H. S. Dua, T. Mihashi, T. Yamaguchi, and J. S. Wolffsohn, “Design and validity of a miniaturized open-field aberrometer,” J. Cataract Refract. Surg. 39(1), 36–40 (2013).
[Crossref] [PubMed]

Woods, R. L.

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth-of-focus of the eye,” Optom. Vis. Sci. 74(7), 511–520 (1997).
[Crossref] [PubMed]

Yamaguchi, T.

U. K. Bhatt, A. L. Sheppard, S. Shah, H. S. Dua, T. Mihashi, T. Yamaguchi, and J. S. Wolffsohn, “Design and validity of a miniaturized open-field aberrometer,” J. Cataract Refract. Surg. 39(1), 36–40 (2013).
[Crossref] [PubMed]

Zhao, Y.

Am. J. Ophthalmol. (1)

J. L. Alio, A. Simonov, A. B. Plaza-Puche, A. Angelov, Y. Angelov, W. van Lawick, and M. Rombach, “Visual outcomes and accommodative response of the lumina accommodative intraocular lens,” Am. J. Ophthalmol. 164, 37–48 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Cataract Refract. Surg. Today (1)

J. S. Pepose, “Design strategies for new accommodating IOLs,” Cataract Refract. Surg. Today 9, 39–45 (2009).

Clin. Exp. Optom. (1)

D. A. Atchison, “Recent advances in representation of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 87(3), 138–148 (2004).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

C. M. DeBoer, J. K. Lee, B. P. Wheelan, C. Cable, W. Shi, Y. C. Tai, and M. S. Humayun, “Biomimetic accommodating intraocular lens using a valved deformable liquid balloon,” IEEE Trans. Biomed. Eng. 63(6), 1129–1135 (2016).
[Crossref] [PubMed]

J. Adv. Med. Dent. Sci. Res. (1)

S. Bala, R. Kumar, I. Kaur, J. Singh, P. Kaur, and S. Sharma, “Evaluation of demographic profile of patients with presbyopia and presbycusis,” J. Adv. Med. Dent. Sci. Res. 4(4), 10–13 (2016).

J. Cataract Refract. Surg. (2)

J. L. Alió, J. Ben-nun, J. L. Rodríguez-Prats, and A. B. Plaza, “Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept,” J. Cataract Refract. Surg. 35(10), 1671–1678 (2009).
[Crossref] [PubMed]

U. K. Bhatt, A. L. Sheppard, S. Shah, H. S. Dua, T. Mihashi, T. Yamaguchi, and J. S. Wolffsohn, “Design and validity of a miniaturized open-field aberrometer,” J. Cataract Refract. Surg. 39(1), 36–40 (2013).
[Crossref] [PubMed]

J. Refract. Surg. (1)

J. L. Alió and J. Ben-Nun, “Study of the force dynamics at the capsular interface related to ciliary body stimulation in a primate model,” J. Refract. Surg. 31(2), 124–128 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Optom. Vis. Sci. (1)

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth-of-focus of the eye,” Optom. Vis. Sci. 74(7), 511–520 (1997).
[Crossref] [PubMed]

Polym. J. (1)

K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhara, and H. Takenaka, “Bending of polyelectrolyte membrane–platinum composites by electric stimuli I: Response characteristics to various waveforms,” Polym. J. 53, 79–84 (1995).

Trans. J. Micromach. Soc. (1)

K. Oguro, Y. Kawami, and H. Takenaka, “Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage,” Trans. J. Micromach. Soc. 5, 27–30 (1992).

Transl. Vis. Sci. Technol. (1)

S. J. McCafferty and J. T. Schwiegerling, “Deformable surface accommodating intraocular lens: second generation prototype design methodology and testing,” Transl. Vis. Sci. Technol. 4(2), 17 (2015).
[Crossref] [PubMed]

Other (3)

K. J. Hoffer and G. Savini, “Multifocal intraocular lenses: historical perspective,” in Multifocal Intraocular Lenses: The Art and the Practice, 1st ed., J. Alió and J. Pikkel, eds. (Springer, 2014).

OcuLentis GmbH, “ LENTIS Mplus (X) Intraokularlinsen,” http://www.oculentis.com/lentis-mplus-x.html

World Health Organization, “Visual impairment and blindness,” http://www.who.int/mediacentre/factsheets/fs282/en/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Three general series of accommodating IOLs.
Fig. 2
Fig. 2 Image of future accommodating IOL system using an ion polymer metal composite actuator.
Fig. 3
Fig. 3 IPMC actuator: A) design for accommodating IOL, B) mechanism.
Fig. 4
Fig. 4 In vitro experiment: (A) whole system, (B) zig for actuator and lens, (C) pathway of the light, and (D) close-up view of zig and lens.
Fig. 5
Fig. 5 Results of the in vitro experiment.
Fig. 6
Fig. 6 Results of experiment No. 1 (time: 1000 ms). Upper left: actuator and lens. Lower left: position of light emitted from the sensor and its path through the lens and back to the sensor. Upper right: total aberration. Lower right: higher-order aberrations.
Fig. 7
Fig. 7 Deformation in the experiment.

Tables (1)

Tables Icon

Table 1 Results of spherical equivalent.

Metrics