Abstract

We investigate self-seeded optical sources for interferometric sensing applications and show that they can, depending on optical filter bandwidth, provide high-output power, high wavelength temperature stability (<5 ppm/°C), low relative intensity noise (<-140 dBc/Hz) and low coherence lengths (<100 um). We characterize the key performance indicators for a range of optical filter bandwidths and provide insight into key design parameters of such sources for interferometric sensors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interferometric measurements beyond the coherence length of the laser source

Yves Salvadé, Frank Przygodda, Marcel Rohner, Albert Polster, Yves Meyer, Serge Monnerat, Olivier Gloriod, Miguel Llera, Renaud Matthey, Joab di Francesco, Florian Gruet, and Gaetano Mileti
Opt. Express 24(19) 21729-21743 (2016)

Thermal phase noise in giant interferometric fiber optic gyroscopes

Yulin Li, Yuwen Cao, Dong He, Yangjun Wu, Fangyuan Chen, Chao Peng, and Zhengbin Li
Opt. Express 27(10) 14121-14132 (2019)

High-performance fiber-optic temperature sensor using low-coherence interferometry

Han-Sun Choi, Henry F. Taylor, and Chung E. Lee
Opt. Lett. 22(23) 1814-1816 (1997)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Wyant, “White light interferometry”, in Proceedings of SPIE 4737, Holography: A Tribute to Yuri Denisyuk and Emmett Leith (SPIE, 2002), pp. 98–107.
  2. H. C. Lefevre, The Fiber-Optics Gyroscope (Artech House, 2014).
  3. V. Vali and R. W. Shorthill, “Fiber ring interferometer,” Appl. Opt. 15(5), 1099–1100 (1976).
    [Crossref] [PubMed]
  4. S. W. Lloyd, S. Fan, and M. J. F. Digonnet, “Experimental observation of low noise and low drift in a laser-driven fiber optic gyroscope,” J. Lightwave Technol. 31(13), 2079–2085 (2013).
    [Crossref]
  5. T. Komljenovic, M. A. Tran, M. Belt, S. Gundavarapu, D. J. Blumenthal, and J. E. Bowers, “Frequency modulated lasers for interferometric optical gyroscopes,” Opt. Lett. 41(8), 1773–1776 (2016).
    [Crossref] [PubMed]
  6. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of Erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
    [Crossref]
  7. R. P. Moeller and W. K. Burns, “1.06-microm all-fiber gyroscope with noise subtraction,” Opt. Lett. 16(23), 1902–1904 (1991).
    [Crossref] [PubMed]
  8. E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
    [Crossref]
  9. T. Komljenovic, D. Babić, and Z. Sipus, “47-km 1.25-Gbps transmission using a self-seeded transmitter with a modulation averaging reflector,” Opt. Express 20(16), 17386–17392 (2012).
    [Crossref] [PubMed]
  10. A. Maho, G. Simon, S. Barbet, F. Lelarge, F. Saliou, P. Chanclou, P. Parolari, L. Marazzi, M. Brunero, M. Martinelli, S. A. Grebewold, J. Leuthold, and R. Brenot, “Demystification of the self-seeded WDM access,” J. Lightwave Technol. 34(2), 776–782 (2016).
    [Crossref]
  11. M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
    [Crossref]
  12. J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photonics Technol. Lett. 5(12), 1458–1461 (1993).
    [Crossref]
  13. M. Presi and E. Ciaramella, “Stable self-seeding of Reflective-SOAs for WDM-PONs,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011 (2011), paper OMP4.
    [Crossref]
  14. M. Presi, A. Chiuchiarelli, R. Corsini, and E. Ciaramella, “Uncooled and polarization independent operation of self-seeded Fabry-Pérot lasers for WDM-PONs,” IEEE Photonics Technol. Lett. 24(17), 1523–1526 (2012).
    [Crossref]
  15. S. Ó. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
    [Crossref] [PubMed]
  16. L. Marazzi, A. Boletti, P. Parolari, A. Gatto, R. Brenot, and M. Martinelli, “Relative intensity noise suppression in reflective SOAs,” Opt. Commun. 318, 186–188 (2014).
    [Crossref]
  17. S. A. Gebrewold, L. Marazzi, P. Parolari, R. Brenot, S. P. O. Duill, R. Bonjour, D. Hillerkuss, C. Hafner, and J. Leuthold, “Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter,” IEEE J. Sel. Top. Quantum Electron. 20(5), 503 (2014).
    [Crossref]
  18. M. Martinelli, “Time reversal for the polarization state in optical systems,” J. Mod. Opt. 39(3), 451–455 (1992).
    [Crossref]
  19. J. Nayak, “Fiber-optics gyroscopes: from design to production [Invited],” Appl. Opt. 50(25), E152–E161 (2011).
    [Crossref]
  20. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref] [PubMed]
  21. T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
    [Crossref]
  22. M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/Silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
    [Crossref]

