Abstract

Ultrafast optical excitation induced transient modification on the energy-band structures in tungsten, which resulted in the expansion and shift toward the Fermi-level of d-band. This process led to enhanced interband transitions at reduced photon energies. Meanwhile, enhanced interband excitation led to increased electron density above the Fermi level, resulting in enhanced optical scattering by localized surface plasmon resonance (LSPR). These mechanisms are responsible for balancing the direct heating of bulk electrons by optical pulses. The corresponding studies not only revealed the physics for the electronic dynamics in tungsten carbide, but also proposed that the modified electronic and electron-phononic interactions are one of the important responsible mechanisms for the enhanced laser-damage threshold of the hard-metal coating. Furthermore, the nanostructured hard-metal coating integrates functions of enhancement of the damage-threshold and anti-reflection coating, which is important for exploring new tools or materials in laser engineering.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon-modulated photoluminescence from gold nanostructures and its dependence on plasmon resonance, excitation energy, and band structure

Loan Le Thi Ngoc, Justyna Wiedemair, Albert van den Berg, and Edwin T. Carlen
Opt. Express 23(5) 5547-5564 (2015)

Ultrafast optical detection of coherent acoustic phonons emission driven by superdiffusive hot electrons

Mariusz Lejman, Viktor Shalagatskyi, Oleksandr Kovalenko, Thomas Pezeril, Vasily V. Temnov, and Pascal Ruello
J. Opt. Soc. Am. B 31(2) 282-290 (2014)

Spatial- and energy-resolved photoemission electron from plasmonic nanoparticles in multiphoton regime

Peng Lang, Xiaowei Song, Boyu Ji, Haiyan Tao, Yinping Dou, Xun Gao, Zuoqiang Hao, and Jingquan Lin
Opt. Express 27(5) 6878-6891 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. Upadhyaya, “Materials science of cemented carbides - an overview,” Mater. Des. 22(6), 483–489 (2001).
    [Crossref]
  2. J. M. Tarragó, J. J. Roa, V. Valle, J. M. Marshall, and L. Llanes, “Fracture and fatigue behavior of WC-Co and WC-CoNi cemented carbides,” Int. J. Refract. Met. Hard Mater. 49, 184–191 (2015).
    [Crossref]
  3. E. Soares, L. F. Malheiros, J. Sacramento, M. A. Valente, and F. J. Oliveira, “Microstructures and properties of submicrometer carbides obtained by conventional sintering,” J. Am. Ceram. Soc. 95, 951–961 (2012).
  4. Z. Geng, S. Li, D. L. Duan, and Y. Liu, “Wear behaviour of WC-Co HVOF coatings at different temperatures in air and argon,” Wear 330–331, 348–353 (2015).
    [Crossref]
  5. P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, “Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF WC-Co coatings,” Surf. Coat. Tech. 202(3), 509–521 (2007).
    [Crossref]
  6. G. J. Yang, P. H. Gao, C. X. Li, and C. J. Li, “Simultaneous strengthening and toughening effects in WC-(nanoWC-Co),” Scr. Mater. 66(10), 777–780 (2012).
    [Crossref]
  7. X. Wang, X. Song, X. Liu, X. Liu, H. Wang, and C. Zhou, “Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions,” Nanotechnology 26(14), 145705 (2015).
    [Crossref] [PubMed]
  8. J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
    [Crossref]
  9. M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, “Relaxation between electrons and the Crystalline Lattice,” Sov. Phys. JETP 4, 173–177 (1957).
  10. H. D. Wang, W. G. Ma, Z. Y. Guo, X. Zhang, and W. Wang, “Experimental study of ultra-fast conduction process in metals using femtosecond laser thermal reflection method,” J. Eng. Thermophys. 32, 465–468 (2011).
  11. R. J. Colton, J.-T. J. Huang, and J. W. Rabalais, “Electronic structure of tungsten carbide and its catalytic behavior,” Chem. Phys. Lett. 34(2), 337–339 (1975).
    [Crossref]
  12. E. Bévillon, J. P. Colombier, V. Recoules, and R. Stoian, “Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study,” Phys. Rev. B 89(11), 115117 (2014).
    [Crossref]
  13. X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
    [Crossref]
  14. C. A. Antonelli, B. Perrin, B. C. Daly, and D. G. Cahill, “Characterization of mechanical and thermal properties using ultrafast optical metrology,” MRS Bull. 31(08), 607–613 (2006).
    [Crossref]
  15. X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
    [Crossref] [PubMed]
  16. J.-H. Klein-Wiele, P. Simon, and H.-G. Rubahn, “Size-dependent plasmon lifetimes and electron-phonon coupling time constants for surface bound Na clusters,” Phys. Rev. Lett. 80, 0319007 (1998).
  17. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  18. R. Feynman, The Feynman Lectures on Physics, 2nd ed. (Addison-Wesley, 2005).

2015 (3)

J. M. Tarragó, J. J. Roa, V. Valle, J. M. Marshall, and L. Llanes, “Fracture and fatigue behavior of WC-Co and WC-CoNi cemented carbides,” Int. J. Refract. Met. Hard Mater. 49, 184–191 (2015).
[Crossref]

Z. Geng, S. Li, D. L. Duan, and Y. Liu, “Wear behaviour of WC-Co HVOF coatings at different temperatures in air and argon,” Wear 330–331, 348–353 (2015).
[Crossref]

X. Wang, X. Song, X. Liu, X. Liu, H. Wang, and C. Zhou, “Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions,” Nanotechnology 26(14), 145705 (2015).
[Crossref] [PubMed]

2014 (1)

E. Bévillon, J. P. Colombier, V. Recoules, and R. Stoian, “Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study,” Phys. Rev. B 89(11), 115117 (2014).
[Crossref]

2012 (2)

G. J. Yang, P. H. Gao, C. X. Li, and C. J. Li, “Simultaneous strengthening and toughening effects in WC-(nanoWC-Co),” Scr. Mater. 66(10), 777–780 (2012).
[Crossref]

E. Soares, L. F. Malheiros, J. Sacramento, M. A. Valente, and F. J. Oliveira, “Microstructures and properties of submicrometer carbides obtained by conventional sintering,” J. Am. Ceram. Soc. 95, 951–961 (2012).

