Abstract

We present the design, fabrication and characterization of a high sensitivity temperature sensor based on cascaded silicon photonic crystal (PhC) nanobeam cavities. Two PhC nanobeam cavities, one with stack width modulated structure and the other one with parabolic-beam structure are utilized to increase the sensitivity. Most of the light is designed to be confined in the cladding and the core for these two cavities, respectively. Due to the positive thermo-optic (TO) coefficient of silicon and the negative TO coefficient of SU-8 cladding, the wavelength responses red shift for parabolic-beam cavity and blue shift for stack width modulated cavity as the increase of the ambient temperature, respectively. Thus, the sensitivity for the temperature sensor can be improved greatly since the difference in resonant wavelength shifts is detected for the temperature sensing. The experimental results show that the sensitivity of the temperature sensor is about 162.9 pm/°C, which is almost twice as high as that of the conventional silicon based resonator sensors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity visible light refractive index sensor based on high order mode Si3N4 photonic crystal nanobeam cavity

Weixi Liu, Jialin Yan, and Yaocheng Shi
Opt. Express 25(25) 31739-31745 (2017)

Temperature insensitive lower-index-mode photonic crystal nanobeam cavity

Yuguang Zhang and Yaocheng Shi
Opt. Lett. 40(2) 264-267 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. F. Strouse, “Standard platinum resistance thermometer calibrations from the Ar TP to the Ag FP,” NIST Spec. Publ. 250,81 (2008).
  2. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
    [Crossref] [PubMed]
  3. Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
    [Crossref]
  4. J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011).
    [Crossref] [PubMed]
  5. J. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, and R. Quidant, “Mapping intracellular temperature using green fluorescent protein,” Nano Lett. 12(4), 2107–2111 (2012).
    [Crossref] [PubMed]
  6. N. N. Klimov, T. Purdy, and Z. Ahmed, “On-chip integrated silicon photonic thermometers,” Sens. Transducer 191(8), 67–71 (2015).
  7. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
    [Crossref] [PubMed]
  8. M.-S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008).
    [Crossref] [PubMed]
  9. H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
    [Crossref] [PubMed]
  10. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18(22), 22867–22879 (2010).
    [Crossref] [PubMed]
  11. N. N. Klimov, T. Purdy, and Z. Ahmed, “Fabrication and characterization of on-chip integrated silicon photonic Bragg grating and photonic crystal cavity thermometers,” http://arxiv.org/abs/1508.01419 (2015).
  12. N. N. Klimov, S. Mittal, M. Berger, and Z. Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett. 40(17), 3934–3936 (2015).
    [Crossref] [PubMed]
  13. R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
    [Crossref] [PubMed]
  14. L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009).
    [Crossref]
  15. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [Crossref] [PubMed]
  16. M. Ibrahim, J. H. Schmid, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, D. X. Xu, and W. N. Ye, “Athermal silicon subwavelength grating waveguides,” Proc. SPIE 8707, 80071L (2011).
    [Crossref]
  17. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [Crossref] [PubMed]
  18. H.-T. Kim and M. Yu, “Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range,” Opt. Express 24(9), 9501–9510 (2016).
    [Crossref] [PubMed]
  19. Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 6892906 (2015).
    [Crossref]
  20. K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express 20(24), 27039–27044 (2012).
    [Crossref] [PubMed]
  21. B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18(6), 5654–5660 (2010).
    [Crossref] [PubMed]
  22. B. Desiatov, I. Goykhman, and U. Levy, “Parabolic tapered photonic crystal cavity in silicon,” Appl. Phys. Lett. 100(4), 40–43 (2012).
    [Crossref]
  23. Lumerical Solutions, Inc., http://www.lumerical.com
  24. Y. Zhang and Y. Shi, “Temperature insensitive lower-index-mode photonic crystal nanobeam cavity,” Opt. Lett. 40(2), 264–267 (2015).
    [Crossref] [PubMed]
  25. Y. Zhang and Y. Shi, “Post-trimming of photonic crystal nanobeam cavities by controlled electron beam exposure,” Opt. Express 24(12), 12542–12548 (2016).
    [Crossref] [PubMed]
  26. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]

2016 (2)

2015 (5)

2014 (1)

2013 (1)

2012 (4)

K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express 20(24), 27039–27044 (2012).
[Crossref] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “Parabolic tapered photonic crystal cavity in silicon,” Appl. Phys. Lett. 100(4), 40–43 (2012).
[Crossref]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
[Crossref] [PubMed]

J. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, and R. Quidant, “Mapping intracellular temperature using green fluorescent protein,” Nano Lett. 12(4), 2107–2111 (2012).
[Crossref] [PubMed]

2011 (2)

J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011).
[Crossref] [PubMed]

M. Ibrahim, J. H. Schmid, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, D. X. Xu, and W. N. Ye, “Athermal silicon subwavelength grating waveguides,” Proc. SPIE 8707, 80071L (2011).
[Crossref]

2010 (3)

2009 (2)

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

2008 (3)

1997 (1)

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Ahmed, Z.

Ahn, B. H.

