Abstract

This work proposes a tunable reflective guided-mode resonant (GMR) filter that incorporates a 90° twisted nematic liquid crystal (TNLC). The GMR grating acts as an optical resonator that reflects strongly at the resonance wavelength and as an alignment layer for LC. The 90° TNLC functions as an achromic polarization rotator that alters the polarization of incident light. The resonance wavelength and reflectance of such a filter can be controlled by setting the angle of incidence and driving the 90° TNLC, respectively. The designed filter exhibits a very large spectral shift in resonance wavelength from 710 to 430 nm, which covers the entire visible spectrum. The transmittance can be tuned to within 10 V at various resonance wavelengths. The hybrid GMR - LC filter is compact, has a simple design, and is easy to fabricated. It can therefore be used in practical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full-color reflector using vertically stacked liquid crystal guided-mode resonators

Chun-Ta Wang, Ping-Chien Chang, Jia Jin Lin, Mao Chou Tai, Yung-Jr Hung, and Tsung-Hsien Lin
Appl. Opt. 56(14) 4219-4223 (2017)

Two-dimensional grating guided-mode resonance tunable filter

Wen-Kai Kuo and Che-Jung Hsu
Opt. Express 25(24) 29642-29649 (2017)

Optical spectrometer based on continuously-chirped guided mode resonance filter

Yung-Jr Hung, Chia-Wei Kao, Tzu-Chieh Kao, Chia-Wei Huang, Jia-Jin Lin, and Chuan-Ci Yin
Opt. Express 26(21) 27515-27527 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt. 45(28), 7286–7293 (2006).
    [Crossref] [PubMed]
  2. Y.-T. Yoon, H.-S. Lee, S.-S. Lee, S. H. Kim, J.-D. Park, and K.-D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16(4), 2374–2380 (2008).
    [Crossref] [PubMed]
  3. S. Boonruang and W. S. Mohammed, “Multiwavelength guided mode resonance sensor array,” Appl. Phys. Express 8(9), 092004 (2015).
    [Crossref]
  4. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  5. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [Crossref]
  6. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
    [Crossref]
  7. G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, “Tunable, oblique incidence resonant grating filter for telecommunications,” Appl. Opt. 43(8), 1683–1694 (2004).
    [Crossref] [PubMed]
  8. L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
    [Crossref]
  9. J. H. Lin, Y. C. Huang, N. DiepLai, H.-C. Kan, and C. C. Hsu, “Optical modulation of guided mode resonance in the waveguide grating structure incorporated with azo-doped-poly(methylmethacrylate) cladding layer,” Opt. Express 20(1), 377–384 (2012).
    [Crossref] [PubMed]
  10. R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15(17), 10903–10910 (2007).
    [Crossref] [PubMed]
  11. M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
    [Crossref]
  12. K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
    [Crossref]
  13. I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett. 7, 667–670 (2009).
    [Crossref]
  14. A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
    [Crossref]
  15. F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
    [Crossref]
  16. L. Qian, D. Zhang, B. Dai, Y. Huang, C. Tao, R. Hong, and S. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid crystal polarization rotator,” Opt. Lett. 40(5), 713–716 (2015).
    [Crossref] [PubMed]
  17. M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
    [Crossref]
  18. Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
    [Crossref]
  19. C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles =90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
    [Crossref]
  20. N. Konforti, E. Marom, and S. T. Wu, “Phase-only modulation with twisted nematic liquid-crystal spatial light modulators,” Opt. Lett. 13(3), 251–253 (1988).
    [Crossref] [PubMed]
  21. S. Oka, M. Kimura, and T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80(10), 1847–1849 (2002).
    [Crossref]
  22. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  23. S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
    [Crossref]
  24. Y.-Q. Lu, F. Du, Y.-H. Lin, and S.-T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
    [Crossref] [PubMed]

2016 (2)

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

2015 (2)

2013 (1)

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

2012 (1)

2010 (1)

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

2009 (2)

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett. 7, 667–670 (2009).
[Crossref]

2008 (1)

2007 (4)

R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15(17), 10903–10910 (2007).
[Crossref] [PubMed]

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

2006 (1)

2004 (2)

2003 (1)

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

2002 (1)

S. Oka, M. Kimura, and T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80(10), 1847–1849 (2002).
[Crossref]

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

1993 (1)

1988 (1)

1975 (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles =90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
[Crossref]

Abdulhalim, I.

Akahane, T.

S. Oka, M. Kimura, and T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80(10), 1847–1849 (2002).
[Crossref]

Boonruang, S.

S. Boonruang and W. S. Mohammed, “Multiwavelength guided mode resonance sensor array,” Appl. Phys. Express 8(9), 092004 (2015).
[Crossref]

Brunner, R.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Cao, K.

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Chan, H. P.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Chang, A. S. P.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Chang, P.-C.