2016 (3)

2014 (3)

M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/Silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
[Crossref]

L. Marazzi, A. Boletti, P. Parolari, A. Gatto, R. Brenot, and M. Martinelli, “Relative intensity noise suppression in reflective SOAs,” Opt. Commun. 318, 186–188 (2014).
[Crossref]

S. A. Gebrewold, L. Marazzi, P. Parolari, R. Brenot, S. P. O. Duill, R. Bonjour, D. Hillerkuss, C. Hafner, and J. Leuthold, “Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter,” IEEE J. Sel. Top. Quantum Electron. 20(5), 503 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (2)

2007 (1)

1994 (1)

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of Erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

1993 (1)

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photonics Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

1992 (1)

M. Martinelli, “Time reversal for the polarization state in optical systems,” J. Mod. Opt. 39(3), 451–455 (1992).
[Crossref]

1991 (1)

1988 (1)

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[Crossref]

1976 (1)

Anderson, T. B.

Babic, D.

Barbet, S.

Barton, J. S.

Bauters, J. F.

Belt, M.

Bickers, L.

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[Crossref]

Blumenthal, D. J.

Boletti, A.

L. Marazzi, A. Boletti, P. Parolari, A. Gatto, R. Brenot, and M. Martinelli, “Relative intensity noise suppression in reflective SOAs,” Opt. Commun. 318, 186–188 (2014).
[Crossref]

Bonjour, R.

S. A. Gebrewold, L. Marazzi, P. Parolari, R. Brenot, S. P. O. Duill, R. Bonjour, D. Hillerkuss, C. Hafner, and J. Leuthold, “Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter,” IEEE J. Sel. Top. Quantum Electron. 20(5), 503 (2014).
[Crossref]

Bowers, J. E.

Brenot, R.

A. Maho, G. Simon, S. Barbet, F. Lelarge, F. Saliou, P. Chanclou, P. Parolari, L. Marazzi, M. Brunero, M. Martinelli, S. A. Grebewold, J. Leuthold, and R. Brenot, “Demystification of the self-seeded WDM access,” J. Lightwave Technol. 34(2), 776–782 (2016).
[Crossref]

L. Marazzi, A. Boletti, P. Parolari, A. Gatto, R. Brenot, and M. Martinelli, “Relative intensity noise suppression in reflective SOAs,” Opt. Commun. 318, 186–188 (2014).
[Crossref]

S. A. Gebrewold, L. Marazzi, P. Parolari, R. Brenot, S. P. O. Duill, R. Bonjour, D. Hillerkuss, C. Hafner, and J. Leuthold, “Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter,” IEEE J. Sel. Top. Quantum Electron. 20(5), 503 (2014).
[Crossref]

S. Ó. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
[Crossref] [PubMed]

Bruinink, C. M.

Brunero, M.

Burns, W. K.

Chanclou, P.

Chiuchiarelli, A.