Bae, H. K.

Baets, R.

Baffou, G.

J. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, and R. Quidant, “Mapping intracellular temperature using green fluorescent protein,” Nano Lett. 12(4), 2107–2111 (2012).
[Crossref] [PubMed]

Bennion, I.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Berger, M.

Bock, P. J.

M. Ibrahim, J. H. Schmid, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, D. X. Xu, and W. N. Ye, “Athermal silicon subwavelength grating waveguides,” Proc. SPIE 8707, 80071L (2011).
[Crossref]

Boeck, R.

Bogaerts, W.

Cardenas, J.

Caverley, M.

Cheben, P.

Chrostowski, L.

Delâge, A.

Densmore, A.

Desiatov, B.

B. Desiatov, I. Goykhman, and U. Levy, “Parabolic tapered photonic crystal cavity in silicon,” Appl. Phys. Lett. 100(4), 40–43 (2012).
[Crossref]

Donner, J. S.

J. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, and R. Quidant, “Mapping intracellular temperature using green fluorescent protein,” Nano Lett. 12(4), 2107–2111 (2012).
[Crossref] [PubMed]

Dumon, P.

Fan, J.

Fan, X.

Fédéli, J.-M.

Goykhman, I.

B. Desiatov, I. Goykhman, and U. Levy, “Parabolic tapered photonic crystal cavity in silicon,” Appl. Phys. Lett. 100(4), 40–43 (2012).
[Crossref]

Guha, B.

Hafezi, M.

Han, S.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 6892906 (2015).
[Crossref]

Han, X.

Ibrahim, M.

M. Ibrahim, J. H. Schmid, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, D. X. Xu, and W. N. Ye, “Athermal silicon subwavelength grating waveguides,” Proc. SPIE 8707, 80071L (2011).
[Crossref]

Jackson, D. A.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Jaeger, N. A. F.

Janz, S.

Jian, X.

Kang, J. H.

Kim, G.-D.

Kim, H.-T.

Kim, K. S.

Kim, M. K.

Klimov, N. N.

N. N. Klimov, T. Purdy, and Z. Ahmed, “On-chip integrated silicon photonic thermometers,” Sens. Transducer 191(8), 67–71 (2015).

N. N. Klimov, S. Mittal, M. Berger, and Z. Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett. 40(17), 3934–3936 (2015).
[Crossref] [PubMed]

Kou, J. L.

Kreuzer, M. P.

J. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, and R. Quidant, “Mapping intracellular temperature using green fluorescent protein,” Nano Lett. 12(4), 2107–2111 (2012).
[Crossref] [PubMed]

Kwon, M.-S.

Lamontagne, B.

M. Ibrahim, J. H. Schmid, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, D. X. Xu, and W. N. Ye, “Athermal silicon subwavelength grating waveguides,” Proc. SPIE 8707, 80071L (2011).
[Crossref]

Lapointe, J.

Lee, H.-S.

Lee, S.-S.

Lee, W.-G.

Lee, Y. H.

Levy, U.

B. Desiatov, I. Goykhman, and U. Levy, “Parabolic tapered photonic crystal cavity in silicon,” Appl. Phys. Lett. 100(4), 40–43 (2012).
[Crossref]

Lim, B. T.

Lipson, M.

Liu, P.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 6892906 (2015).
[Crossref]

Lu, Y. Q.

Ma, R.

Messaoudène, S.

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
[Crossref] [PubMed]

Min, B.

Mittal, S.

Morthier, G.

Okamoto, K.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

Park, C.-H.

Post, E.

Purdy, T.

N. N. Klimov, T. Purdy, and Z. Ahmed, “On-chip integrated silicon photonic thermometers,” Sens. Transducer 191(8), 67–71 (2015).

Qiu, S. J.

Quidant, R.

J. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, and R. Quidant, “Mapping intracellular temperature using green fluorescent protein,” Nano Lett. 12(4), 2107–2111 (2012).
[Crossref] [PubMed]

Rao, Y. J.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Schmid, J. H.

Shi, Y.

Song, J. H.

Steier, W. H.

Strouse, G. F.

Taylor, J. M.

Teng, J.

Thompson, S. A.

J. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, and R. Quidant, “Mapping intracellular temperature using green fluorescent protein,” Nano Lett. 12(4), 2107–2111 (2012).
[Crossref] [PubMed]

Vachon, M.

Webb, D. J.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

White, I. M.

Xu, D. X.

M. Ibrahim, J. H. Schmid, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, D. X. Xu, and W. N. Ye, “Athermal silicon subwavelength grating waveguides,” Proc. SPIE 8707, 80071L (2011).
[Crossref]

Xu, D.-X.

Xu, F.

Xu, H.

Yao, K.

Ye, W. N.

M. Ibrahim, J. H. Schmid, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, D. X. Xu, and W. N. Ye, “Athermal silicon subwavelength grating waveguides,” Proc. SPIE 8707, 80071L (2011).
[Crossref]

Yoo, S. J. B.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

Yu, M.

Zhang, H.

Zhang, L.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Zhang, S.

