Abstract

We present an optical transmission model and a fast shielding effectiveness (SE) evaluation method for the inductive mesh comprising metallic rings with rotated sub-ring arrays, which can be extended for designing and optimizing other ring-based mesh structures. The theoretical analysis and experimental verification show that the established model and method are valid. A Ku-band SE >17 dB (98% energy attenuation) is observed for a triangular ring mesh with rotated sub-rings, and a normalized visible transmittance >95% is obtained with an ultra-uniform diffraction pattern, thus indicating the possibilities of our approach for high-optical-transmittance, strong-SE, reduced-image-degradation shielding applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction

Weiqi Wang, Benfeng Bai, Qian Zhou, Kai Ni, and Hui Lin
Opt. Mater. Express 8(11) 3485-3493 (2018)

Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays

Zhengang Lu, Heyan Wang, Jiubin Tan, Limin Ma, and Shen Lin
Opt. Lett. 41(9) 1941-1944 (2016)

Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding

Heyan Wang, Zhengang Lu, Yeshu Liu, Jiubin Tan, Limin Ma, and Shen Lin
Opt. Lett. 42(8) 1620-1623 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Polley, A. Barman, and R. K. Mitra, “EMI shielding and conductivity of carbon nanotube-polymer composites at terahertz frequency,” Opt. Lett. 39(6), 1541–1544 (2014).
    [Crossref] [PubMed]
  2. B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
    [Crossref] [PubMed]
  3. K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, “Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption,” Sci. Rep. 4, 7191 (2014).
    [Crossref] [PubMed]
  4. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
    [Crossref] [PubMed]
  5. M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
    [Crossref] [PubMed]
  6. M. Marus, A. Hubarevich, H. Wang, A. Smirnov, X. Sun, and W. Fan, “Optoelectronic performance optimization for transparent conductive layers based on randomly arranged silver nanorods,” Opt. Express 23(5), 6209–6214 (2015).
    [Crossref] [PubMed]
  7. M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
    [Crossref] [PubMed]
  8. E. H. Cho, J. Hwang, J. Kim, J. Lee, C. Kwak, and C. S. Lee, “Low-visibility patterning of transparent conductive silver-nanowire films,” Opt. Express 23(20), 26095–26103 (2015).
    [Crossref] [PubMed]
  9. D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett. 34(3), 325–327 (2009).
    [Crossref] [PubMed]
  10. B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
    [Crossref]
  11. M. H. Al-Saleh, W. H. Saadeh, and U. Sundararaj, “EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study,” Carbon 60, 146–156 (2013).
    [Crossref]
  12. T. K. Gupta, B. P. Singh, R. B. Mathur, and S. R. Dhakate, “Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness,” Nanoscale 6(2), 842–851 (2014).
    [Crossref] [PubMed]
  13. P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2–3), 919–926 (2009).
    [Crossref]
  14. P. Mondal, M. K. Mandal, and A. Chakrabarty, “Compact ultra-wideband bandpass filter with improved out-of-band rejection,” Microw. Opt. Technol. Lett. 50(3), 758–761 (2008).
    [Crossref]
  15. Y. Liu and J. Tan, “Experimental study on a resonance mesh coating fabricated using a UV-lithography technique,” Opt. Express 21(4), 4228–4234 (2013).
    [Crossref] [PubMed]
  16. J. Tan and Z. Lu, “Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light,” Opt. Express 15(3), 790–796 (2007).
    [Crossref] [PubMed]
  17. Z. Lu, H. Wang, J. Tan, and S. Lin, “Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh,” Appl. Phys. Lett. 105(24), 241904 (2014).
    [Crossref]
  18. M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
    [Crossref]
  19. J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
    [Crossref]
  20. I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
    [Crossref]
  21. Z. Lu, H. Wang, J. Tan, L. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
    [Crossref] [PubMed]
  22. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
    [Crossref]
  23. P. E. Ciddor and L. B. Whitbourn, “Equivalent thin film of a periodic metal grid,” Appl. Opt. 28(6), 1228–1230 (1989).
    [Crossref] [PubMed]
  24. S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
    [Crossref] [PubMed]
  25. G. A. Gelves, M. H. Al-Saleh, and U. Sundararaj, “Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation,” J. Med. Chem. 21(3), 829–836 (2011).
  26. S. K. Vishwanath, D. G. Kim, and J. Kim, “Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing,” Jpn. J. Appl. Phys.53(5S3), 05HB11 (2014).
    [Crossref]
  27. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
    [Crossref]
  28. Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
    [Crossref]
  29. M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
    [Crossref]

