Abstract

An ultra-broadband perfect absorber based on graded-index mechanism is designed and fabricated. The perfect absorber is comprised of a heavily-doped silicon absorption substrate and a flat six-layer antireflective structure. The refractive index of each layer was widely tuned by hollow polystyrene microsphere and TiO2 nanoparticle dopants, which can offer a gradually changed refractive index profile from 1.3 to 2.9. The experimental results show that 98% absorption can be achieved within the range of 0.1–20 THz. Moreover, the high absorption efficiency as well as the ultra-broad range can maintain for incident angle from 0 to 75° by the theoretical simulation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure

Yan Peng, XiaoFei Zang, YiMing Zhu, Cheng Shi, Lin Chen, Bin Cai, and SongLin Zhuang
Opt. Express 23(3) 2032-2039 (2015)

Ultra-broadband solar absorber based on multi-layer TiN/TiO2 structure with near-unity absorption

Samira Mehrabi, Mir Hamid Rezaei, and Abbas Zarifkar
J. Opt. Soc. Am. B 36(9) 2602-2609 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  3. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  4. F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, “Bi-material terahertz sensors using metamaterial structures,” Opt. Express 21(11), 13256–13271 (2013).
    [Crossref] [PubMed]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  6. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
    [Crossref] [PubMed]
  7. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  8. W. Zhu and X. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26(12), 2382–2385 (2009).
    [Crossref]
  9. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref] [PubMed]
  10. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
    [Crossref]
  11. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref] [PubMed]
  12. Q. Ye, Y. Liu, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys., A Mater. Sci. Process. 107(1), 155–160 (2012).
    [Crossref]
  13. X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
    [Crossref] [PubMed]
  14. C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
    [Crossref]
  15. X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
    [Crossref] [PubMed]
  16. Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
    [Crossref]
  17. D.-S. Kim, D.-J. Kim, D.-H. Kim, S. Hwang, and J.-H. Jang, “Simple fabrication of an antireflective hemispherical surface structure using a self-assembly method for the terahertz frequency range,” Opt. Lett. 37(13), 2742–2744 (2012).
    [Crossref] [PubMed]
  18. X. C. Wang, Y. Z. Li, B. Cai, and Y. M. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
    [Crossref]
  19. B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
    [Crossref]

2015 (2)

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

X. C. Wang, Y. Z. Li, B. Cai, and Y. M. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

2014 (1)

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

2013 (1)

2012 (4)

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Q. Ye, Y. Liu, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys., A Mater. Sci. Process. 107(1), 155–160 (2012).
[Crossref]

D.-S. Kim, D.-J. Kim, D.-H. Kim, S. Hwang, and J.-H. Jang, “Simple fabrication of an antireflective hemispherical surface structure using a self-assembly method for the terahertz frequency range,” Opt. Lett. 37(13), 2742–2744 (2012).
[Crossref] [PubMed]

X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (4)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

2009 (2)

W. Zhu and X. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26(12), 2382–2385 (2009).
[Crossref]

Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Adschiri, T.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Alves, F.

Azad, A. K.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Cai, B.

X. C. Wang, Y. Z. Li, B. Cai, and Y. M. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Chen, F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Chen, H.-T.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Chen, L.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Chen, Q.

Chen, Y. W.

Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[Crossref]

Cui, T. J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Cumming, D. R. S.

Elim, H. I.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Grant, J.

Grbovic, D.

Gu, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Han, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Han, P. Y.

Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[Crossref]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hwang, S.

Jang, J.-H.

Jiang, W. X.

Kaino, T.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Karunasiri, G.

Kearney, B.

Khalid, A.

Kim, D.-H.

Kim, D.-J.

Kim, D.-S.

Lai, S.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lavrik, N. V.

Li, H.

Li, M.

Q. Ye, Y. Liu, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys., A Mater. Sci. Process. 107(1), 155–160 (2012).
[Crossref]

Li, Y. Z.

X. C. Wang, Y. Z. Li, B. Cai, and Y. M. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Y.

Q. Ye, Y. Liu, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys., A Mater. Sci. Process. 107(1), 155–160 (2012).
[Crossref]

Ma, H. F.

Ma, Y.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

O’Hara, J. F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Peng, X. Y.

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Shen, X.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Shi, C.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Sugihara, O.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Taylor, A. J.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Teng, J. H.

Wang, B.

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, X. C.

X. C. Wang, Y. Z. Li, B. Cai, and Y. M. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

Wang, Y. Q.

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Yang, H.

Q. Ye, Y. Liu, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys., A Mater. Sci. Process. 107(1), 155–160 (2012).
[Crossref]

Yang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Ye, Q.

Q. Ye, Y. Liu, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys., A Mater. Sci. Process. 107(1), 155–160 (2012).
[Crossref]

Zang, X.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

Zang, X. F.

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Zang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhang, D. H.

Zhang, W.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhang, X.-C.

Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[Crossref]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhao, J.

Zhao, X.

Zhou, J.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhu, W.

Zhu, Y.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

Zhu, Y. M.

X. C. Wang, Y. Z. Li, B. Cai, and Y. M. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Zhuang, S.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

Appl. Phys. Express (1)

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express 4(9), 092601 (2011).
[Crossref]

Appl. Phys. Lett. (5)

X. C. Wang, Y. Z. Li, B. Cai, and Y. M. Zhu, “High refractive index composite for broadband antireflection in terahertz frequency range,” Appl. Phys. Lett. 106(23), 231107 (2015).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Y. W. Chen, P. Y. Han, and X.-C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Q. Ye, Y. Liu, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys., A Mater. Sci. Process. 107(1), 155–160 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5, 8901 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram (a, b, c) and scanning electronic microscopy (SEM) image (d) of the structure of the ultra-broadband terahertz perfect absorber. The bottom substrate is a heavily doped Si wafer, and the refractive indices were changed gradually with a flat six-layer structure. The red, green, and blue curves stand for the propagated behaviors of different wavelengths in the terahertz range.
Fig. 2
Fig. 2 Dependence of the refractive index on the doping ratio of TiO2 in epoxy. The rhombus dots are the experimental results measured by THz-TDS system, and the solid curve is the fitted results according to Eq. (3).
Fig. 3
Fig. 3 Reflectance, transmittance, and absorption properties of the ultra-broadband perfect absorber measured by the THz-TDS system with valid range of 0.1–1.5 THz.
Fig. 4
Fig. 4 Reflectance, transmittance, and absorption properties of the ultra-broadband terahertz perfect absorber measured by FT-IR spectroscopy with a valid range of 1.5–20 THz.
Fig. 5
Fig. 5 Absorption properties of the ultra-broadband perfect absorber at different incident angles simulated by CST Microwave Studio with (a) the designed thicknesses and (b) the actual thicknesses.
Fig. 6
Fig. 6 Scattering intensities as function of deviated angles. The black dots and red dots represent the signals from the roast stainless plate and the ultra-broadband perfect absorber, respectively. The solid curve is the Gaussian fitting line. The inset is a schematic of the experimental setup.

Tables (1)

Tables Icon

Table 1 Refractive indices of each layer and corresponding theoretical/actual thicknesses.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n a i r n 1 n 1 n 2 n 2 n 3 n 3 n 4 n 4 n 5 n 5 n 6 n 6 n S i .
n = f p n p + ( 1 f p ) n h ,
f p = f w f w + ( 1 f w ) ρ p ρ h ,

Metrics