Abstract

Extended coupled-wave analysis of optical parametric chirped-pulse amplification (OPCPA) reveals regimes whereby high-peak-power few-cycle pulses can be generated in the long-wavelength infrared (LWIR) spectral range. Broadband OPCPA in suitable nonlinear crystals pumped at around 2 μm and seeded either through the signal or the idler input is shown to enable the generation of high-power field waveforms with pulse widths shorter than two field cycles within the entire LWIR range.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses

Qingbin Zhang, Eiji J. Takahashi, Oliver D. Mücke, Peixiang Lu, and Katsumi Midorikawa
Opt. Express 19(8) 7190-7212 (2011)

Generation of millijoule few-cycle pulses at 5  μm by indirect spectral shaping of the idler in an optical parametric chirped pulse amplifier

Martin Bock, Lorenz von Grafenstein, Uwe Griebner, and Thomas Elsaesser
J. Opt. Soc. Am. B 35(12) C18-C24 (2018)

High-energy two-cycle pulses at 3.2 μm by a broadband-pumped dual-chirped optical parametric amplification

Yanchun Yin, Jie Li, Xiaoming Ren, Yang Wang, Andrew Chew, and Zenghu Chang
Opt. Express 24(22) 24989-24998 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Franz, Kärtner, Few-Cycle Laser Pulse Generation and Its Applications (Springer, 2004).
  2. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
    [Crossref]
  3. P. Agostini and L. F. DiMauro, “Atoms in high intensity mid-infrared pulses,” Contemp. Phys. 49(3), 179–197 (2008).
    [Crossref]
  4. P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
    [Crossref]
  5. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
    [Crossref] [PubMed]
  6. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
    [Crossref] [PubMed]
  7. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
    [Crossref] [PubMed]
  8. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Ya. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3(3), 299–302 (2016).
    [Crossref]
  9. J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
    [Crossref]
  10. D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9 µm in argon,” Opt. Lett. 37(16), 3456–3458 (2012).
    [Crossref] [PubMed]
  11. A. V. Mitrofanov, A. A. Voronin, S. I. Mitryukovskiy, D. A. Sidorov-Biryukov, A. Pugžlys, G. Andriukaitis, T. Flöry, E. A. Stepanov, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics,” Opt. Lett. 40(9), 2068–2071 (2015).
    [Crossref] [PubMed]
  12. D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
    [Crossref]
  13. D. Kartashov, S. Ališauskas, A. Pugžlys, A. A. Voronin, A. M. Zheltikov, and A. Baltuška, “Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity,” Opt. Lett. 37(12), 2268–2270 (2012).
    [Crossref] [PubMed]
  14. E. E. Serebryannikov and A. M. Zheltikov, “Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle,” Phys. Rev. Lett. 113(4), 043901 (2014).
    [Crossref] [PubMed]
  15. D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, “7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm,” Optica 3(2), 147–150 (2016).
    [Crossref]
  16. J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2002).
  17. A. Krier, Mid-Infrared Semiconductor Optoelectronics (Springer-Verlag, 2006), p. 118.
  18. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  19. M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH4 and N2O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett. 39(4), 957–960 (2014).
    [Crossref] [PubMed]
  20. S. Liakat, K. A. Bors, L. Xu, C. M. Woods, J. Doyle, and C. F. Gmachl, “Noninvasive in vivo glucose sensing on human subjects using mid-infrared light,” Biomed. Opt. Express 5(7), 2397–2404 (2014).
    [Crossref] [PubMed]
  21. R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” TrAC Trends Analyt. Chem. 18(2), 85–93 (1999).
    [Crossref]
  22. A. A. Voronin, V. M. Gordienko, V. T. Platonenko, V. Y. Panchenko, and A. M. Zheltikov, “Ionization-assisted guided-wave pulse compression to extreme peak powers and single-cycle pulse widths in the mid-infrared,” Opt. Lett. 35(21), 3640–3642 (2010).
    [Crossref] [PubMed]
  23. J. J. Pigeon, S. Y. Tochitsky, and C. Joshi, “High-power, mid-infrared, picosecond pulses generated by compression of a CO2 laser beat-wave in GaAs,” Opt. Lett. 40(24), 5730–5733 (2015).
    [Crossref] [PubMed]
  24. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  25. A. A. Lanin, A. A. Voronin, E. A. Stepanov, A. B. Fedotov, and A. M. Zheltikov, “Multioctave, 3-18 μm sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid,” Opt. Lett. 40(6), 974–977 (2015).
    [Crossref] [PubMed]
  26. K. L. Vodop’yanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskiĭ, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3 µm range,” Sov. J. Quantum Electron. 17(9), 1159–1161 (1987).
    [Crossref]
  27. R. D. Peterson, K. L. Schepler, J. L. Brown, and P. G. Schunemann, “Damage properties of ZnGeP2 at 2 μm,” J. Opt. Soc. Am. B 12(11), 2142–2146 (1995).
    [Crossref]
  28. K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7–9), 1891–1896 (2008).
    [Crossref]
  29. X. Zhao, S. Zhu, B. Zhao, B. Chen, Z. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method,” J. Cryst. Growth 311(1), 190–193 (2008).
    [Crossref]
  30. K. L. Vodopyanov, “Parametric generation of tunable infrared radiation in ZnGeP2 and GaSe pumped at 3 μm,” J. Opt. Soc. Am. B 10(9), 1723–1729 (1993).
    [Crossref]
  31. G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’Ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” Sov. J. Exp. Theor. Phys. Lett. 16, 90–92 (1972).
  32. N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far-infrared conversion materials: gallium selenide for far-infrared conversion applications,” Prog. Cryst. Growth Charact. Mater. 37(1), 47–102 (1998).
    [Crossref]
  33. K. Kato, F. Tanno, and N. Umemura, “Sellmeier and thermo-optic dispersion formulas for GaSe (Revisited),” Appl. Opt. 52(11), 2325–2328 (2013).
    [Crossref] [PubMed]
  34. G. Boyd, H. Kasper, J. McFee, and F. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. 8(12), 900–908 (1972).
    [Crossref]
  35. N. P. Barnes, D. J. Gettemy, J. R. Hietanen, and R. A. Lannini, “Parametric amplification in AgGaSe2.,” Appl. Opt. 28(23), 5162–5168 (1989).
    [Crossref] [PubMed]
  36. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  37. A. M. Zheltikov, “Let there be white light: supercontinuum generation by ultrashort laser pulses,” Phys. Uspekhi 49(6), 605–628 (2006).
    [Crossref]
  38. M. Hemmer, D. Sánchez, M. Jelínek, V. Smirnov, H. Jelinkova, V. Kubeček, and J. Biegert, “2-μm wavelength, high-energy Ho:YLF chirped-pulse amplifier for mid-infrared OPCPA,” Opt. Lett. 40(4), 451–454 (2015).
    [Crossref] [PubMed]
  39. P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2749 (2013).
    [Crossref] [PubMed]
  40. P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016).
    [Crossref] [PubMed]
  41. P. Kroetz, A. Ruehl, G. Chatterjee, A.-L. Calendron, K. Murari, H. Cankaya, P. Li, F. X. Kärtner, I. Hartl, and R. J. Miller, “Overcoming bifurcation instability in high-repetition-rate Ho:YLF regenerative amplifiers,” Opt. Lett. 40(23), 5427–5430 (2015).
    [Crossref] [PubMed]
  42. K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers,” Opt. Lett. 41(6), 1114–1117 (2016).
    [Crossref] [PubMed]
  43. L. von Grafenstein, M. Bock, G. Steinmeyer, U. Griebner, and T. Elsaesser, “Taming chaos: 16 mJ picosecond Ho: YLF regenerative amplifier with 0.7 kHz repetition rate,” Laser Photonics Rev. 10(1), 123–130 (2016).
    [Crossref]
  44. H. Fonnum, E. Lippert, and M. W. Haakestad, “550 mJ Q-switched cryogenic Ho:YLF oscillator pumped with a 100 W Tm:fiber laser,” Opt. Lett. 38(11), 1884–1886 (2013).
    [Crossref] [PubMed]
  45. L. Wang, X. Cai, J. Yang, X. Wu, H. Jiang, and J. Wang, “520 mJ langasite electro-optically Q-switched Cr, Tm, Ho:YAG laser,” Opt. Lett. 37(11), 1986–1988 (2012).
    [Crossref] [PubMed]
  46. Y. R. Shen, Principles of Nonlinear Optics (Wiley-Interscience, 1984).
  47. R. Baumgartner and R. Byer, “Optical Parametrical Amplification,” IEEE J. Quantum Electron. 15(6), 432–444 (1979).
    [Crossref]
  48. J. M. Manley and H. E. Rowe, “Some general properties of nonlinear elements: Pt 1 - General energy relations,” Proc. IRE44(7), 904–913 (1956).
  49. A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(2 Part 1), 700–703 (1997).
    [Crossref]
  50. B. C. Ziegler and K. L. Schepler, “Transmission and damage-threshold measurements in AgGaSe2 at 2.1 μm,” Appl. Opt. 30(34), 5077–5080 (1991).
    [Crossref] [PubMed]
  51. Y. Ni, H. Wu, C. Huang, M. Mao, Z. Wang, and X. Cheng, “Growth and quality of gallium selenide (GaSe) crystals,” J. Cryst. Growth 381, 10–14 (2013).
    [Crossref]