M. Presi, A. Chiuchiarelli, R. Corsini, and E. Ciaramella, “Uncooled and polarization independent operation of self-seeded Fabry-Pérot lasers for WDM-PONs,” IEEE Photonics Technol. Lett. 24(17), 1523–1526 (2012).
[Crossref]

Chung, Y. C.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photonics Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

Ciaramella, E.

M. Presi, A. Chiuchiarelli, R. Corsini, and E. Ciaramella, “Uncooled and polarization independent operation of self-seeded Fabry-Pérot lasers for WDM-PONs,” IEEE Photonics Technol. Lett. 24(17), 1523–1526 (2012).
[Crossref]

Corsini, R.

M. Presi, A. Chiuchiarelli, R. Corsini, and E. Ciaramella, “Uncooled and polarization independent operation of self-seeded Fabry-Pérot lasers for WDM-PONs,” IEEE Photonics Technol. Lett. 24(17), 1523–1526 (2012).
[Crossref]

Davenport, M.

Davenport, M. L.

DiGiovanni, D. J.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photonics Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

Digonnet, M. J. F.

S. W. Lloyd, S. Fan, and M. J. F. Digonnet, “Experimental observation of low noise and low drift in a laser-driven fiber optic gyroscope,” J. Lightwave Technol. 31(13), 2079–2085 (2013).
[Crossref]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of Erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

Duill, S. P. O.

S. A. Gebrewold, L. Marazzi, P. Parolari, R. Brenot, S. P. O. Duill, R. Bonjour, D. Hillerkuss, C. Hafner, and J. Leuthold, “Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter,” IEEE J. Sel. Top. Quantum Electron. 20(5), 503 (2014).
[Crossref]

Dúill, S. Ó.

Fan, S.

Freude, W.

Gatto, A.

L. Marazzi, A. Boletti, P. Parolari, A. Gatto, R. Brenot, and M. Martinelli, “Relative intensity noise suppression in reflective SOAs,” Opt. Commun. 318, 186–188 (2014).
[Crossref]

Gebrewold, S. A.

S. A. Gebrewold, L. Marazzi, P. Parolari, R. Brenot, S. P. O. Duill, R. Bonjour, D. Hillerkuss, C. Hafner, and J. Leuthold, “Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter,” IEEE J. Sel. Top. Quantum Electron. 20(5), 503 (2014).
[Crossref]

Grebewold, S. A.

Gundavarapu, S.

Hafner, C.

S. A. Gebrewold, L. Marazzi, P. Parolari, R. Brenot, S. P. O. Duill, R. Bonjour, D. Hillerkuss, C. Hafner, and J. Leuthold, “Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter,” IEEE J. Sel. Top. Quantum Electron. 20(5), 503 (2014).
[Crossref]

Heck, M. J. R.

Heideman, R. G.

Hillerkuss, D.

S. A. Gebrewold, L. Marazzi, P. Parolari, R. Brenot, S. P. O. Duill, R. Bonjour, D. Hillerkuss, C. Hafner, and J. Leuthold, “Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter,” IEEE J. Sel. Top. Quantum Electron. 20(5), 503 (2014).
[Crossref]

Hornung, S.

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[Crossref]

Hulme, J.

Hunwicks, A. R.

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[Crossref]

John, D. D.

Kim, B. Y.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of Erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

Komljenovic, T.

Koos, C.

Lee, J. S.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photonics Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

Lee, K. L.

Leinse, A.

Lelarge, F.

Leuthold, J.

Liu, A. Y.

Lloyd, S. W.

Maho, A.

Marazzi, L.

A. Maho, G. Simon, S. Barbet, F. Lelarge, F. Saliou, P. Chanclou, P. Parolari, L. Marazzi, M. Brunero, M. Martinelli, S. A. Grebewold, J. Leuthold, and R. Brenot, “Demystification of the self-seeded WDM access,” J. Lightwave Technol. 34(2), 776–782 (2016).
[Crossref]

S. A. Gebrewold, L. Marazzi, P. Parolari, R. Brenot, S. P. O. Duill, R. Bonjour, D. Hillerkuss, C. Hafner, and J. Leuthold, “Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter,” IEEE J. Sel. Top. Quantum Electron. 20(5), 503 (2014).
[Crossref]

L. Marazzi, A. Boletti, P. Parolari, A. Gatto, R. Brenot, and M. Martinelli, “Relative intensity noise suppression in reflective SOAs,” Opt. Commun. 318, 186–188 (2014).
[Crossref]

S. Ó. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
[Crossref] [PubMed]

Martinelli, M.