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 6892906 (2015).
[Crossref]

Zhang, Y.

Zhao, M.

Zhou, L.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

Appl. Phys. Lett. (1)

B. Desiatov, I. Goykhman, and U. Levy, “Parabolic tapered photonic crystal cavity in silicon,” Appl. Phys. Lett. 100(4), 40–43 (2012).
[Crossref]

IEEE Photonics J. (1)

Y. Zhang, S. Han, S. Zhang, P. Liu, and Y. Shi, “High-Q and high-sensitivity photonic crystal cavity sensor,” IEEE Photonics J. 7(5), 6892906 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

J. Lightwave Technol. (1)

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Nano Lett. (1)

J. S. Donner, S. A. Thompson, M. P. Kreuzer, G. Baffou, and R. Quidant, “Mapping intracellular temperature using green fluorescent protein,” Nano Lett. 12(4), 2107–2111 (2012).
[Crossref] [PubMed]

NIST Spec. Publ. (1)

G. F. Strouse, “Standard platinum resistance thermometer calibrations from the Ar TP to the Ag FP,” NIST Spec. Publ. 250,81 (2008).

Opt. Express (13)

J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011).
[Crossref] [PubMed]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[Crossref] [PubMed]

M.-S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008).
[Crossref] [PubMed]

H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
[Crossref] [PubMed]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, S. Messaoudène, and J.-M. Fédéli, “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18(22), 22867–22879 (2010).
[Crossref] [PubMed]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
[Crossref] [PubMed]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
[Crossref] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

H.-T. Kim and M. Yu, “Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range,” Opt. Express 24(9), 9501–9510 (2016).
[Crossref] [PubMed]

K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express 20(24), 27039–27044 (2012).
[Crossref] [PubMed]

B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18(6), 5654–5660 (2010).
[Crossref] [PubMed]

Y. Zhang and Y. Shi, “Post-trimming of photonic crystal nanobeam cavities by controlled electron beam exposure,” Opt. Express 24(12), 12542–12548 (2016).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

M. Ibrahim, J. H. Schmid, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, D. X. Xu, and W. N. Ye, “Athermal silicon subwavelength grating waveguides,” Proc. SPIE 8707, 80071L (2011).
[Crossref]

Sens. Transducer (1)

N. N. Klimov, T. Purdy, and Z. Ahmed, “On-chip integrated silicon photonic thermometers,” Sens. Transducer 191(8), 67–71 (2015).

Sensors (Basel) (1)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
[Crossref] [PubMed]

Other (2)

N. N. Klimov, T. Purdy, and Z. Ahmed, “Fabrication and characterization of on-chip integrated silicon photonic Bragg grating and photonic crystal cavity thermometers,” http://arxiv.org/abs/1508.01419 (2015).

Lumerical Solutions, Inc., http://www.lumerical.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The schematic of the proposed high sensitivity temperature sensor based on two cascaded PhC nanobeam cavities. (b) & (c) The schematic and the electric field distribution of the stack width modulated PhC nanobeam cavity with most of the optical mode penetrated into the SU-8 region. The parameters are chosen to be: the lattice constant a = 400 nm, W x = 200 nm, W y quadratically increased from W y ( 0 ) = 480 nm at the center to W y ( i m a x ) = 800 nm at the both sides, and i m a x = 17. (d) & (e) The schematic and the electric field distribution of the parabolic-beam PhC nanobeam cavity with the optical mode well confined in silicon core. The parameters are: the lattice constant a = 360 nm, r = 130 nm, W y quadratically increased from W y ( 0 ) = 600 nm at the center to W y ( x m a x ) = 800 nm at the both sides, and the number of Gaussian mirrors on each side N = 17. The black lines in (c) and (e) indicate the edges of silicon core.
Fig. 2
Fig. 2 (a) & (b) The influence of the widths of W y ( 0 ) and W x on the sensitivity and Q factor for the stack width modulated PhC nanobeam cavity, respectively. (c) & (d) The sensitivity and Q factor of the parabolic-beam cavity with different width of W y ( 0 ) and radius, respectively. (e) & (f) The calculated resonant wavelengths and Q factors as the increase of the ambient temperature for the two PhC nanobeam cavities.
Fig. 3
Fig. 3 (a) The microscope image of the fabricated temperature sensors. (b) The SEM image of the left Y-junction. (c) & (d) The SEM pictures of the stack width modulated PhC nanobeam cavity and the parabolic-beam PhC nanobeam cavity, respectively.
Fig. 4
Fig. 4 (a) The transmission spectra of the fabricated temperature sensor at different ambient temperatures. (b) & (c) The measured resonant wavelengths and Q factors as the increase of temperature for the SU-8 covered PhC nanobeam cavity and parabolic-beam PhC nanobeam cavity, respectively. (d) The wavelength difference between the two PhC nanobeam cavities as the increase of the ambient temperature. The temperature sensitivity is around 162.9 pm/°C by linear fitting.

Tables (1)

Tables Icon

Table 1 Sensitivity, and Q Factor for Different Temperature Sensors.

Metrics