2016 (5)

2015 (7)

M. Hemmer, D. Sánchez, M. Jelínek, V. Smirnov, H. Jelinkova, V. Kubeček, and J. Biegert, “2-μm wavelength, high-energy Ho:YLF chirped-pulse amplifier for mid-infrared OPCPA,” Opt. Lett. 40(4), 451–454 (2015).
[Crossref] [PubMed]

A. A. Lanin, A. A. Voronin, E. A. Stepanov, A. B. Fedotov, and A. M. Zheltikov, “Multioctave, 3-18 μm sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid,” Opt. Lett. 40(6), 974–977 (2015).
[Crossref] [PubMed]

A. V. Mitrofanov, A. A. Voronin, S. I. Mitryukovskiy, D. A. Sidorov-Biryukov, A. Pugžlys, G. Andriukaitis, T. Flöry, E. A. Stepanov, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics,” Opt. Lett. 40(9), 2068–2071 (2015).
[Crossref] [PubMed]

P. Kroetz, A. Ruehl, G. Chatterjee, A.-L. Calendron, K. Murari, H. Cankaya, P. Li, F. X. Kärtner, I. Hartl, and R. J. Miller, “Overcoming bifurcation instability in high-repetition-rate Ho:YLF regenerative amplifiers,” Opt. Lett. 40(23), 5427–5430 (2015).
[Crossref] [PubMed]

J. J. Pigeon, S. Y. Tochitsky, and C. Joshi, “High-power, mid-infrared, picosecond pulses generated by compression of a CO2 laser beat-wave in GaAs,” Opt. Lett. 40(24), 5730–5733 (2015).
[Crossref] [PubMed]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref] [PubMed]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

2014 (4)

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

E. E. Serebryannikov and A. M. Zheltikov, “Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle,” Phys. Rev. Lett. 113(4), 043901 (2014).
[Crossref] [PubMed]

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH4 and N2O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett. 39(4), 957–960 (2014).
[Crossref] [PubMed]

S. Liakat, K. A. Bors, L. Xu, C. M. Woods, J. Doyle, and C. F. Gmachl, “Noninvasive in vivo glucose sensing on human subjects using mid-infrared light,” Biomed. Opt. Express 5(7), 2397–2404 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (6)

L. Wang, X. Cai, J. Yang, X. Wu, H. Jiang, and J. Wang, “520 mJ langasite electro-optically Q-switched Cr, Tm, Ho:YAG laser,” Opt. Lett. 37(11), 1986–1988 (2012).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. A. Voronin, A. M. Zheltikov, and A. Baltuška, “Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity,” Opt. Lett. 37(12), 2268–2270 (2012).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9 µm in argon,” Opt. Lett. 37(16), 3456–3458 (2012).
[Crossref] [PubMed]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[Crossref]

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2008 (4)

P. Agostini and L. F. DiMauro, “Atoms in high intensity mid-infrared pulses,” Contemp. Phys. 49(3), 179–197 (2008).
[Crossref]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7–9), 1891–1896 (2008).
[Crossref]

X. Zhao, S. Zhu, B. Zhao, B. Chen, Z. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method,” J. Cryst. Growth 311(1), 190–193 (2008).
[Crossref]

2007 (1)

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[Crossref]

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

A. M. Zheltikov, “Let there be white light: supercontinuum generation by ultrashort laser pulses,” Phys. Uspekhi 49(6), 605–628 (2006).
[Crossref]

1999 (1)

R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” TrAC Trends Analyt. Chem. 18(2), 85–93 (1999).
[Crossref]

1998 (1)

N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far-infrared conversion materials: gallium selenide for far-infrared conversion applications,” Prog. Cryst. Growth Charact. Mater. 37(1), 47–102 (1998).
[Crossref]

1997 (1)

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(2 Part 1), 700–703 (1997).
[Crossref]

1995 (1)

1993 (1)

1991 (1)

1989 (1)

1987 (1)

K. L. Vodop’yanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskiĭ, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3 µm range,” Sov. J. Quantum Electron. 17(9), 1159–1161 (1987).
[Crossref]

1979 (1)

R. Baumgartner and R. Byer, “Optical Parametrical Amplification,” IEEE J. Quantum Electron. 15(6), 432–444 (1979).
[Crossref]

1972 (2)

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’Ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” Sov. J. Exp. Theor. Phys. Lett. 16, 90–92 (1972).