2016 (1)

2015 (2)

2014 (8)

D. Polley, A. Barman, and R. K. Mitra, “EMI shielding and conductivity of carbon nanotube-polymer composites at terahertz frequency,” Opt. Lett. 39(6), 1541–1544 (2014).
[Crossref] [PubMed]

B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
[Crossref] [PubMed]

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, “Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption,” Sci. Rep. 4, 7191 (2014).
[Crossref] [PubMed]

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

T. K. Gupta, B. P. Singh, R. B. Mathur, and S. R. Dhakate, “Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness,” Nanoscale 6(2), 842–851 (2014).
[Crossref] [PubMed]

Z. Lu, H. Wang, J. Tan, and S. Lin, “Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh,” Appl. Phys. Lett. 105(24), 241904 (2014).
[Crossref]

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

2013 (2)

M. H. Al-Saleh, W. H. Saadeh, and U. Sundararaj, “EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study,” Carbon 60, 146–156 (2013).
[Crossref]

Y. Liu and J. Tan, “Experimental study on a resonance mesh coating fabricated using a UV-lithography technique,” Opt. Express 21(4), 4228–4234 (2013).
[Crossref] [PubMed]

2012 (1)

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

2011 (2)

G. A. Gelves, M. H. Al-Saleh, and U. Sundararaj, “Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation,” J. Med. Chem. 21(3), 829–836 (2011).

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

2009 (6)

D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett. 34(3), 325–327 (2009).
[Crossref] [PubMed]

J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
[Crossref]

M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
[Crossref]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2–3), 919–926 (2009).
[Crossref]

2008 (1)

P. Mondal, M. K. Mandal, and A. Chakrabarty, “Compact ultra-wideband bandpass filter with improved out-of-band rejection,” Microw. Opt. Technol. Lett. 50(3), 758–761 (2008).
[Crossref]

2007 (2)

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

J. Tan and Z. Lu, “Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light,” Opt. Express 15(3), 790–796 (2007).
[Crossref] [PubMed]

1993 (1)

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

1989 (1)

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Ahn, J. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Al-Saleh, M. H.

M. H. Al-Saleh, W. H. Saadeh, and U. Sundararaj, “EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study,” Carbon 60, 146–156 (2013).
[Crossref]

G. A. Gelves, M. H. Al-Saleh, and U. Sundararaj, “Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation,” J. Med. Chem. 21(3), 829–836 (2011).

M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
[Crossref]

Bai, G.

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Barman, A.

Batrakov, K.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, “Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption,” Sci. Rep. 4, 7191 (2014).
[Crossref] [PubMed]

Bora, V.

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Cai, J.

J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Cao, M. S.

B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
[Crossref] [PubMed]

Cao, W. Q.

B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
[Crossref] [PubMed]

Chakrabarty, A.

P. Mondal, M. K. Mandal, and A. Chakrabarty, “Compact ultra-wideband bandpass filter with improved out-of-band rejection,” Microw. Opt. Technol. Lett. 50(3), 758–761 (2008).
[Crossref]

Chapman, J. E.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

Chase, R. C.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

Chen, Y.

J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Cho, E. H.

Choi, J. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Choudhary, V.

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2–3), 919–926 (2009).
[Crossref]

Ciddor, P. E.

Densmore, V.

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Dhakate, S. R.

T. K. Gupta, B. P. Singh, R. B. Mathur, and S. R. Dhakate, “Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness,” Nanoscale 6(2), 842–851 (2014).
[Crossref] [PubMed]

Dhawan, S. K.

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2–3), 919–926 (2009).
[Crossref]

Dong, Y.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Du, F.

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Fan, W.

Gao, H.

J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Gao, J.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Gelves, G. A.

G. A. Gelves, M. H. Al-Saleh, and U. Sundararaj, “Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation,” J. Med. Chem. 21(3), 829–836 (2011).

Ghosh, D. S.

Giurgola, S.

Griffin, A.

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
[Crossref]

Guo, T.

