Abstract

In turbid media, light gets multiply scattered to an extent that all the information of its propagation is scrambled over a characteristic distance called the transport mean free path. Controlling light propagation through such media is therefore challenging. By using a feedback signal, the input wavefront of light can be shaped such that light gets focused through or even inside a scattering medium [Vellekoop et al., Opt. Express 36, 67(2008)]. In this article, we show that such an interferometric focus can be transformed into an array of multiple focal spots with a desired structure. These focal spots can serve as a structured illumination source to image the interior of thick scattering tissues as in deconvolution imaging or in the optical micromanipulation of microscopic targets.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

27 September 2016: A correction was made to Fig. 8.


OSA Recommended Articles
Direct imaging of fluorescent structures behind turbid layers

Giulia Ghielmetti and Christof M. Aegerter
Opt. Express 22(2) 1981-1989 (2014)

Confocal microscopy in turbid media

J.M. Schmitt, A. Knüttel, and M. Yadlowsky
J. Opt. Soc. Am. A 11(8) 2226-2235 (1994)

Analysis of multiple scattering suppression using structured laser illumination planar imaging in scattering and fluorescing media

E. Kristensson, L. Araneo, E. Berrocal, J. Manin, M. Richter, M. Aldén, and M. Linne
Opt. Express 19(14) 13647-13663 (2011)

References

  • View by:
  • |
  • |
  • |

  1. I. M. Vellekoop and A. P. Mosk, ”Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref]
  2. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, ”Demixing light paths inside disordered metamaterials”, Opt. Express 16(1), 67–80 (2008).
    [Crossref]
  3. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams”, New J. Phys. 9(78), 1367–2630 (2007).
    [Crossref]
  4. B. Chang, L. Chou, Y. Chang, and S. Chiang, ”Isotropic image in structured illumination microscopy patterned with a spatial light modulator,” Opt. Express 17(17), 14710–14721 (2009).
    [Crossref]
  5. M.G.L. Gustafsson., “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref]
  6. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [Crossref]
  7. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref]
  8. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, ”Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3, 1441 (2013).
    [Crossref]
  9. T. Čižmár and K. Dholakia, ”Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Expres,  19(20), 18871–18884 (2011).
    [Crossref]
  10. T. Čižmár, M. Mazilu, and K. Dholakia, ”In situ wavefront correction and its application to micromanipulation,” Nat. Photon. 4, 388–394 (2010).
    [Crossref]
  11. S. Bianchia and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
    [Crossref]
  12. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, ”Image transmission through an opaque material,” Nat. Commun. 181 (2010).
    [Crossref]
  13. I.M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
    [Crossref]
  14. G. Ghielmetti and C.M. Aegerter, ”Scattered light fluorescence microscopy in three dimensions,” Opt. Express 20(4), 3744–3752 (2012).
    [Crossref]
  15. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, ”Exploiting disorder for perfect focusing,” Nat. Photon. 4, 320–322 (2010).
  16. T. Chaigne, J. Gateau, O. Katz, E. Bossy, and S. Gigan, “Light focusing and two-dimensional imaging through scattering media using the photoacoustic transmission matrix with an ultrasound array,” Opt. Lett. 39(9), 2664–2667 (2014).
    [Crossref]
  17. I.M. Vellekoop and A.P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
    [Crossref]
  18. G. Ghielmetti and C. M. Aegerter, ”Direct imaging of fluorescent structures behind turbid layers,” Opt. Express 22(2), 1981–1989 (2014).
    [Crossref]
  19. I.M. Vellekoop, Doctoral dissertation “Controlling the propagation of Light in Disordered Scattering Media”.
  20. D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express 17(12), 9989–10000 (2009).
    [Crossref]
  21. J. W. Goodman, Statistical Optics (Wiley, 2000).
  22. I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
    [Crossref]

2015 (1)

2014 (2)

2013 (1)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, ”Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

2012 (2)

G. Ghielmetti and C.M. Aegerter, ”Scattered light fluorescence microscopy in three dimensions,” Opt. Express 20(4), 3744–3752 (2012).
[Crossref]

S. Bianchia and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
[Crossref]

2011 (1)

T. Čižmár and K. Dholakia, ”Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Expres,  19(20), 18871–18884 (2011).
[Crossref]

2010 (3)

T. Čižmár, M. Mazilu, and K. Dholakia, ”In situ wavefront correction and its application to micromanipulation,” Nat. Photon. 4, 388–394 (2010).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, ”Image transmission through an opaque material,” Nat. Commun. 181 (2010).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, ”Exploiting disorder for perfect focusing,” Nat. Photon. 4, 320–322 (2010).

2009 (2)

2008 (2)

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, ”Demixing light paths inside disordered metamaterials”, Opt. Express 16(1), 67–80 (2008).
[Crossref]

I.M. Vellekoop and A.P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

2007 (2)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams”, New J. Phys. 9(78), 1367–2630 (2007).
[Crossref]

I. M. Vellekoop and A. P. Mosk, ”Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref]

2000 (1)

M.G.L. Gustafsson., “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

1997 (1)

1994 (1)

1988 (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Aegerter, C. M.

Aegerter, C.M.

Backsten, J.

Bengtsson, J.

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams”, New J. Phys. 9(78), 1367–2630 (2007).
[Crossref]

Bianchia, S.

S. Bianchia and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
[Crossref]

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, ”Image transmission through an opaque material,” Nat. Commun. 181 (2010).
[Crossref]

Bossy, E.

Chaigne, T.

Chang, B.

Chang, Y.

Chiang, S.

Chou, L.