G. Boyd, H. Kasper, J. McFee, and F. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. 8(12), 900–908 (1972).
[Crossref]

Abdullaev, G. B.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’Ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” Sov. J. Exp. Theor. Phys. Lett. 16, 90–92 (1972).

Agostini, P.

P. Agostini and L. F. DiMauro, “Atoms in high intensity mid-infrared pulses,” Contemp. Phys. 49(3), 179–197 (2008).
[Crossref]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

Ališauskas, S.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Ya. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3(3), 299–302 (2016).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref] [PubMed]

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2749 (2013).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. A. Voronin, A. M. Zheltikov, and A. Baltuška, “Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity,” Opt. Lett. 37(12), 2268–2270 (2012).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9 µm in argon,” Opt. Lett. 37(16), 3456–3458 (2012).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[Crossref]

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
[Crossref] [PubMed]

Andriukaitis, G.

A. V. Mitrofanov, A. A. Voronin, S. I. Mitryukovskiy, D. A. Sidorov-Biryukov, A. Pugžlys, G. Andriukaitis, T. Flöry, E. A. Stepanov, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics,” Opt. Lett. 40(9), 2068–2071 (2015).
[Crossref] [PubMed]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref] [PubMed]

P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2749 (2013).
[Crossref] [PubMed]

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[Crossref]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
[Crossref] [PubMed]

Arpin, P.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Balakrishna, V.

N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far-infrared conversion materials: gallium selenide for far-infrared conversion applications,” Prog. Cryst. Growth Charact. Mater. 37(1), 47–102 (1998).
[Crossref]

Balciunas, T.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
[Crossref] [PubMed]

Baltuška, A.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Ya. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3(3), 299–302 (2016).
[Crossref]

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016).
[Crossref] [PubMed]

A. V. Mitrofanov, A. A. Voronin, S. I. Mitryukovskiy, D. A. Sidorov-Biryukov, A. Pugžlys, G. Andriukaitis, T. Flöry, E. A. Stepanov, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics,” Opt. Lett. 40(9), 2068–2071 (2015).
[Crossref] [PubMed]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref] [PubMed]

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2749 (2013).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. A. Voronin, A. M. Zheltikov, and A. Baltuška, “Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity,” Opt. Lett. 37(12), 2268–2270 (2012).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9 µm in argon,” Opt. Lett. 37(16), 3456–3458 (2012).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[Crossref]

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
[Crossref] [PubMed]

Barnes, N. P.

Baudisch, M.

Baumgartner, R.

R. Baumgartner and R. Byer, “Optical Parametrical Amplification,” IEEE J. Quantum Electron. 15(6), 432–444 (1979).
[Crossref]

Becker, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Béjot, P.

Biegert, J.

Blaga, C. I.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

Bock, M.

L. von Grafenstein, M. Bock, G. Steinmeyer, U. Griebner, and T. Elsaesser, “Taming chaos: 16 mJ picosecond Ho: YLF regenerative amplifier with 0.7 kHz repetition rate,” Laser Photonics Rev. 10(1), 123–130 (2016).
[Crossref]

Bors, K. A.

Boyd, G.

G. Boyd, H. Kasper, J. McFee, and F. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. 8(12), 900–908 (1972).
[Crossref]

Brown, J. L.

Brown, S.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Byer, R.

R. Baumgartner and R. Byer, “Optical Parametrical Amplification,” IEEE J. Quantum Electron. 15(6), 432–444 (1979).
[Crossref]

Cai, X.

Calendron, A.-L.

Cankaya, H.

Catoire, F.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

Chalus, O.

Chatterjee, G.

Chen, B.

X. Zhao, S. Zhu, B. Zhao, B. Chen, Z. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method,” J. Cryst. Growth 311(1), 190–193 (2008).
[Crossref]

Chen, M.-C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
[Crossref] [PubMed]

Cheng, J.

X. Zhao, S. Zhu, B. Zhao, B. Chen, Z. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method,” J. Cryst. Growth 311(1), 190–193 (2008).
[Crossref]

Cheng, X.

Y. Ni, H. Wu, C. Huang, M. Mao, Z. Wang, and X. Cheng, “Growth and quality of gallium selenide (GaSe) crystals,” J. Cryst. Growth 381, 10–14 (2013).
[Crossref]

Chin, S. L.

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[Crossref]

Chirla, R.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

Chua, C. F.

Cirmi, G.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Colosimo, P.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

Corkum, P. B.

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[Crossref]

Cousin, S. L.

DiMauro, L. F.

P. Agostini and L. F. DiMauro, “Atoms in high intensity mid-infrared pulses,” Contemp. Phys. 49(3), 179–197 (2008).
[Crossref]

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

Doumy, G.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

Doyle, J.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Elsaesser, T.

L. von Grafenstein, M. Bock, G. Steinmeyer, U. Griebner, and T. Elsaesser, “Taming chaos: 16 mJ picosecond Ho: YLF regenerative amplifier with 0.7 kHz repetition rate,” Laser Photonics Rev. 10(1), 123–130 (2016).
[Crossref]

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Fedotov, A. B.

Fernández, A.

Fernelius, N.

N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far-infrared conversion materials: gallium selenide for far-infrared conversion applications,” Prog. Cryst. Growth Charact. Mater. 37(1), 47–102 (1998).
[Crossref]

Flöry, T.

Fonnum, H.

Gaeta, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gettemy, D. J.

Gmachl, C. F.

Gordienko, V. M.

Gribenyukov, A. I.

K. L. Vodop’yanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskiĭ, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3 µm range,” Sov. J. Quantum Electron. 17(9), 1159–1161 (1987).
[Crossref]

Griebner, U.

L. von Grafenstein, M. Bock, G. Steinmeyer, U. Griebner, and T. Elsaesser, “Taming chaos: 16 mJ picosecond Ho: YLF regenerative amplifier with 0.7 kHz repetition rate,” Laser Photonics Rev. 10(1), 123–130 (2016).
[Crossref]

Griffin, R. J.

