Abstract

A multi-wavelength pumped thulium doped fiber amplifier is investigated to extend the spectral gain coverage of the amplifier in the 1.7-1.9μm wavelength range. Through the use of a combination of 791 nm, 1240 nm, and 1560 nm laser diode pumping, the amplifier gain can be improved significantly and overall gain bandwidth enhancement of ~47% as compared to single-wavelength pumping achieved. A nominal gain of 15 dB is achieved over a bandwidth of more than 250 nm spanning from 1700 to 1950 nm with a maximum gain of 29 dB and a noise figure of less than 5 dB.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 – 2050 nm window

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson
Opt. Express 21(22) 26450-26455 (2013)

Thulium-doped fiber amplifier for optical communications at 2 µm

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson
Opt. Express 21(8) 9289-9297 (2013)

1.50-µm-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-µm dual-wavelength pumping

Tadashi Kasamatsu, Yutaka Yano, and Hitoshi Sekita
Opt. Lett. 24(23) 1684-1686 (1999)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
    [Crossref] [PubMed]
  2. A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
    [Crossref]
  3. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
    [Crossref] [PubMed]
  4. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  5. V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. Wheeler, N. Baddela, R. Uden, C. Okonkwo, J. R. Hayes, J. Wooler, E. R. Numkam Fokoua, R. Slavik, F. Poletti, M. Petrovich, V. Veljanovski, S. Alam, D. J. Richardson, and H. Waardt, “30.7 Tb/s (96x320 Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference (OSA, 2013), OW1I.5.
    [Crossref]
  6. N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. R. Numkam Fokoua, I. Giles, D. Giles, R. Phelan, J. O’Carroll, B. Kelly, B. Corbett, D. Murphy, A. D. Ellis, D. J. Richardson, and F. Garcia Gunning, “WDM transmission at 2 um over low-loss hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OW1I.6.
  7. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
    [Crossref] [PubMed]
  8. Z. Li, S. U. Alam, J. M. O. Daniel, P. C. Shardlow, D. Jain, N. Simakov, A. M. Heidt, Y. Jung, J. K. Sahu, W. A. Clarkson, and D. J. Richardson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in The European Conference on Optical Communication (2014), pp. 1–3.
  9. Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, P. C. Shardlow, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65 - 1.7 µm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), paper Tu2C.1.
  10. Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
    [Crossref] [PubMed]
  11. A. Gomes, M. Carvalho, M. Sundheimer, C. Bastos-Filho, J. Martins-Filho, M. B. Costa e Silva, J. P. von der Weid, and W. Margulis, “Characterization of efficient dual-wavelength(1050+ 800 nm) pumping scheme for thulium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 15(2), 200–202 (2003).
    [Crossref]
  12. T. Kasamatsu, Y. Yano, and T. Ono, “Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51um wavelength region,” IEEE Photonics Technol. Lett. 13(1), 31–33 (2001).
    [Crossref]
  13. C. Floridia, M. T. Carvalho, S. R. Lüthi, and A. S. L. Gomes, “Modeling the distributed gain of single--(1050 or 1410 nm) and dual-wavelength--(800 + 1050 nm or 800 + 1410 nm) pumped thulium-doped fiber amplifiers,” Opt. Lett. 29(17), 1983–1985 (2004).
    [Crossref] [PubMed]
  14. J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
    [Crossref] [PubMed]
  15. M. J. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (CRC press, 2001).
  16. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [Crossref]

2016 (1)

2015 (1)

2013 (3)

2012 (1)

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

2010 (1)

D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
[Crossref] [PubMed]

2004 (1)

2003 (1)

A. Gomes, M. Carvalho, M. Sundheimer, C. Bastos-Filho, J. Martins-Filho, M. B. Costa e Silva, J. P. von der Weid, and W. Margulis, “Characterization of efficient dual-wavelength(1050+ 800 nm) pumping scheme for thulium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 15(2), 200–202 (2003).
[Crossref]

2001 (1)

T. Kasamatsu, Y. Yano, and T. Ono, “Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51um wavelength region,” IEEE Photonics Technol. Lett. 13(1), 31–33 (2001).
[Crossref]

1999 (1)

Alam, S. U.

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Baddela, N. K.

Bastos-Filho, C.

A. Gomes, M. Carvalho, M. Sundheimer, C. Bastos-Filho, J. Martins-Filho, M. B. Costa e Silva, J. P. von der Weid, and W. Margulis, “Characterization of efficient dual-wavelength(1050+ 800 nm) pumping scheme for thulium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 15(2), 200–202 (2003).
[Crossref]

Becker, M.

Byer, R. L.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Carvalho, M.