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Gupta, T. K.

T. K. Gupta, B. P. Singh, R. B. Mathur, and S. R. Dhakate, “Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness,” Nanoscale 6(2), 842–851 (2014).
[Crossref] [PubMed]

Halman, J. I.

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
[Crossref]

Hibbard, D. L.

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Hong, B. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Hu, M.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Huang, Y.

J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Hubarevich, A.

Hwang, J.

Jang, H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Jang, W.

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

Jin, H. B.

B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
[Crossref] [PubMed]

Kamyshny, A.

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

Kaplas, T.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, “Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption,” Sci. Rep. 4, 7191 (2014).
[Crossref] [PubMed]

Kim, D. G.

S. K. Vishwanath, D. G. Kim, and J. Kim, “Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing,” Jpn. J. Appl. Phys.53(5S3), 05HB11 (2014).
[Crossref]

Kim, J.

E. H. Cho, J. Hwang, J. Kim, J. Lee, C. Kwak, and C. S. Lee, “Low-visibility patterning of transparent conductive silver-nanowire films,” Opt. Express 23(20), 26095–26103 (2015).
[Crossref] [PubMed]

S. K. Vishwanath, D. G. Kim, and J. Kim, “Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing,” Jpn. J. Appl. Phys.53(5S3), 05HB11 (2014).
[Crossref]

Kim, J. M.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Kim, K. S.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Kim, M. G.

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

Kim, P.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Kim, S.

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

Kim, Y. C.

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

Kohin, M.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

Kuzhir, P.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, “Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption,” Sci. Rep. 4, 7191 (2014).
[Crossref] [PubMed]

Kwak, C.

Lambin, P.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, “Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption,” Sci. Rep. 4, 7191 (2014).
[Crossref] [PubMed]

Layani, M.

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

Lee, C. S.

Lee, J.

Lee, J. H.

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

Lee, S. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Lee, Y.

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

Li, F.

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Li, K.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Li, R. K.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Liang, J.

J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Lin, S.

Z. Lu, H. Wang, J. Tan, L. Ma, and S. Lin, “Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays,” Opt. Lett. 41(9), 1941–1944 (2016).
[Crossref] [PubMed]

Z. Lu, H. Wang, J. Tan, and S. Lin, “Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh,” Appl. Phys. Lett. 105(24), 241904 (2014).
[Crossref]

Liu, Y.

Liu, Z.

J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Lu, M. M.

B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
[Crossref] [PubMed]

Lu, Z.

Ma, L.

Ma, Y.

J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Magdassi, S.

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

Maksimenko, S.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, “Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption,” Sci. Rep. 4, 7191 (2014).
[Crossref] [PubMed]

Mandal, M. K.

P. Mondal, M. K. Mandal, and A. Chakrabarty, “Compact ultra-wideband bandpass filter with improved out-of-band rejection,” Microw. Opt. Technol. Lett. 50(3), 758–761 (2008).
[Crossref]

Martinez, L.

Marus, M.

Mathur, R. B.

T. K. Gupta, B. P. Singh, R. B. Mathur, and S. R. Dhakate, “Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness,” Nanoscale 6(2), 842–851 (2014).
[Crossref] [PubMed]

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2–3), 919–926 (2009).
[Crossref]

Milster, T. D.

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Mitra, R. K.

Mondal, P.

P. Mondal, M. K. Mandal, and A. Chakrabarty, “Compact ultra-wideband bandpass filter with improved out-of-band rejection,” Microw. Opt. Technol. Lett. 50(3), 758–761 (2008).
[Crossref]

Murray, I. B.

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Nam, J. D.

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

Oh, J. S.

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

Paddubskaya, A.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, “Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption,” Sci. Rep. 4, 7191 (2014).
[Crossref] [PubMed]

Pieratt, M. W.

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Polley, D.

Pruneri, V.

Ramsey, K. A.

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
[Crossref]

Saadeh, W. H.

M. H. Al-Saleh, W. H. Saadeh, and U. Sundararaj, “EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study,” Carbon 60, 146–156 (2013).
[Crossref]

Saini, P.

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2–3), 919–926 (2009).
[Crossref]

Seo, H. W.

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

Shan, G.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Shen, B.

B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

Shi, H. L.

B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
[Crossref] [PubMed]

Singh, B. P.