Haakestad, M. W.

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Harasaki, A.

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(2 Part 1), 700–703 (1997).
[Crossref]

Hartl, I.

Hauri, C.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

He, Z.

X. Zhao, S. Zhu, B. Zhao, B. Chen, Z. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method,” J. Cryst. Growth 311(1), 190–193 (2008).
[Crossref]

Hemmer, M.

Hernández-García, C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Herndon, S. C.

Hietanen, J. R.

Holtz, M.

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Holzwarth, R.

Hoogland, H.

Hopkins, F. K.

N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far-infrared conversion materials: gallium selenide for far-infrared conversion applications,” Prog. Cryst. Growth Charact. Mater. 37(1), 47–102 (1998).
[Crossref]

Huang, C.

Y. Ni, H. Wu, C. Huang, M. Mao, Z. Wang, and X. Cheng, “Growth and quality of gallium selenide (GaSe) crystals,” J. Cryst. Growth 381, 10–14 (2013).
[Crossref]

Jahjah, M.

Jaron-Becker, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Jelínek, M.

Jelinkova, H.

Jiang, H.

Jiang, W.

Joshi, C.

Juvé, V.

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Kanai, T.

Kapteyn, H. C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
[Crossref] [PubMed]

Kartashov, D.

Kärtner, F. X.

Kasparian, J.

Kasper, H.

G. Boyd, H. Kasper, J. McFee, and F. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. 8(12), 900–908 (1972).
[Crossref]

Kato, K.

K. Kato, F. Tanno, and N. Umemura, “Sellmeier and thermo-optic dispersion formulas for GaSe (Revisited),” Appl. Opt. 52(11), 2325–2328 (2013).
[Crossref] [PubMed]

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(2 Part 1), 700–703 (1997).
[Crossref]

Krausz, F.

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[Crossref]

Kroetz, P.

Ku, S.

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Kubecek, V.

Kulevskii, L. A.

K. L. Vodop’yanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskiĭ, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3 µm range,” Sov. J. Quantum Electron. 17(9), 1159–1161 (1987).
[Crossref]

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’Ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” Sov. J. Exp. Theor. Phys. Lett. 16, 90–92 (1972).

Lanin, A. A.

Lannini, R. A.

Li, P.

Liakat, S.

Lippert, E.

Malevich, P.

Manley, J. M.

J. M. Manley and H. E. Rowe, “Some general properties of nonlinear elements: Pt 1 - General energy relations,” Proc. IRE44(7), 904–913 (1956).

Mao, M.

Y. Ni, H. Wu, C. Huang, M. Mao, Z. Wang, and X. Cheng, “Growth and quality of gallium selenide (GaSe) crystals,” J. Cryst. Growth 381, 10–14 (2013).
[Crossref]

Marable, M.

N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far-infrared conversion materials: gallium selenide for far-infrared conversion applications,” Prog. Cryst. Growth Charact. Mater. 37(1), 47–102 (1998).
[Crossref]

March, A. M.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

McFee, J.

G. Boyd, H. Kasper, J. McFee, and F. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. 8(12), 900–908 (1972).
[Crossref]

Meshchankin, D. V.

Meyer, R.

N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far-infrared conversion materials: gallium selenide for far-infrared conversion applications,” Prog. Cryst. Growth Charact. Mater. 37(1), 47–102 (1998).
[Crossref]

Miller, R. J.

Mitrofanov, A. V.

Mitryukovskiy, S. I.

Mitryukovsky, S. I.

Mücke, O. D.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Muller, H. G.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

Murari, K.

Murnane, M. M.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
[Crossref] [PubMed]

Ni, Y.

Y. Ni, H. Wu, C. Huang, M. Mao, Z. Wang, and X. Cheng, “Growth and quality of gallium selenide (GaSe) crystals,” J. Cryst. Growth 381, 10–14 (2013).
[Crossref]

Panchenko, V. Y.

Panchenko, V. Ya.

Patimisco, P.

Paulus, G. G.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

Peterson, R. D.

Petrarca, M.

Petrov, V.

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Phua, P. B.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Pigeon, J. J.

Plaja, L.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Platonenko, V. T.

Pollak, T. M.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7–9), 1891–1896 (2008).
[Crossref]

Popmintchev, D.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Popmintchev, T.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
[Crossref] [PubMed]

Prokhorov, A. M.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’Ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” Sov. J. Exp. Theor. Phys. Lett. 16, 90–92 (1972).

Pugzlys, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Pugžlys, A.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Ya. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3(3), 299–302 (2016).
[Crossref]

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016).
[Crossref] [PubMed]

A. V. Mitrofanov, A. A. Voronin, S. I. Mitryukovskiy, D. A. Sidorov-Biryukov, A. Pugžlys, G. Andriukaitis, T. Flöry, E. A. Stepanov, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics,” Opt. Lett. 40(9), 2068–2071 (2015).
[Crossref] [PubMed]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref] [PubMed]

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2749 (2013).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9 µm in argon,” Opt. Lett. 37(16), 3456–3458 (2012).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. A. Voronin, A. M. Zheltikov, and A. Baltuška, “Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity,” Opt. Lett. 37(12), 2268–2270 (2012).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[Crossref]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
[Crossref] [PubMed]

Ren, W.

Rowe, H. E.

J. M. Manley and H. E. Rowe, “Some general properties of nonlinear elements: Pt 1 - General energy relations,” Proc. IRE44(7), 904–913 (1956).

Ruehl, A.

Salaev, E. Y.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’Ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” Sov. J. Exp. Theor. Phys. Lett. 16, 90–92 (1972).

Sanchez, D.

Sanchez, N. P.

Sánchez, D.

Savel’Ev, A. D.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’Ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” Sov. J. Exp. Theor. Phys. Lett. 16, 90–92 (1972).

Schepler, K. L.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schrauth, S. E.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Schunemann, P.

Schunemann, P. G.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7–9), 1891–1896 (2008).
[Crossref]

R. D. Peterson, K. L. Schepler, J. L. Brown, and P. G. Schunemann, “Damage properties of ZnGeP2 at 2 μm,” J. Opt. Soc. Am. B 12(11), 2142–2146 (1995).
[Crossref]

Serebryannikov, E. E.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Ya. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3(3), 299–302 (2016).
[Crossref]

E. E. Serebryannikov and A. M. Zheltikov, “Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle,” Phys. Rev. Lett. 113(4), 043901 (2014).
[Crossref] [PubMed]

Setzler, S. D.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7–9), 1891–1896 (2008).
[Crossref]

Shim, B.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Shneider, M.