2011 (1)

H. D. Wang, W. G. Ma, Z. Y. Guo, X. Zhang, and W. Wang, “Experimental study of ultra-fast conduction process in metals using femtosecond laser thermal reflection method,” J. Eng. Thermophys. 32, 465–468 (2011).

2009 (1)

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[Crossref] [PubMed]

2008 (2)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
[Crossref]

2007 (1)

P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, “Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF WC-Co coatings,” Surf. Coat. Tech. 202(3), 509–521 (2007).
[Crossref]

2006 (1)

C. A. Antonelli, B. Perrin, B. C. Daly, and D. G. Cahill, “Characterization of mechanical and thermal properties using ultrafast optical metrology,” MRS Bull. 31(08), 607–613 (2006).
[Crossref]

2001 (1)

G. Upadhyaya, “Materials science of cemented carbides - an overview,” Mater. Des. 22(6), 483–489 (2001).
[Crossref]

2000 (1)

J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
[Crossref]

1998 (1)

J.-H. Klein-Wiele, P. Simon, and H.-G. Rubahn, “Size-dependent plasmon lifetimes and electron-phonon coupling time constants for surface bound Na clusters,” Phys. Rev. Lett. 80, 0319007 (1998).

1975 (1)

R. J. Colton, J.-T. J. Huang, and J. W. Rabalais, “Electronic structure of tungsten carbide and its catalytic behavior,” Chem. Phys. Lett. 34(2), 337–339 (1975).
[Crossref]

1957 (1)

M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, “Relaxation between electrons and the Crystalline Lattice,” Sov. Phys. JETP 4, 173–177 (1957).

Antonelli, C. A.

C. A. Antonelli, B. Perrin, B. C. Daly, and D. G. Cahill, “Characterization of mechanical and thermal properties using ultrafast optical metrology,” MRS Bull. 31(08), 607–613 (2006).
[Crossref]

Bévillon, E.

E. Bévillon, J. P. Colombier, V. Recoules, and R. Stoian, “Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study,” Phys. Rev. B 89(11), 115117 (2014).
[Crossref]

Bigot, J.-Y.

J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
[Crossref]

Cahill, D. G.

C. A. Antonelli, B. Perrin, B. C. Daly, and D. G. Cahill, “Characterization of mechanical and thermal properties using ultrafast optical metrology,” MRS Bull. 31(08), 607–613 (2006).
[Crossref]

Catchpole, K. R.

Chivavibul, P.

P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, “Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF WC-Co coatings,” Surf. Coat. Tech. 202(3), 509–521 (2007).
[Crossref]

Colombier, J. P.

E. Bévillon, J. P. Colombier, V. Recoules, and R. Stoian, “Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study,” Phys. Rev. B 89(11), 115117 (2014).
[Crossref]

Colton, R. J.

R. J. Colton, J.-T. J. Huang, and J. W. Rabalais, “Electronic structure of tungsten carbide and its catalytic behavior,” Chem. Phys. Lett. 34(2), 337–339 (1975).
[Crossref]

Daly, B. C.

C. A. Antonelli, B. Perrin, B. C. Daly, and D. G. Cahill, “Characterization of mechanical and thermal properties using ultrafast optical metrology,” MRS Bull. 31(08), 607–613 (2006).
[Crossref]

Daunois, A.

J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
[Crossref]

Duan, D. L.

Z. Geng, S. Li, D. L. Duan, and Y. Liu, “Wear behaviour of WC-Co HVOF coatings at different temperatures in air and argon,” Wear 330–331, 348–353 (2015).
[Crossref]

Feng, S.

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[Crossref] [PubMed]

Friend, R. H.

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
[Crossref]

Gao, P. H.

G. J. Yang, P. H. Gao, C. X. Li, and C. J. Li, “Simultaneous strengthening and toughening effects in WC-(nanoWC-Co),” Scr. Mater. 66(10), 777–780 (2012).
[Crossref]

Geng, Z.

Z. Geng, S. Li, D. L. Duan, and Y. Liu, “Wear behaviour of WC-Co HVOF coatings at different temperatures in air and argon,” Wear 330–331, 348–353 (2015).
[Crossref]

Guo, Z. Y.

H. D. Wang, W. G. Ma, Z. Y. Guo, X. Zhang, and W. Wang, “Experimental study of ultra-fast conduction process in metals using femtosecond laser thermal reflection method,” J. Eng. Thermophys. 32, 465–468 (2011).

Halté, V.

J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
[Crossref]

Hodgkiss, J. M.

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
[Crossref]

Huang, J.-T. J.

R. J. Colton, J.-T. J. Huang, and J. W. Rabalais, “Electronic structure of tungsten carbide and its catalytic behavior,” Chem. Phys. Lett. 34(2), 337–339 (1975).
[Crossref]

Kaganov, M. I.

M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, “Relaxation between electrons and the Crystalline Lattice,” Sov. Phys. JETP 4, 173–177 (1957).

Klein-Wiele, J.-H.

J.-H. Klein-Wiele, P. Simon, and H.-G. Rubahn, “Size-dependent plasmon lifetimes and electron-phonon coupling time constants for surface bound Na clusters,” Phys. Rev. Lett. 80, 0319007 (1998).

Kuroda, S.

P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, “Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF WC-Co coatings,” