Abstract

We propose an innovative approach for the realization of a microwave absorber fully transparent in the optical regime. This device is based on the Salisbury screen configuration, which consists of a lossless spacer, sandwiched between two graphene sheets whose sheet resistances are different and properly engineered. Experimental results show that it is possible to achieve near-perfect electromagnetic absorption in the microwave X-band. These findings are fully supported by an analytical approach based on an equivalent circuital model. Engineering and integration of graphene sheets could facilitate the realization of innovative microwave absorbers with additional electromagnetic and optical functionalities that could circumvent some of the major limitations of opaque microwave absorbers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metasurface Salisbury screen: achieving ultra-wideband microwave absorption

Ziheng Zhou, Ke Chen, Junming Zhao, Ping Chen, Tian Jiang, Bo Zhu, Yijun Feng, and Yue Li
Opt. Express 25(24) 30241-30252 (2017)

Graphene-based perfect optical absorbers harnessing guided mode resonances

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio
Opt. Express 23(16) 21032-21042 (2015)

Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range

Longfang Ye, Yao Chen, Guoxiong Cai, Na Liu, Jinfeng Zhu, Zhengyong Song, and Qing Huo Liu
Opt. Express 25(10) 11223-11232 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
    [Crossref]
  2. P. Saville, “Review of radar absorbing materials,” Defence R&D Canada, Technical Memorandum, DRDC Atlantic TM 2005–003, Tech. Rep. (2005).
  3. F. Qin and C. Brosseau, “A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles,” J. Appl. Phys. 111(6), 061301 (2012).
    [Crossref]
  4. J. Tang, M. Radosz, and Y. Shen, “Poly(ionic liquid)s as Optically Transparent Microwave-Absorbing Materials,” Macromolecules 41(2), 493–496 (2008).
    [Crossref]
  5. B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
    [PubMed]
  6. O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
    [Crossref] [PubMed]
  7. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
    [Crossref]
  8. Y. Okano, S. Ogino, and K. Ishikawa, “Development of Optically Transparent Ultrathin Microwave Absorber for Suppression of Misidentification Possibility of UHF-RFID System,” Electron. Commun. Jpn. 98(1), 36–46 (2015).
    [Crossref]
  9. W. Zhang, P. H. Q. Pham, E. R. Brown, and P. J. Burke, “AC conductivity parameters of graphene derived from THz etalon transmittance,” Nanoscale 6(22), 13895–13899 (2014).
    [Crossref] [PubMed]
  10. M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio, and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene,” Sci. Rep. 5, 17083 (2015).
    [Crossref] [PubMed]
  11. W. W. Salisbury, US Patent No. 2599944 (1952).
  12. J. M. Woo, M. S. Kim, H. W. Kim, and J.-H. Jang, “Graphene based salisbury screen for terahertz absorber,” Appl. Phys. Lett. 104(8), 081106 (2014).
    [Crossref]
  13. G. Bruno, G. V. Bianco, M. M. Giangregorio, M. Losurdo, and P. Capezzuto, “Photothermally controlled structural switching in fluorinated polyene-graphene hybrids,” Phys. Chem. Chem. Phys. 16(27), 13948–13955 (2014).
    [Crossref] [PubMed]
  14. M. Grande, A. D’Orazio, G. V. Bianco, G. Bruno, M. A. Vincenti, D. de Ceglia, and M. Scalora, “Optically transparent graphene-based Salisbury screen microwave absorber,” in IEEE 15th Mediterranean Microwave Symposium (MMS, 2015), paper 15701392.
    [Crossref]

2015 (3)

O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
[Crossref] [PubMed]

Y. Okano, S. Ogino, and K. Ishikawa, “Development of Optically Transparent Ultrathin Microwave Absorber for Suppression of Misidentification Possibility of UHF-RFID System,” Electron. Commun. Jpn. 98(1), 36–46 (2015).
[Crossref]

M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio, and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene,” Sci. Rep. 5, 17083 (2015).
[Crossref] [PubMed]

2014 (5)

J. M. Woo, M. S. Kim, H. W. Kim, and J.-H. Jang, “Graphene based salisbury screen for terahertz absorber,” Appl. Phys. Lett. 104(8), 081106 (2014).
[Crossref]

G. Bruno, G. V. Bianco, M. M. Giangregorio, M. Losurdo, and P. Capezzuto, “Photothermally controlled structural switching in fluorinated polyene-graphene hybrids,” Phys. Chem. Chem. Phys. 16(27), 13948–13955 (2014).
[Crossref] [PubMed]