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[Crossref]

Shumakova, V.

Sidorov-Biryukov, D. A.

Simon-Boisson, C.

Singh, N. B.

N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far-infrared conversion materials: gallium selenide for far-infrared conversion applications,” Prog. Cryst. Growth Charact. Mater. 37(1), 47–102 (1998).
[Crossref]

Smirnov, V.

Smirnov, V. V.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’Ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” Sov. J. Exp. Theor. Phys. Lett. 16, 90–92 (1972).

Spagnolo, V.

Steinmeyer, G.

L. von Grafenstein, M. Bock, G. Steinmeyer, U. Griebner, and T. Elsaesser, “Taming chaos: 16 mJ picosecond Ho: YLF regenerative amplifier with 0.7 kHz repetition rate,” Laser Photonics Rev. 10(1), 123–130 (2016).
[Crossref]

Stepanov, E. A.

Storz, F.

G. Boyd, H. Kasper, J. McFee, and F. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. 8(12), 900–908 (1972).
[Crossref]

Suhre, D. R.

N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far-infrared conversion materials: gallium selenide for far-infrared conversion applications,” Prog. Cryst. Growth Charact. Mater. 37(1), 47–102 (1998).
[Crossref]

Sun, Y.

X. Zhao, S. Zhu, B. Zhao, B. Chen, Z. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method,” J. Cryst. Growth 311(1), 190–193 (2008).
[Crossref]

Tan, L. H.

Tanno, F.

Tapp, H. S.

R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” TrAC Trends Analyt. Chem. 18(2), 85–93 (1999).
[Crossref]

Tate, J.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

Tittel, F. K.

Tochitsky, S. Y.

Umemura, N.

Verhoef, A. J.

Vodop’yanov, K. L.

K. L. Vodop’yanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskiĭ, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3 µm range,” Sov. J. Quantum Electron. 17(9), 1159–1161 (1987).
[Crossref]

Vodopyanov, K. L.

Voevodin, V. G.

K. L. Vodop’yanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskiĭ, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3 µm range,” Sov. J. Quantum Electron. 17(9), 1159–1161 (1987).
[Crossref]

von Grafenstein, L.

L. von Grafenstein, M. Bock, G. Steinmeyer, U. Griebner, and T. Elsaesser, “Taming chaos: 16 mJ picosecond Ho: YLF regenerative amplifier with 0.7 kHz repetition rate,” Laser Photonics Rev. 10(1), 123–130 (2016).
[Crossref]

Voronin, A.

Voronin, A. A.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Ya. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3(3), 299–302 (2016).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, S. I. Mitryukovskiy, D. A. Sidorov-Biryukov, A. Pugžlys, G. Andriukaitis, T. Flöry, E. A. Stepanov, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics,” Opt. Lett. 40(9), 2068–2071 (2015).
[Crossref] [PubMed]

A. A. Lanin, A. A. Voronin, E. A. Stepanov, A. B. Fedotov, and A. M. Zheltikov, “Multioctave, 3-18 μm sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid,” Opt. Lett. 40(6), 974–977 (2015).
[Crossref] [PubMed]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. A. Voronin, A. M. Zheltikov, and A. Baltuška, “Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity,” Opt. Lett. 37(12), 2268–2270 (2012).
[Crossref] [PubMed]

A. A. Voronin, V. M. Gordienko, V. T. Platonenko, V. Y. Panchenko, and A. M. Zheltikov, “Ionization-assisted guided-wave pulse compression to extreme peak powers and single-cycle pulse widths in the mid-infrared,” Opt. Lett. 35(21), 3640–3642 (2010).
[Crossref] [PubMed]

Wang, J.

Wang, L.

Wang, R.

X. Zhao, S. Zhu, B. Zhao, B. Chen, Z. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method,” J. Cryst. Growth 311(1), 190–193 (2008).
[Crossref]

Wang, Z.

Y. Ni, H. Wu, C. Huang, M. Mao, Z. Wang, and X. Cheng, “Growth and quality of gallium selenide (GaSe) crystals,” J. Cryst. Growth 381, 10–14 (2013).
[Crossref]

Weisshaupt, J.

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Wheeler, J.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

Wilson, R. H.

R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” TrAC Trends Analyt. Chem. 18(2), 85–93 (1999).
[Crossref]

Woerner, M.

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Wolf, J.-P.

Woods, C. M.

Wu, H.

Y. Ni, H. Wu, C. Huang, M. Mao, Z. Wang, and X. Cheng, “Growth and quality of gallium selenide (GaSe) crystals,” J. Cryst. Growth 381, 10–14 (2013).
[Crossref]

Wu, X.

Xu, L.

Yang, H.

X. Zhao, S. Zhu, B. Zhao, B. Chen, Z. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method,” J. Cryst. Growth 311(1), 190–193 (2008).
[Crossref]

Yang, J.

Zawilski, K.

Zawilski, K. T.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7–9), 1891–1896 (2008).
[Crossref]

Zelmon, D.

N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far-infrared conversion materials: gallium selenide for far-infrared conversion applications,” Prog. Cryst. Growth Charact. Mater. 37(1), 47–102 (1998).
[Crossref]

Zhao, B.

X. Zhao, S. Zhu, B. Zhao, B. Chen, Z. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method,” J. Cryst. Growth 311(1), 190–193 (2008).
[Crossref]

Zhao, X.

X. Zhao, S. Zhu, B. Zhao, B. Chen, Z. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method,” J. Cryst. Growth 311(1), 190–193 (2008).
[Crossref]

Zheltikov, A.

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[Crossref]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9 µm in argon,” Opt. Lett. 37(16), 3456–3458 (2012).
[Crossref] [PubMed]

Zheltikov, A. M.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Ya. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt few-cycle mid-infrared pulses from a single filament,” Optica 3(3), 299–302 (2016).
[Crossref]

A. A. Lanin, A. A. Voronin, E. A. Stepanov, A. B. Fedotov, and A. M. Zheltikov, “Multioctave, 3-18 μm sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid,” Opt. Lett. 40(6), 974–977 (2015).
[Crossref] [PubMed]

A. V. Mitrofanov, A. A. Voronin, S. I. Mitryukovskiy, D. A. Sidorov-Biryukov, A. Pugžlys, G. Andriukaitis, T. Flöry, E. A. Stepanov, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics,” Opt. Lett. 40(9), 2068–2071 (2015).
[Crossref] [PubMed]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref] [PubMed]

E. E. Serebryannikov and A. M. Zheltikov, “Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle,” Phys. Rev. Lett. 113(4), 043901 (2014).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. A. Voronin, A. M. Zheltikov, and A. Baltuška, “Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity,” Opt. Lett. 37(12), 2268–2270 (2012).
[Crossref] [PubMed]

A. A. Voronin, V. M. Gordienko, V. T. Platonenko, V. Y. Panchenko, and A. M. Zheltikov, “Ionization-assisted guided-wave pulse compression to extreme peak powers and single-cycle pulse widths in the mid-infrared,” Opt. Lett. 35(21), 3640–3642 (2010).
[Crossref] [PubMed]

A. M. Zheltikov, “Let there be white light: supercontinuum generation by ultrashort laser pulses,” Phys. Uspekhi 49(6), 605–628 (2006).
[Crossref]

Zhu, S.

X. Zhao, S. Zhu, B. Zhao, B. Chen, Z. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method,” J. Cryst. Growth 311(1), 190–193 (2008).
[Crossref]

Ziegler, B. C.

Appl. Opt. (3)

Biomed. Opt. Express (1)

Contemp. Phys. (1)

P. Agostini and L. F. DiMauro, “Atoms in high intensity mid-infrared pulses,” Contemp. Phys. 49(3), 179–197 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

G. Boyd, H. Kasper, J. McFee, and F. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. 8(12), 900–908 (1972).
[Crossref]

R. Baumgartner and R. Byer, “Optical Parametrical Amplification,” IEEE J. Quantum Electron. 15(6), 432–444 (1979).
[Crossref]

J. Cryst. Growth (3)

Y. Ni, H. Wu, C. Huang, M. Mao, Z. Wang, and X. Cheng, “Growth and quality of gallium selenide (GaSe) crystals,” J. Cryst. Growth 381, 10–14 (2013).
[Crossref]

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7–9), 1891–1896 (2008).
[Crossref]

X. Zhao, S. Zhu, B. Zhao, B. Chen, Z. He, R. Wang, H. Yang, Y. Sun, and J. Cheng, “Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method,” J. Cryst. Growth 311(1), 190–193 (2008).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(2 Part 1), 700–703 (1997).
[Crossref]

Laser Photonics Rev. (1)

L. von Grafenstein, M. Bock, G. Steinmeyer, U. Griebner, and T. Elsaesser, “Taming chaos: 16 mJ picosecond Ho: YLF regenerative amplifier with 0.7 kHz repetition rate,” Laser Photonics Rev. 10(1), 123–130 (2016).
[Crossref]

Nat. Photonics (2)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, and A. Baltuška, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photonics 8(12), 927–930 (2014).
[Crossref]

Nat. Phys. (2)

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, “Scaling strong-field interactions towards the classical limit,” Nat. Phys. 4(5), 386–389 (2008).
[Crossref]

P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007).
[Crossref]

Opt. Lett. (15)

A. A. Voronin, V. M. Gordienko, V. T. Platonenko, V. Y. Panchenko, and A. M. Zheltikov, “Ionization-assisted guided-wave pulse compression to extreme peak powers and single-cycle pulse widths in the mid-infrared,” Opt. Lett. 35(21), 3640–3642 (2010).
[Crossref] [PubMed]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36(15), 2755–2757 (2011).
[Crossref] [PubMed]

L. Wang, X. Cai, J. Yang, X. Wu, H. Jiang, and J. Wang, “520 mJ langasite electro-optically Q-switched Cr, Tm, Ho:YAG laser,” Opt. Lett. 37(11), 1986–1988 (2012).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. A. Voronin, A. M. Zheltikov, and A. Baltuška, “Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity,” Opt. Lett. 37(12), 2268–2270 (2012).
[Crossref] [PubMed]

D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9 µm in argon,” Opt. Lett. 37(16), 3456–3458 (2012).
[Crossref] [PubMed]

M. Hemmer, D. Sánchez, M. Jelínek, V. Smirnov, H. Jelinkova, V. Kubeček, and J. Biegert, “2-μm wavelength, high-energy Ho:YLF chirped-pulse amplifier for mid-infrared OPCPA,” Opt. Lett. 40(4), 451–454 (2015).
[Crossref] [PubMed]

A. A. Lanin, A. A. Voronin, E. A. Stepanov, A. B. Fedotov, and A. M. Zheltikov, “Multioctave, 3-18 μm sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid,” Opt. Lett. 40(6), 974–977 (2015).
[Crossref] [PubMed]

A. V. Mitrofanov, A. A. Voronin, S. I. Mitryukovskiy, D. A. Sidorov-Biryukov, A. Pugžlys, G. Andriukaitis, T. Flöry, E. A. Stepanov, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics,” Opt. Lett. 40(9), 2068–2071 (2015).
[Crossref] [PubMed]

P. Kroetz, A. Ruehl, G. Chatterjee, A.-L. Calendron, K. Murari, H. Cankaya, P. Li, F. X. Kärtner, I. Hartl, and R. J. Miller, “Overcoming bifurcation instability in high-repetition-rate Ho:YLF regenerative amplifiers,” Opt. Lett. 40(23), 5427–5430 (2015).
[Crossref] [PubMed]

J. J. Pigeon, S. Y. Tochitsky, and C. Joshi, “High-power, mid-infrared, picosecond pulses generated by compression of a CO2 laser beat-wave in GaAs,” Opt. Lett. 40(24), 5730–5733 (2015).
[Crossref] [PubMed]

H. Fonnum, E. Lippert, and M. W. Haakestad, “550 mJ Q-switched cryogenic Ho:YLF oscillator pumped with a 100 W Tm:fiber laser,” Opt. Lett. 38(11), 1884–1886 (2013).
[Crossref] [PubMed]

P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2749 (2013).
[Crossref] [PubMed]

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH4 and N2O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett. 39(4), 957–960 (2014).
[Crossref] [PubMed]

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016).
[Crossref] [PubMed]

K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers,” Opt. Lett. 41(6), 1114–1117 (2016).
[Crossref] [PubMed]

Optica (2)

Phys. Rev. A (1)

D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86(3), 033831 (2012).
[Crossref]

Phys. Rev. Lett. (1)

E. E. Serebryannikov and A. M. Zheltikov, “Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle,” Phys. Rev. Lett. 113(4), 043901 (2014).
[Crossref] [PubMed]

Phys. Uspekhi (1)

A. M. Zheltikov, “Let there be white light: supercontinuum generation by ultrashort laser pulses,” Phys. Uspekhi 49(6), 605–628 (2006).
[Crossref]

Prog. Cryst. Growth Charact. Mater. (1)

N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far-infrared conversion materials: gallium selenide for far-infrared conversion applications,” Prog. Cryst. Growth Charact. Mater. 37(1), 47–102 (1998).
[Crossref]

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref] [PubMed]

Science (1)

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref] [PubMed]

Sov. J. Exp. Theor. Phys. Lett. (1)

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’Ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” Sov. J. Exp. Theor. Phys. Lett. 16, 90–92 (1972).