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Chen, Y.-Y.

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Chiang, K. S.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Chou, S. Y.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Chow, C. K.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Chu, Y. M.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Cunningham, B. T.

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt. 45(28), 7286–7293 (2006).
[Crossref] [PubMed]

Dabrowski, R.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Dai, B.

DiepLai, N.

Dobbs, D. W.

Du, F.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Fujii, A.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Gauza, S.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Gooch, C. H.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles =90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
[Crossref]

Gosele, U.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Helgert, M.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Herzig, H. P.

Heyroth, F.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Hong, R.

Hsu, C. C.

Huang, Y.

Huang, Y. C.

Hung, Y.-J.

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Kan, H.-C.

Kim, S. H.

Kimura, M.

S. Oka, M. Kimura, and T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80(10), 1847–1849 (2002).
[Crossref]

Knez, M.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Konforti, N.

Kubo, H.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Lee, H.-S.

Lee, K.-D.

Lee, S.-S.

Lin, J. H.

Lin, J.-J.

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Lin, Y.-H.

Lin, Y.-N.

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Lor, K. P.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Lu, Y.-Q.

Magnusson, R.

Marom, E.

Mohammed, W. S.

S. Boonruang and W. S. Mohammed, “Multiwavelength guided mode resonance sensor array,” Appl. Phys. Express 8(9), 092004 (2015).
[Crossref]

Morton, K. J.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Murata, K.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Murphy, P. F.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Niederer, G.

Numata, N.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Ogawa, Y.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Ojima, M.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Oka, S.

S. Oka, M. Kimura, and T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80(10), 1847–1849 (2002).
[Crossref]

Ozaki, M.

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Park, J.-D.

Piecek, W.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Qian, L.

Rastogi, V.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Schnieper, M.

Shamir, J.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Shokooh-Saremi, M.

Szeghalmi, A.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Tan, H.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Tao, C.

Tarry, H. A.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles =90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
[Crossref]

Thiele, H.

Uddin, M. J.

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

Wang, S. S.

Wu, S. T.

Wu, S.-T.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Y.-Q. Lu, F. Du, Y.-H. Lin, and S.-T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
[Crossref] [PubMed]

Wu, W.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Xu, L.-H.

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Yang, F.

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

Yen, G.

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

Yoon, Y.-T.

Zhang, D.

Zhao, D.-L.

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Zheng, G.-G.

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Zhu, X.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Zhuang, S.

Zschokke, C.

Adv. Funct. Mater. (1)

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Express (2)

S. Boonruang and W. S. Mohammed, “Multiwavelength guided mode resonance sensor array,” Appl. Phys. Express 8(9), 092004 (2015).
[Crossref]

M. Ojima, N. Numata, Y. Ogawa, K. Murata, H. Kubo, A. Fujii, and M. Ozaki, “Electric field tuning of plasmonic absorption of metallic grating with twisted nematic liquid crystal,” Appl. Phys. Express 2, 086001 (2009).
[Crossref]

Appl. Phys. Lett. (2)

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

S. Oka, M. Kimura, and T. Akahane, “Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching,” Appl. Phys. Lett. 80(10), 1847–1849 (2002).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photonics Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

J. Disp. Technol. (1)

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles =90 degrees,” J. Phys. D Appl. Phys. 8(13), 1575–1584 (1975).
[Crossref]

J. Vac. Sci. Technol. B (1)

Y.-J. Hung, P.-C. Chang, Y.-N. Lin, and J.-J. Lin, “Compact mirror-tunable laser interference system for wafer-scale patterning of grating structures with flexible periodicity,” J. Vac. Sci. Technol. B 34(4), 040609 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optik (Stuttg.) (1)

L.-H. Xu, G.-G. Zheng, D.-L. Zhao, Y.-Y. Chen, and K. Cao, “Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region,” Optik (Stuttg.) 127(2), 955–958 (2016).
[Crossref]

Other (1)

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Cross-section of designed filter; SEM images of SWG structure after (b) photoresist development and (c) Ta2O5 deposition
Fig. 2
Fig. 2 Operation of proposed filter with 90° TNLC cladding in (a) Voff and (b) Von states.
Fig. 3
Fig. 3 POM images of proposed filter in T-mode under (a) parallel and (b) crossed polarizers. (c) V-T curves of 90° TNLC in proposed filter at various oblique angles of incidence.
Fig. 4
Fig. 4 (a) Dependence of experimental and simulated resonance wavelengths of proposed filter on angle of incidence. (b) Reflection spectra of proposed filter at angles of incidence of 3, 9, 16, 26, 34°.
Fig. 5
Fig. 5 Transmission spectra of proposed filter for angles of incidence of (a) 0, (b) 9, (c) 26, and (d) 45 degrees; (e) V-T curves of proposed filter at various angles of incidence.

Metrics