A. Maho, G. Simon, S. Barbet, F. Lelarge, F. Saliou, P. Chanclou, P. Parolari, L. Marazzi, M. Brunero, M. Martinelli, S. A. Grebewold, J. Leuthold, and R. Brenot, “Demystification of the self-seeded WDM access,” J. Lightwave Technol. 34(2), 776–782 (2016).
[Crossref]

L. Marazzi, A. Boletti, P. Parolari, A. Gatto, R. Brenot, and M. Martinelli, “Relative intensity noise suppression in reflective SOAs,” Opt. Commun. 318, 186–188 (2014).
[Crossref]

M. Martinelli, “Time reversal for the polarization state in optical systems,” J. Mod. Opt. 39(3), 451–455 (1992).
[Crossref]

Methley, S. G.

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[Crossref]

Moeller, R. P.

Nayak, J.

Parolari, P.

A. Maho, G. Simon, S. Barbet, F. Lelarge, F. Saliou, P. Chanclou, P. Parolari, L. Marazzi, M. Brunero, M. Martinelli, S. A. Grebewold, J. Leuthold, and R. Brenot, “Demystification of the self-seeded WDM access,” J. Lightwave Technol. 34(2), 776–782 (2016).
[Crossref]

S. A. Gebrewold, L. Marazzi, P. Parolari, R. Brenot, S. P. O. Duill, R. Bonjour, D. Hillerkuss, C. Hafner, and J. Leuthold, “Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter,” IEEE J. Sel. Top. Quantum Electron. 20(5), 503 (2014).
[Crossref]

L. Marazzi, A. Boletti, P. Parolari, A. Gatto, R. Brenot, and M. Martinelli, “Relative intensity noise suppression in reflective SOAs,” Opt. Commun. 318, 186–188 (2014).
[Crossref]

S. Ó. Dúill, L. Marazzi, P. Parolari, R. Brenot, C. Koos, W. Freude, and J. Leuthold, “Efficient modulation cancellation using reflective SOAs,” Opt. Express 20(26), B587–B594 (2012).
[Crossref] [PubMed]

Piels, M.

Presi, M.

M. Presi, A. Chiuchiarelli, R. Corsini, and E. Ciaramella, “Uncooled and polarization independent operation of self-seeded Fabry-Pérot lasers for WDM-PONs,” IEEE Photonics Technol. Lett. 24(17), 1523–1526 (2012).
[Crossref]

Reeve, M. H.

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[Crossref]

Saliou, F.

Santis, C. T.

Shaw, H. J.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of Erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

Shorthill, R. W.

Simon, G.

Sipus, Z.

Spott, A.

Srinivasan, S.

Stanton, E. J.

Tran, M. A.

Vali, V.

Wong, E.

Wysocki, P. F.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of Erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

Zhang, C.

Zhao, W.

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (1)

M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electron. Lett. 24(7), 389–390 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. A. Gebrewold, L. Marazzi, P. Parolari, R. Brenot, S. P. O. Duill, R. Bonjour, D. Hillerkuss, C. Hafner, and J. Leuthold, “Reflective-SOA Fiber Cavity Laser as Directly Modulated WDM-PON Colorless Transmitter,” IEEE J. Sel. Top. Quantum Electron. 20(5), 503 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photonics Technol. Lett. 5(12), 1458–1461 (1993).
[Crossref]