Cižmár, T.

T. Čižmár and K. Dholakia, ”Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Expres,  19(20), 18871–18884 (2011).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, ”In situ wavefront correction and its application to micromanipulation,” Nat. Photon. 4, 388–394 (2010).
[Crossref]

Dholakia, K.

T. Čižmár and K. Dholakia, ”Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Expres,  19(20), 18871–18884 (2011).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, ”In situ wavefront correction and its application to micromanipulation,” Nat. Photon. 4, 388–394 (2010).
[Crossref]

Di Leonardo, R.

S. Bianchia and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
[Crossref]

Engström, D.

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Fink, M.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, ”Image transmission through an opaque material,” Nat. Commun. 181 (2010).
[Crossref]

Frank, A.

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams”, New J. Phys. 9(78), 1367–2630 (2007).
[Crossref]

Gateau, J.

Ge, J.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, ”Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Ghielmetti, G.

Gigan, S.

Goksör, M.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 2000).

Gu, Z.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, ”Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Gustafsson., M.G.L.

M.G.L. Gustafsson., “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Hao, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, ”Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Hell, S. W.

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams”, New J. Phys. 9(78), 1367–2630 (2007).
[Crossref]

Juskaitis, R.

Katz, O.

Kuang, C.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, ”Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Lagendijk, A.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, ”Exploiting disorder for perfect focusing,” Nat. Photon. 4, 320–322 (2010).

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, ”Demixing light paths inside disordered metamaterials”, Opt. Express 16(1), 67–80 (2008).
[Crossref]

Lerosey, G.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, ”Image transmission through an opaque material,” Nat. Commun. 181 (2010).
[Crossref]

Li, H.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, ”Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Li, S.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, ”Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Liu, W.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, ”Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Liu, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, ”Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams”, New J. Phys. 9(78), 1367–2630 (2007).
[Crossref]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, ”In situ wavefront correction and its application to micromanipulation,” Nat. Photon. 4, 388–394 (2010).
[Crossref]

Mosk, A. P.

Mosk, A.P.

I.M. Vellekoop and A.P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

Neil, M. A. A.

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, ”Image transmission through an opaque material,” Nat. Commun. 181 (2010).
[Crossref]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams”, New J. Phys. 9(78), 1367–2630 (2007).
[Crossref]

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

van Putten, E. G.

Vellekoop, I. M.

Vellekoop, I.M.

I.M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
[Crossref]

I.M. Vellekoop and A.P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

I.M. Vellekoop, Doctoral dissertation “Controlling the propagation of Light in Disordered Scattering Media”.

Wang, Y.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, ”Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Wichmann, J.

Wilson, T.

J. Microsc. (1)

M.G.L. Gustafsson., “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Lab Chip (1)

S. Bianchia and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012).
[Crossref]

Nat. Commun. (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, ”Image transmission through an opaque material,” Nat. Commun. 181 (2010).
[Crossref]

Nat. Photon. (2)

T. Čižmár, M. Mazilu, and K. Dholakia, ”In situ wavefront correction and its application to micromanipulation,” Nat. Photon. 4, 388–394 (2010).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, ”Exploiting disorder for perfect focusing,” Nat. Photon. 4, 320–322 (2010).

New J. Phys. (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams”, New J. Phys. 9(78), 1367–2630 (2007).
[Crossref]

Opt. Commun. (1)

I.M. Vellekoop and A.P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008).
[Crossref]

Opt. Expres (1)

T. Čižmár and K. Dholakia, ”Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Expres,  19(20), 18871–18884 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves through Disordered Media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Sci. Rep. (1)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, ”Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref]

Other (2)

J. W. Goodman, Statistical Optics (Wiley, 2000).

I.M. Vellekoop, Doctoral dissertation “Controlling the propagation of Light in Disordered Scattering Media”.

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (203 KB)      Visualization 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 To the optimum wavefront a) leading to a focus behind the turbid medium, when a CGH such as b) is added, the resulting phase would look like c).
Fig. 2
Fig. 2 Experimental Setup.
Fig. 3
Fig. 3 a) Phase masks loaded onto the SLM for obtaining multiple focal spots through a layer of TiO2 b) computed Fourier Transforms of (a). c) resulting pattern on the CCD for respective images in (a). Scalebar corresponds to 5μm.
Fig. 4
Fig. 4 Moving the focal spots in k-space: a) the SLM masks. b) computed Fourier Transforms c) resulting CCD images for diffuser glass used as sample. Scalebar corresponds to 5μm.
Fig. 5
Fig. 5 a) Phase masks loaded onto the SLM to obtain focal spots with radial symmetry. b) Resulting patterns on the CCD respectively. Scalebar corresponds to 5μm.
Fig. 6
Fig. 6 CGH generated using Stochastic algorithm, computed Fourier Transform and resulting focal spots on CCD plane. Scalebar corresponds to 5μm.
Fig. 7
Fig. 7 Limiting case of number of foci demonstrated for diffuser glass: SLM mask, computed Fourier Transform and resulting CCD image. Scalebar corresponds to 10μm.
Fig. 8
Fig. 8 Direct optimization on multiple configurations of a target. Scalebar corresponds to 5μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f = S i t i s g ( r f r s ) d 2 r s
{ f * f } = { + f ( y , z ) f ( Y y , Z z ) d y d z } = { f ( y , z ) } { f ( y , z ) } = E ( k y , k z ) F ( k y , k z )
f ( y , z ) = i exp i ϕ i δ ( y y i ) δ ( z z i )
E ( k y , k z ) = i t i s g ( r f r s )

Metrics