Sov. J. Quantum Electron. (1)

K. L. Vodop’yanov, V. G. Voevodin, A. I. Gribenyukov, and L. A. Kulevskiĭ, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3 µm range,” Sov. J. Quantum Electron. 17(9), 1159–1161 (1987).
[Crossref]

TrAC Trends Analyt. Chem. (1)

R. H. Wilson and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” TrAC Trends Analyt. Chem. 18(2), 85–93 (1999).
[Crossref]

Other (5)

X. Franz, Kärtner, Few-Cycle Laser Pulse Generation and Its Applications (Springer, 2004).

J. M. Chalmers and P. R. Griffiths, Handbook of Vibrational Spectroscopy (Wiley, 2002).

A. Krier, Mid-Infrared Semiconductor Optoelectronics (Springer-Verlag, 2006), p. 118.

Y. R. Shen, Principles of Nonlinear Optics (Wiley-Interscience, 1984).

J. M. Manley and H. E. Rowe, “Some general properties of nonlinear elements: Pt 1 - General energy relations,” Proc. IRE44(7), 904–913 (1956).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Absorption spectra of ZGP (blue line), GaSe (green line), and AGSe (purple line). (b) Diagram of broadband LWIR OPCPA seeded through the idler (scheme I) and signal (scheme II) fields: RA, regenerative amplifier of the pump source; SPA, single-pass amplifier of the pump source; PCF, photonic-crystal fiber; DFG, difference-frequency generation; ZGP/GaSe/AGSe, nonlinear crystals for broadband OPCPA in the LWIR range; BPF, band-pass filter.
Fig. 2
Fig. 2 Idler-seeded collinear oee OPCPA in a cascade of ZGP crystals with a 14.2-mJ pump: (a) three θ = 52.9о ZGP crystals pumped by 10-ps, 2.04-μm laser pulses with energies of 0.2, 4, and 10 mJ, respectively, and seeded by negatively chirped 3.3-ps, 80-pJ pulses with a central wavelength of 7.0 μm and a spectrum corresponding to a transform-limited pulse width of 100 fs, (b) the coherence length for this OPCPA process as a function of the idler wavelength and the angle θ with the spectrum of the idler output of the three-stage OPCPA shown on top, (c – e) the energies of the signal (red) and idler (blue) fields as functions of the propagation path inside the first (c), second (d), and third (e) ZGP crystals, and (f) temporal envelopes of the pump (green dots), signal (red solid), and idler (blue dashes) pulses at the output of the three-stage OPCPA. Also shown are the solutions (4) and (5) (dashed lines), the Manley–Rowe asymptotic values of the signal and idler energies, as defined by Eqs. (6) and (7) (dotted lines), and the seed energy (dash–dotted line).
Fig. 3
Fig. 3 Idler-seeded collinear eoo OPCPA in a cascade of GaSe crystals with a 14.2-mJ pump: (a) three θ = 11о GaSe crystals pumped by 10-ps, 2.04-μm laser pulses with energies of 0.2, 4, and 10 mJ, respectively, and seeded by negatively chirped 3.3-ps, 80-pJ pulses with a central wavelength of 10 μm and a spectrum corresponding to a transform-limited pulse width of 100 fs, (b) the coherence length for this OPCPA process as a function of the idler wavelength and the angle θ with the spectrum of the idler output of the three-stage OPCPA shown on top, (c – e) the energies of the signal (red) and idler (blue) fields as functions of the propagation path inside the first (c), second (d), and third (e) GaSe crystals; (f) temporal envelopes of the pump (green dots), signal (red solid), and idler (blue dashes) pulses at the output of the three-stage OPCPA. Also shown are the solutions (4) and (5) (dashed lines), the Manley–Rowe upper-bound values of the signal and idler energies, as defined by Eqs. (6) and (7) (dotted lines), and the seed energy (dash–dotted line).
Fig. 4
Fig. 4 Idler-seeded collinear eoo OPCPA in a cascade of AGSe crystals with a 14.2-mJ pump: (a) three 43.6о AGSe crystals pumped by 10-ps, 2.04-μm laser pulses with energies of 0.2, 4, and 10 mJ, respectively, and seeded by negatively chirped 3.3-ps, 80-pJ pulses with a central wavelength of 13 μm and a spectrum corresponding to a transform-limited pulse width of 100 fs, (b) the coherence length for this OPCPA process as a function of the idler wavelength and the angle θ with the spectrum of the idler output of the three-stage OPCPA shown on top, (c – e) the energies of the signal (red) and idler (blue) fields as functions of the propagation path inside the first (c), second (d), and third (e) AGSe crystals, and (f) temporal envelopes of the pump (green dots), signal (red solid), and idler (blue dashes) pulses at the output of the three-stage OPCPA. Also shown are the solutions (4) and (5) (dashed lines), the Manley–Rowe upper-bound values of the signal and idler energies, as defined by Eqs. (6) and (7) (dotted lines), and the seed energy (dash–dotted line).
Fig. 5
Fig. 5 Idler-seeded collinear eoe OPCPA in a cascade of AGSe crystals with a 14.2-mJ pump: (a) three 48.3о AGSe crystals pumped by 10-ps, 2.04-μm laser pulses with energies of 0.2, 4, and 10 mJ, respectively, and seeded by negatively chirped 3.3-ps, 80-pJ pulses with a central wavelength of 16 μm and a spectrum corresponding to a transform-limited pulse width of 100 fs, (b) the coherence length for this OPCPA process as a function of the idler wavelength and the angle θ with the spectrum of the idler output of the three-stage OPCPA shown on top, (c – e) the energies of the signal (red) and idler (blue) fields as functions of the propagation path inside the first (c), second (d), and third (e) AGSe crystals, and (f) temporal envelopes of the pump (green dots), signal (red solid), and idler (blue dashes) pulses at the output of the three-stage OPCPA. Also shown are the solutions (4) and (5) (dashed lines), the Manley–Rowe upper-bound values of the signal and idler energies, as defined by Eqs. (6) and (7) (dotted lines), and the seed energy (dash–dotted line).
Fig. 6