A. Gomes, M. Carvalho, M. Sundheimer, C. Bastos-Filho, J. Martins-Filho, M. B. Costa e Silva, J. P. von der Weid, and W. Margulis, “Characterization of efficient dual-wavelength(1050+ 800 nm) pumping scheme for thulium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 15(2), 200–202 (2003).
[Crossref]

Carvalho, M. T.

Chang-Hasnain, C. J.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Clarkson, W. A.

Costa e Silva, M. B.

A. Gomes, M. Carvalho, M. Sundheimer, C. Bastos-Filho, J. Martins-Filho, M. B. Costa e Silva, J. P. von der Weid, and W. Margulis, “Characterization of efficient dual-wavelength(1050+ 800 nm) pumping scheme for thulium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 15(2), 200–202 (2003).
[Crossref]

Daniel, J. M. O.

Ellis, A. D.

Floridia, C.

Forrest, S. R.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Gomes, A.

A. Gomes, M. Carvalho, M. Sundheimer, C. Bastos-Filho, J. Martins-Filho, M. B. Costa e Silva, J. P. von der Weid, and W. Margulis, “Characterization of efficient dual-wavelength(1050+ 800 nm) pumping scheme for thulium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 15(2), 200–202 (2003).
[Crossref]

Gomes, A. S. L.

Gray, D. R.

Gruner-Nielsen, L.

Gunning, F. C.

Hayes, J. R.

Heidt, A. M.

Ibsen, M.

Jackson, S. D.

Jain, D.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
[Crossref] [PubMed]

Z. Li, S. U. Alam, J. M. O. Daniel, P. C. Shardlow, D. Jain, N. Simakov, A. M. Heidt, Y. Jung, J. K. Sahu, W. A. Clarkson, and D. J. Richardson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in The European Conference on Optical Communication (2014), pp. 1–3.

Jung, Y.

Kasamatsu, T.

T. Kasamatsu, Y. Yano, and T. Ono, “Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51um wavelength region,” IEEE Photonics Technol. Lett. 13(1), 31–33 (2001).
[Crossref]

Kelly, B.

King, T. A.

Kogelnik, H.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Kressel, H.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Li, Z.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

Z. Li, S. U. Alam, J. M. O. Daniel, P. C. Shardlow, D. Jain, N. Simakov, A. M. Heidt, Y. Jung, J. K. Sahu, W. A. Clarkson, and D. J. Richardson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in The European Conference on Optical Communication (2014), pp. 1–3.

Lüthi, S. R.

MacSuibhne, N.

Margulis, W.

A. Gomes, M. Carvalho, M. Sundheimer, C. Bastos-Filho, J. Martins-Filho, M. B. Costa e Silva, J. P. von der Weid, and W. Margulis, “Characterization of efficient dual-wavelength(1050+ 800 nm) pumping scheme for thulium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 15(2), 200–202 (2003).
[Crossref]

Martins-Filho, J.

A. Gomes, M. Carvalho, M. Sundheimer, C. Bastos-Filho, J. Martins-Filho, M. B. Costa e Silva, J. P. von der Weid, and W. Margulis, “Characterization of efficient dual-wavelength(1050+ 800 nm) pumping scheme for thulium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 15(2), 200–202 (2003).
[Crossref]

Numkam, E.

Numkam Fokoua, E.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

O’Carroll, J.

Ono, T.

T. Kasamatsu, Y. Yano, and T. Ono, “Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51um wavelength region,” IEEE Photonics Technol. Lett. 13(1), 31–33 (2001).
[Crossref]

Pálsdóttir, B.

Parmigiani, F.

Petropoulos, P.

Petrovich, M. N.

Phelan, R.

Poletti, F.

Richardson, D. J.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref] [PubMed]

D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
[Crossref] [PubMed]

Z. Li, S. U. Alam, J. M. O. Daniel, P. C. Shardlow, D. Jain, N. Simakov, A. M. Heidt, Y. Jung, J. K. Sahu, W. A. Clarkson, and D. J. Richardson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in The European Conference on Optical Communication (2014), pp. 1–3.

Sahu, J. K.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
[Crossref] [PubMed]

Z. Li, S. U. Alam, J. M. O. Daniel, P. C. Shardlow, D. Jain, N. Simakov, A. M. Heidt, Y. Jung, J. K. Sahu, W. A. Clarkson, and D. J. Richardson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in The European Conference on Optical Communication (2014), pp. 1–3.

Shardlow, P. C.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
[Crossref] [PubMed]

Z. Li, S. U. Alam, J. M. O. Daniel, P. C. Shardlow, D. Jain, N. Simakov, A. M. Heidt, Y. Jung, J. K. Sahu, W. A. Clarkson, and D. J. Richardson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in The European Conference on Optical Communication (2014), pp. 1–3.

Simakov, N.

Slavik, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Slavík, R.

Sundheimer, M.

A. Gomes, M. Carvalho, M. Sundheimer, C. Bastos-Filho, J. Martins-Filho, M. B. Costa e Silva, J. P. von der Weid, and W. Margulis, “Characterization of efficient dual-wavelength(1050+ 800 nm) pumping scheme for thulium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 15(2), 200–202 (2003).
[Crossref]

Tearney, G. J.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Tokurakawa, M.

Townes, C. H.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

von der Weid, J. P.

A. Gomes, M. Carvalho, M. Sundheimer, C. Bastos-Filho, J. Martins-Filho, M. B. Costa e Silva, J. P. von der Weid, and W. Margulis, “Characterization of efficient dual-wavelength(1050+ 800 nm) pumping scheme for thulium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 15(2), 200–202 (2003).
[Crossref]

Wheeler, N. V.

Willner, A. E.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Wooler, J. P.

Yano, Y.

T. Kasamatsu, Y. Yano, and T. Ono, “Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51um wavelength region,” IEEE Photonics Technol. Lett. 13(1), 31–33 (2001).
[Crossref]

Zervas, M. N.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Zhao, J.

IEEE Photonics Technol. Lett. (2)

A. Gomes, M. Carvalho, M. Sundheimer, C. Bastos-Filho, J. Martins-Filho, M. B. Costa e Silva, J. P. von der Weid, and W. Margulis, “Characterization of efficient dual-wavelength(1050+ 800 nm) pumping scheme for thulium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 15(2), 200–202 (2003).
[Crossref]

T. Kasamatsu, Y. Yano, and T. Ono, “Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51um wavelength region,” IEEE Photonics Technol. Lett. 13(1), 31–33 (2001).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Proc. IEEE (1)

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Science (1)

D. J. Richardson, “Applied physics. Filling the light pipe,” Science 330(6002), 327–328 (2010).
[Crossref] [PubMed]

Other (5)

Z. Li, S. U. Alam, J. M. O. Daniel, P. C. Shardlow, D. Jain, N. Simakov, A. M. Heidt, Y. Jung, J. K. Sahu, W. A. Clarkson, and D. J. Richardson, “90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers,” in The European Conference on Optical Communication (2014), pp. 1–3.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, P. C. Shardlow, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65 - 1.7 µm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), paper Tu2C.1.

V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. Wheeler, N. Baddela, R. Uden, C. Okonkwo, J. R. Hayes, J. Wooler, E. R. Numkam Fokoua, R. Slavik, F. Poletti, M. Petrovich, V. Veljanovski, S. Alam, D. J. Richardson, and H. Waardt, “30.7 Tb/s (96x320 Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber,” in Optical Fiber Communication Conference (OSA, 2013), OW1I.5.
[Crossref]

N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. R. Numkam Fokoua, I. Giles, D. Giles, R. Phelan, J. O’Carroll, B. Kelly, B. Corbett, D. Murphy, A. D. Ellis, D. J. Richardson, and F. Garcia Gunning, “WDM transmission at 2 um over low-loss hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OW1I.6.

M. J. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (CRC press, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Energy-level diagram of Tm ions in a silica glass host with a dual-wavelength pumping scheme. (b) Schematic of the 791 / 791 nm pumped and 791 / 1560 nm LD pumped TDFA. TLS: tunable laser source; TDFL: thulium doped fiber laser; VOA: variable optical attenuator; ISO: isolator; WDM: wavelength division multiplexer; TDF: thulium doped fiber; LD: laser diode.
Fig. 2
Fig. 2 (a) ASE spectrum of 791 nm, 1560 nm and 791/1560 nm pumping. (b) Detailed broadband performance of the 791 / 791 nm and 791 / 1560 nm pumped TDFAs. The gas absorption lines around 1850 – 1900 nm are due to air path in the OSA.
Fig. 3
Fig. 3 Amplified (a) small and (b) saturated signals for dual-wavelength pumping. Measured with 0.5 nm optical spectrum analyzer resolution.
Fig. 4
Fig. 4 (a) Energy-level diagram of Tm ions in silica glass host and the triple-wavelength pumping scheme. (b) Schematic of the triple wavelength pumped TDFA. TLS: tunable laser source; TDFL: thulium doped fiber laser; VOA: variable optical attenuator; ISO: isolator; WDM: wavelength division multiplexer; TDF: thulium doped fiber; LD: laser diode.
Fig. 5
Fig. 5 Detailed broadband performance of the triple-wavelength pumped TDFA. Gain: red; NF: blue.
Fig. 6
Fig. 6 Amplified (a) small and (b) saturated signals for triple-wavelength pumping. Measured with 0.5 nm optical spectrum analyzer resolution.
Fig. 7
Fig. 7 A comparison between different pumping schemes and previous demonstrations.

Tables (1)

Tables Icon

Table 1 A summary of different configurations.

Metrics