M. Presi, A. Chiuchiarelli, R. Corsini, and E. Ciaramella, “Uncooled and polarization independent operation of self-seeded Fabry-Pérot lasers for WDM-PONs,” IEEE Photonics Technol. Lett. 24(17), 1523–1526 (2012).
[Crossref]

J. Lightwave Technol. (6)

J. Mod. Opt. (1)

M. Martinelli, “Time reversal for the polarization state in optical systems,” J. Mod. Opt. 39(3), 451–455 (1992).
[Crossref]

Opt. Commun. (1)

L. Marazzi, A. Boletti, P. Parolari, A. Gatto, R. Brenot, and M. Martinelli, “Relative intensity noise suppression in reflective SOAs,” Opt. Commun. 318, 186–188 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Other (3)

J. C. Wyant, “White light interferometry”, in Proceedings of SPIE 4737, Holography: A Tribute to Yuri Denisyuk and Emmett Leith (SPIE, 2002), pp. 98–107.

H. C. Lefevre, The Fiber-Optics Gyroscope (Artech House, 2014).

M. Presi and E. Ciaramella, “Stable self-seeding of Reflective-SOAs for WDM-PONs,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011 (2011), paper OMP4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Measurement setup (PD – monitor photodiode) (b) Output power and mean wavelength vs temperature at 120 mA bias current (c) Output power as a function of bias current for various temperatures (in 5 °C steps) (d) Optical spectrum at 120 mA of bias current for various temperatures (in 5 °C steps).
Fig. 2
Fig. 2 (a) Spectrally sliced optical source (b) Self-seeded optical source (PD – monitor photodiode, BFP – bandpass filter, FRM – Faraday rotating mirror).
Fig. 3
Fig. 3 Black dot is the RSOA without filtering or feedback, red rectangles show spectrally-sliced sources and blue diamonds are the self-seeded configurations. The points corresponding to 70 nm are ones without filter where FWHM of the RSOA is equal to approximately 70 nm (a) The power available at the output port, Ibias = 120 mA, T = 20 °C (b) Mean wavelength change in nm/°C between 10 and 35°C, the dashed black line shows the limitation imposed by the filter stability (see text for more details) (c) Relative intensity noise (RIN), Ibias = 120 mA, T = 25 °C (d) Coherence length, Ibias = 120 mA, T = 20 °C.
Fig. 4
Fig. 4 (a) Unfiltered RSOA (b) Spectrally-sliced, 13 nm optical bandwidth (c) Spectrally sliced, 0.22 nm optical bandwidth (d) Self-seeded without filter (e) Self-seeded, 13 nm optical bandwidth (f) Self-seeded, 0.22 nm optical bandwidth.
Fig. 5
Fig. 5 (a) Optical spectrum of spectrally-sliced source using filter with 37 nm of bandwidth (b) LI curves for self-seeded source with 0.22 nm filter. Threshold is clearly observed at lower temperatures as well as the absence of lasing at temperatures higher than 35 °C (c) Optical spectrum of self-seeded source with 13 nm filter shows lasing up to 45 °C (d) Optical spectrum of self-seeded source with 0.22 nm filter shows lasing up to 35 °C.
Fig. 6
Fig. 6 Optical spectrums of all the considered configurations at 20 °C. Top row are spectrally sliced sources, bottom row are self-seeded sources. The filter bandwidth increases from left to right and is given at the top of the figure. Note that x-axis changes for two most right spectra.
Fig. 7
Fig. 7 (a) Setup for measuring feedback level effect on RIN (b) Feedback level vs RIN at three frequencies. Dashed horizontal black line show the theoretically expected RIN level for pseudo-thermal lightsource of equal bandwidth.
Fig. 8
Fig. 8 Low frequency noise measurements (a) 8 m long external cavity (RBW = 10 kHz) (b) 202 m long external cavity (RBW = 1 kHz). FM – fiber mirror, FRM – Faraday rotating mirror.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P S D R I N 1 Δ f F W H M
Δ ϕ R = 2 π L D λ c Ω .
f p = 1 2 Δ τ g .

Metrics