Fig. 6 Signal-seeded collinear eoo OPCPA in a cascade of AGSe crystals with a 14.2-mJ pump: (a) three 43.6о AGSe crystals pumped by 10-ps, 2.04-μm laser pulses with energies of 0.2, 4, and 10 mJ, respectively, and seeded by negatively chirped 3.3-ps, 80-pJ pulses with a central wavelength of 2.38 μm and a spectrum corresponding to a transform-limited pulse width of 100 fs, (b) the coherence length for this OPCPA process as a function of the idler wavelength and the angle θ with the spectrum of the idler output of the three-stage OPCPA shown on top; (c – e) the energies of the signal (red) and idler (blue) fields as functions of the propagation path inside the first (c), second (d), and third (e) AGSe crystals, and (f) temporal envelopes of the pump (green dots), signal (red solid), and idler (blue dashes) pulses at the output of the three-stage OPCPA. Also shown are the solutions (4) and (5) (dashed lines), the Manley–Rowe upper-bound values of the signal and idler energies, as defined by Eqs. (6) and (7) (dotted lines), and the seed energy (dash–dotted line).
Fig. 7
Fig. 7 Signal-seeded collinear eoe OPCPA in a cascade of AGSe crystals with a 14.2-mJ pump: (a) three 48.3о AGSe crystals pumped by 10-ps, 2.04-μm laser pulses with energies of 0.2, 4, and 10 mJ, respectively, and seeded by negatively chirped 3.3-ps, 80-pJ pulses with a central wavelength of 2.34 μm and a spectrum corresponding to a transform-limited pulse width of 100 fs, (b) the coherence length for this OPCPA process as a function of the idler wavelength and the angle θ with the spectrum of the idler output of the three-stage OPCPA shown on top; (c – e) the energies of the signal (red) and idler (blue) fields as functions of the propagation path inside the first (c), second (d), and third (e) AGSe crystals, and (f) temporal envelopes of the pump (green dots), signal (red solid), and idler (blue dashes) pulses at the output of the three-stage OPCPA. Also shown are the solutions (4) and (5) (dashed lines), the Manley–Rowe upper-bound values of the signal and idler energies, as defined by Eqs. (6) and (7) (dotted lines), and the seed energy (dash–dotted line).
Fig. 8
Fig. 8 Signal-seeded collinear eoo OPCPA in a cascade of GaSe crystals with a 542-mJ pump: (a) three θ = 11о GaSe crystals pumped by 10-ps, 2.04-μm laser pulses with energies of 2, 40, and 500 mJ, respectively, and seeded by negatively chirped 5.5-ps, 80-pJ pulses with a central wavelength of 2.54 μm and a spectrum corresponding to a transform-limited pulse width of 200 fs, (b) the coherence length for this OPCPA process as a function of the idler wavelength and the angle θ with the spectrum of the idler output of the three-stage OPCPA shown on top; (c – e) the energies of the signal (red) and idler (blue) fields as functions of the propagation path inside the first (c), second (d), and third (e) AGSe crystals, and (f) temporal envelopes of the pump (green dots), signal (red solid), and idler (blue dashes) pulses at the output of the three-stage OPCPA. Also shown are the solutions (4) and (5) (dashed lines), the Manley–Rowe upper-bound values of the signal and idler energies, as defined by Eqs. (6) and (7) (dotted lines), and the seed energy (dash–dotted line).
Fig. 9
Fig. 9 Signal-seeded collinear eoo OPCPA in a cascade of AGSe crystals with a 542-mJ pump: (a) three 43.6о AGSe crystals pumped by 10-ps, 2.04-μm laser pulses with energies of 2, 40, and 500 mJ, respectively, and seeded by negatively chirped 5.5-ps, 80-pJ pulses with a central wavelength of 2.38 μm and a spectrum corresponding to a transform-limited pulse width of 200 fs, (b) the coherence length for this OPCPA process as a function of the idler wavelength and the angle θ with the spectrum of the idler output of the three-stage OPCPA shown on top; (c – e) the energies of the signal (red) and idler (blue) fields as functions of the propagation path inside the first (c), second (d), and third (e) AGSe crystals, and (f) temporal envelopes of the pump (green dots), signal (red solid), and idler (blue dashes) pulses at the output of the three-stage OPCPA. Also shown are the solutions (4) and (5) (dashed lines), the Manley–Rowe upper-bound values of the signal and idler energies, as defined by Eqs. (6) and (7) (dotted lines), and the seed energy (dash–dotted line).
Fig. 10
Fig. 10 Signal-seeded collinear eoe OPCPA in a cascade of AGSe crystals with a 542-mJ pump: (a) three 48.3о AGSe crystals pumped by 10-ps, 2.04-μm laser pulses with energies of 2, 40, and 500 mJ, respectively, and seeded by negatively chirped 5.5-ps, 80-pJ pulses with a central wavelength of 2.34 μm and a spectrum corresponding to a transform-limited pulse width of 200 fs, (b) the coherence length for this OPCPA process as a function of the idler wavelength and the angle θ with the spectrum of the idler output of the three-stage OPCPA shown on top; (c – e) the energies of the signal (red) and idler (blue) fields as functions of the propagation path inside the first (c), second (d), and third (e) AGSe crystals, and (f) temporal envelopes of the pump (green dots), signal (red solid), and idler (blue dashes) pulses at the output of the three-stage OPCPA. Also shown are the solutions (4) and (5) (dashed lines), the Manley–Rowe upper-bound values of the signal and idler energies, as defined by Eqs. (6) and (7) (dotted lines), and the seed energy (dash–dotted line).

Tables (1)

Tables Icon

Table 1 Parameters of short-pulse OPCPA using ZGP, GaSe, and AGSe crystals

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A j ( z,ω ) z =( i D ˜ j α( ω ) 2 ) A j ( z,ω )+ F ˜ [ i ω j σ j c P j ( z,t ) ]
I 2 = I 20 ( 1+ γ 2 / g 2 sin h 2 ( gz ) ),
I 3 = I 20 ( ω 3 / ω 2 )( γ 2 / g 2 sinh 2 ( gz ) )
W 2 = W 20 ( 1+ γ 2 / g 2 sin h 2 ( gz ) ),
W 3 = W 20 ( ω 3 / ω 2 )( γ 2 / g 2 sin h 2 ( gz ) ),
W 2 = W 10 τ 2 ω 2 n 1 / ( τ 1 ω 1 n 2 ) ,
W 3 = W 10 τ 3 ω 3 n 1 / ( τ 1 ω 1 n 3 ) ,

Metrics