W. Zhang, P. H. Q. Pham, E. R. Brown, and P. J. Burke, “AC conductivity parameters of graphene derived from THz etalon transmittance,” Nanoscale 6(22), 13895–13899 (2014).
[Crossref] [PubMed]

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

2012 (1)

F. Qin and C. Brosseau, “A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles,” J. Appl. Phys. 111(6), 061301 (2012).
[Crossref]

2008 (1)

J. Tang, M. Radosz, and Y. Shen, “Poly(ionic liquid)s as Optically Transparent Microwave-Absorbing Materials,” Macromolecules 41(2), 493–496 (2008).
[Crossref]

2002 (1)

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Abdullah, M. H.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Ahmad, S. H.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Balci, O.

O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
[Crossref] [PubMed]

Bianco, G. V.

M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio, and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene,” Sci. Rep. 5, 17083 (2015).
[Crossref] [PubMed]

G. Bruno, G. V. Bianco, M. M. Giangregorio, M. Losurdo, and P. Capezzuto, “Photothermally controlled structural switching in fluorinated polyene-graphene hybrids,” Phys. Chem. Chem. Phys. 16(27), 13948–13955 (2014).
[Crossref] [PubMed]

Brosseau, C.

F. Qin and C. Brosseau, “A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles,” J. Appl. Phys. 111(6), 061301 (2012).
[Crossref]

Brown, E. R.

W. Zhang, P. H. Q. Pham, E. R. Brown, and P. J. Burke, “AC conductivity parameters of graphene derived from THz etalon transmittance,” Nanoscale 6(22), 13895–13899 (2014).
[Crossref] [PubMed]

Bruno, G.

M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio, and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene,” Sci. Rep. 5, 17083 (2015).
[Crossref] [PubMed]

G. Bruno, G. V. Bianco, M. M. Giangregorio, M. Losurdo, and P. Capezzuto, “Photothermally controlled structural switching in fluorinated polyene-graphene hybrids,” Phys. Chem. Chem. Phys. 16(27), 13948–13955 (2014).
[Crossref] [PubMed]

Burke, P. J.

W. Zhang, P. H. Q. Pham, E. R. Brown, and P. J. Burke, “AC conductivity parameters of graphene derived from THz etalon transmittance,” Nanoscale 6(22), 13895–13899 (2014).
[Crossref] [PubMed]

Capezzuto, P.

M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio, and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene,” Sci. Rep. 5, 17083 (2015).
[Crossref] [PubMed]

G. Bruno, G. V. Bianco, M. M. Giangregorio, M. Losurdo, and P. Capezzuto, “Photothermally controlled structural switching in fluorinated polyene-graphene hybrids,” Phys. Chem. Chem. Phys. 16(27), 13948–13955 (2014).
[Crossref] [PubMed]

Cole, M. T.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

D’Orazio, A.

M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio, and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene,” Sci. Rep. 5, 17083 (2015).
[Crossref] [PubMed]

de Ceglia, D.

M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio, and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene,” Sci. Rep. 5, 17083 (2015).
[Crossref] [PubMed]

Giangregorio, M. M.

G. Bruno, G. V. Bianco, M. M. Giangregorio, M. Losurdo, and P. Capezzuto, “Photothermally controlled structural switching in fluorinated polyene-graphene hybrids,” Phys. Chem. Chem. Phys. 16(27), 13948–13955 (2014).
[Crossref] [PubMed]

Grande, M.

M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio, and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene,” Sci. Rep. 5, 17083 (2015).
[Crossref] [PubMed]

Guo, L. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Hamid, S. A.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Hao, Y.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Ishikawa, K.

Y. Okano, S. Ogino, and K. Ishikawa, “Development of Optically Transparent Ultrathin Microwave Absorber for Suppression of Misidentification Possibility of UHF-RFID System,” Electron. Commun. Jpn. 98(1), 36–46 (2015).
[Crossref]

Jang, J.-H.

J. M. Woo, M. S. Kim, H. W. Kim, and J.-H. Jang, “Graphene based salisbury screen for terahertz absorber,” Appl. Phys. Lett. 104(8), 081106 (2014).
[Crossref]

Jang, T.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Jusoh, S. F.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Kakenov, N.

O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
[Crossref] [PubMed]

Kim, H. W.

J. M. Woo, M. S. Kim, H. W. Kim, and J.-H. Jang, “Graphene based salisbury screen for terahertz absorber,” Appl. Phys. Lett. 104(8), 081106 (2014).
[Crossref]

Kim, M. S.