T. K. Gupta, B. P. Singh, R. B. Mathur, and S. R. Dhakate, “Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness,” Nanoscale 6(2), 842–851 (2014).
[Crossref] [PubMed]

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2–3), 919–926 (2009).
[Crossref]

Smirnov, A.

Sun, X.

Sundararaj, U.

M. H. Al-Saleh, W. H. Saadeh, and U. Sundararaj, “EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study,” Carbon 60, 146–156 (2013).
[Crossref]

G. A. Gelves, M. H. Al-Saleh, and U. Sundararaj, “Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation,” J. Med. Chem. 21(3), 829–836 (2011).

M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
[Crossref]

Svirko, Y.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, “Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption,” Sci. Rep. 4, 7191 (2014).
[Crossref] [PubMed]

Tan, J.

Thomas, M.

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
[Crossref]

Traylor, J. D.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Vergani, P.

Vishwanath, S. K.

S. K. Vishwanath, D. G. Kim, and J. Kim, “Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing,” Jpn. J. Appl. Phys.53(5S3), 05HB11 (2014).
[Crossref]

Voronovich, S.

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, “Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption,” Sci. Rep. 4, 7191 (2014).
[Crossref] [PubMed]

Wang, G.

B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
[Crossref] [PubMed]

Wang, H.

Wang, M.

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

Wang, W. Z.

B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
[Crossref] [PubMed]

Wang, X. X.

B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
[Crossref] [PubMed]

Wang, Y.

J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Wein, S. J.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

Wen, B.

B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
[Crossref] [PubMed]

Whitbourn, L. B.

Yang, S.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Yuan, J.

B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
[Crossref] [PubMed]

Zhai, W.

B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

Zhang, C.

J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Zhao, Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Zheng, W.

B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

S. Kim, J. S. Oh, M. G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J. H. Lee, Y. Lee, and J. D. Nam, “Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition,” ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

B. Shen, W. Zhai, and W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding,” Adv. Funct. Mater. 24(28), 4542–4548 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z. Lu, H. Wang, J. Tan, and S. Lin, “Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh,” Appl. Phys. Lett. 105(24), 241904 (2014).
[Crossref]

Carbon (4)

M. H. Al-Saleh, W. H. Saadeh, and U. Sundararaj, “EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study,” Carbon 60, 146–156 (2013).
[Crossref]

J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon 47(3), 922–925 (2009).
[Crossref]

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

M. H. Al-Saleh and U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites,” Carbon 47(7), 1738–1746 (2009).
[Crossref]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

J. Med. Chem. (1)

G. A. Gelves, M. H. Al-Saleh, and U. Sundararaj, “Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation,” J. Med. Chem. 21(3), 829–836 (2011).

Langmuir (1)

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R. K. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” Mater. Chem. Phys. 113(2–3), 919–926 (2009).
[Crossref]

Microw. Opt. Technol. Lett. (1)

P. Mondal, M. K. Mandal, and A. Chakrabarty, “Compact ultra-wideband bandpass filter with improved out-of-band rejection,” Microw. Opt. Technol. Lett. 50(3), 758–761 (2008).
[Crossref]

Nanoscale (3)

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

B. Wen, X. X. Wang, W. Q. Cao, H. L. Shi, M. M. Lu, G. Wang, H. B. Jin, W. Z. Wang, J. Yuan, and M. S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world,” Nanoscale 6(11), 5754–5761 (2014).
[Crossref] [PubMed]

T. K. Gupta, B. P. Singh, R. B. Mathur, and S. R. Dhakate, “Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness,” Nanoscale 6(2), 842–851 (2014).
[Crossref] [PubMed]

Nature (1)

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009).
[Crossref] [PubMed]

Opt. Eng. (1)

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (2)

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y (2009).
[Crossref]

I. B. Murray, V. Densmore, V. Bora, M. W. Pieratt, D. L. Hibbard, and T. D. Milster, “Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software,” Proc. SPIE 8016, 80160U (2011).
[Crossref]

Sci. Rep. (1)

K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, “Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption,” Sci. Rep. 4, 7191 (2014).
[Crossref] [PubMed]

Other (1)