J. M. Woo, M. S. Kim, H. W. Kim, and J.-H. Jang, “Graphene based salisbury screen for terahertz absorber,” Appl. Phys. Lett. 104(8), 081106 (2014).
[Crossref]

Kocabas, C.

O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
[Crossref] [PubMed]

Losurdo, M.

G. Bruno, G. V. Bianco, M. M. Giangregorio, M. Losurdo, and P. Capezzuto, “Photothermally controlled structural switching in fluorinated polyene-graphene hybrids,” Phys. Chem. Chem. Phys. 16(27), 13948–13955 (2014).
[Crossref] [PubMed]

Mansor, A. A.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Milne, W. I.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Naeem, M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Ogino, S.

Y. Okano, S. Ogino, and K. Ishikawa, “Development of Optically Transparent Ultrathin Microwave Absorber for Suppression of Misidentification Possibility of UHF-RFID System,” Electron. Commun. Jpn. 98(1), 36–46 (2015).
[Crossref]

Okano, Y.

Y. Okano, S. Ogino, and K. Ishikawa, “Development of Optically Transparent Ultrathin Microwave Absorber for Suppression of Misidentification Possibility of UHF-RFID System,” Electron. Commun. Jpn. 98(1), 36–46 (2015).
[Crossref]

Pham, P. H. Q.

W. Zhang, P. H. Q. Pham, E. R. Brown, and P. J. Burke, “AC conductivity parameters of graphene derived from THz etalon transmittance,” Nanoscale 6(22), 13895–13899 (2014).
[Crossref] [PubMed]

Polat, E. O.

O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
[Crossref] [PubMed]

Qin, F.

F. Qin and C. Brosseau, “A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles,” J. Appl. Phys. 111(6), 061301 (2012).
[Crossref]

Radosz, M.

J. Tang, M. Radosz, and Y. Shen, “Poly(ionic liquid)s as Optically Transparent Microwave-Absorbing Materials,” Macromolecules 41(2), 493–496 (2008).
[Crossref]

Scalora, M.

M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio, and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene,” Sci. Rep. 5, 17083 (2015).
[Crossref] [PubMed]

Shen, Y.

J. Tang, M. Radosz, and Y. Shen, “Poly(ionic liquid)s as Optically Transparent Microwave-Absorbing Materials,” Macromolecules 41(2), 493–496 (2008).
[Crossref]

Shin, Y. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Tang, J.

J. Tang, M. Radosz, and Y. Shen, “Poly(ionic liquid)s as Optically Transparent Microwave-Absorbing Materials,” Macromolecules 41(2), 493–496 (2008).
[Crossref]

Tuncer, H. M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Vincenti, M. A.

M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio, and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene,” Sci. Rep. 5, 17083 (2015).
[Crossref] [PubMed]

Woo, J. M.

J. M. Woo, M. S. Kim, H. W. Kim, and J.-H. Jang, “Graphene based salisbury screen for terahertz absorber,” Appl. Phys. Lett. 104(8), 081106 (2014).
[Crossref]

Wu, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Yang, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Youn, H.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Yusoff, A. N.

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

Zhang, W.

W. Zhang, P. H. Q. Pham, E. R. Brown, and P. J. Burke, “AC conductivity parameters of graphene derived from THz etalon transmittance,” Nanoscale 6(22), 13895–13899 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Appl. Phys. Lett. (1)

J. M. Woo, M. S. Kim, H. W. Kim, and J.-H. Jang, “Graphene based salisbury screen for terahertz absorber,” Appl. Phys. Lett. 104(8), 081106 (2014).
[Crossref]

Electron. Commun. Jpn. (1)

Y. Okano, S. Ogino, and K. Ishikawa, “Development of Optically Transparent Ultrathin Microwave Absorber for Suppression of Misidentification Possibility of UHF-RFID System,” Electron. Commun. Jpn. 98(1), 36–46 (2015).
[Crossref]

J. Appl. Phys. (2)

A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. Hamid, “Electromagnetic and absorption properties of some microwave absorbers,” J. Appl. Phys. 92(2), 876–882 (2002).
[Crossref]

F. Qin and C. Brosseau, “A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles,” J. Appl. Phys. 111(6), 061301 (2012).
[Crossref]

Macromolecules (1)

J. Tang, M. Radosz, and Y. Shen, “Poly(ionic liquid)s as Optically Transparent Microwave-Absorbing Materials,” Macromolecules 41(2), 493–496 (2008).
[Crossref]