S. K. Vishwanath, D. G. Kim, and J. Kim, “Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing,” Jpn. J. Appl. Phys.53(5S3), 05HB11 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of metallic mesh. (b) Mesh unit cells with different angles of rotation.
Fig. 2
Fig. 2 (a) Mesh sample photographs of transparent triangular ring mesh (TRM) with rotated sub-rings. (b) Micrograph of mesh sample acquired with a Nikon SMZ1500 stereomicroscope. (c) Atomic force microscopy (AFM) image of the mesh sample obtained with a Bruker Dimension Icon AFM.
Fig. 3
Fig. 3 (a) Schematic of the mesh with round aperture. (b) Basic array of the triangular ring mesh with rotated sub-rings. (c) Spatial coordinates of the mesh unit cell.
Fig. 4
Fig. 4 Simulation results of the diffraction distribution and the normalized optical intensity for different mesh patterns. Panes (a) and (c) correspond to the triangular ring mesh (TRM) with non-rotated sub-rings; (b) and (d) correspond to the TRM with rotated sub-rings.
Fig. 5
Fig. 5 (a) Schematic of the optical diffraction measurement setup. (b) and (c) Experimental results of the diffraction distribution for the two mesh samples. (d) and (e) Measured gray values of optical intensity for mesh samples corresponding to (b) and (c).
Fig. 6
Fig. 6 (a) Simulation results of the shielding effectiveness for the triangular ring mesh (TRM) with different numbers of sub-rings in one unit cell as obtained via EFM-MERRM and CST methods. (b) Measured curves and CST simulation results for the two fabricated mesh samples. #1 represents TRM with rotated sub-rings sample and #2 represents TRM with non-rotated sub-rings sample.
Fig. 7
Fig. 7 Simulated SE values for single-layer (a) and double-layer (b) TRM with rotated sub-rings with different substrate thickness on an incident electromagnetic wave range of 1 – 200 GHz.

Tables (1)

Tables Icon

Table 1 Electromagnetic Shielding, Normalized Visible Transmittance and MNOI for Different Electromagnetic Interference (EMI) Shielding Materials

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

t m a i n r i n g ( x , y ) = c i r c ( x 2 + y 2 N D / 2 ) × [ A m n δ ( x n D ) δ ( y 3 m D ) ] .
A = Δ c i r c ( x 2 + y 2 D / 2 ) + Δ c i r c ( ( x + D / 2 ) 2 + ( y 3 D / 2 ) 2 D / 2 ) .
Δ c i r c ( x 2 + y 2 D / 2 ) = c i r c ( x 2 + y 2 D / 2 ) c i r c [ x 2 + y 2 ( D 2 a ) / 2 ] .
t s u b r i n g ( x , y ) = c i r c ( x 2 + y 2 N D / 2 ) × [ ( A k + B k ) m n δ ( x 4 n D ) δ ( y 3 m D ) ] .
A k = k = 0 3 h = 0 3 Δ c i r c ( 2 d [ x + D d 2 cos ( 22.5 k + 90 h ) k D ] 2 + [ y + D d 2 sin ( 22.5 k + 90 h ) ] 2 )
B k = k = 0 3 h = 0 3 Δ c i r c ( 2 d [ x + D d 2 cos ( 22.5 k + 90 h ) k D + 1 2 D ] 2 + [ y + D d 2 sin ( 22.5 k + 90 h ) 3 2 D ] 2 ) .
T m e s h ( x , y ) = c i r c ( x 2 + y 2 N D / 2 ) t m a i n r i n g ( x , y ) t s u b r i n g ( x , y ) .
I m e s h ( ξ , η ) = F [ T m e s h ( x , y ) ] × F [ T m e s h ( x , y ) ] .
n = [ λ 4 π d e ( X R 2 + X 2 + ( 1 R 2 + X 2 ) 1 / 2 ) ] 1 / 2 .
k = [ λ 4 π d e ( X R 2 + X 2 + ( 1 R 2 + X 2 ) 1 / 2 ) ] 1 / 2 .
g = sin ( π / h ) sin ( π / h ) + 1 D .
R Z 0 = g 2 a ( π ε 0 c λ σ ) 1 / 2 .
X ( ω ) Z 0 = { l n [ csc ( π a g ) ] } ( g g 2 a + 1 2 ω 2 ) 1 ( ω ω 0 ω 0 ω ) 1 .

Metrics