Nanoscale (1)

W. Zhang, P. H. Q. Pham, E. R. Brown, and P. J. Burke, “AC conductivity parameters of graphene derived from THz etalon transmittance,” Nanoscale 6(22), 13895–13899 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

G. Bruno, G. V. Bianco, M. M. Giangregorio, M. Losurdo, and P. Capezzuto, “Photothermally controlled structural switching in fluorinated polyene-graphene hybrids,” Phys. Chem. Chem. Phys. 16(27), 13948–13955 (2014).
[Crossref] [PubMed]

Sci. Rep. (2)

M. Grande, G. V. Bianco, M. A. Vincenti, D. de Ceglia, P. Capezzuto, M. Scalora, A. D’Orazio, and G. Bruno, “Optically transparent microwave polarizer based on quasi-metallic graphene,” Sci. Rep. 5, 17083 (2015).
[Crossref] [PubMed]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Other (3)

P. Saville, “Review of radar absorbing materials,” Defence R&D Canada, Technical Memorandum, DRDC Atlantic TM 2005–003, Tech. Rep. (2005).

W. W. Salisbury, US Patent No. 2599944 (1952).

M. Grande, A. D’Orazio, G. V. Bianco, G. Bruno, M. A. Vincenti, D. de Ceglia, and M. Scalora, “Optically transparent graphene-based Salisbury screen microwave absorber,” in IEEE 15th Mediterranean Microwave Symposium (MMS, 2015), paper 15701392.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Sketch of the graphene-based Salisbury screen: the graphene-absorbing layer and the graphene-based mirror are separated by a transparent spacer with thickness d. (b) Picture of the graphene-based absorber: this device is fully transparent since the inner sidewalls of the rectangular waveguide are clearly visible; (inset) stacked glass slabs with identical thicknesses (1.2 mm) that constitute the lossless spacer. (c) Equivalent circuital model.
Fig. 2
Fig. 2 Comparison between analytical (solid lines) and numerical findings (dots), in terms of microwave reflectance (blue line), transmittance (red line) and absorption (green line) of the absorbers, when the sheet resistance of the absorbing layer Rsa (black line in the sketch) is varied for (a) the graphene and (b) metallic mirror-based configurations, respectively. The operating frequency is equal to 9 GHz. The mirror sheet resistance is set equal to 30 Ω/sq (graphene-based mirror) and 0 Ω/sq (metallic mirror), respectively.
Fig. 3
Fig. 3 (a) Sheet resistance when the layer number of graphene sheets is varied. The red and blue dashed lines correspond to the designed sheet resistances for the absorbing layer and the mirror, respectively. The black arrows indicate the modification of the sheet resistance due to the chemical protocol. (b) Graphene sheet resistance variation versus plasma-hydrogenation time.
Fig. 4
Fig. 4 (a-b) Comparison between experimental (dots) and analytical findings (solid lines), in terms of reflectance (blue line), transmittance (red line) and absorption (green line), when the spacer thickness is varied for the (a) graphene-based and (b) metallic mirror-based configurations, respectively. In (a-b) the measurements are carried out with an operating frequency equal to 9 GHz. (c-d) Comparison between experimental results and analytical findings when the operating frequency is varied for (c) graphene and (d) metallic mirror-based configurations, respectively. In (c-d) the measurements are carried out with a thickness equal to 3.6 mm (close to the quarter-wave condition).
Fig. 5
Fig. 5 (a) Normalized optical transmittance of the absorbing layer (bi-layer graphene), mirror (doped four-layer graphene) and the complete absorber, respectively. The dashed line corresponds to wavelength equal to 550 nm. (b) Picture of the realized optically transparent graphene-based absorber. On the right side, it is possible to see a slight contrast due to the presence of the graphene sheets.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M= M Rsa M spacer M Rsm =[ 1 0 1 R sa 1 ][ cos( βd ) j Z TE10,ε sin( βd ) j Z TE10,ε sin( βd ) cos( βd ) ][ 1 0 1 R sm 1 ]=[ M 11 M 12 M 21 M 22 ]
R= | S 11 | 2 = M 11 + M 12 / Z TE10 M 21 Z TE10 M 22 M 11 + M 12 / Z TE10 + M 21 Z TE10 + M 22
T= | S 21 | 2 = 2 M 11 + M 12 / Z TE10 + M 21 Z TE10 + M 22
A=1 R 2 T 2

Metrics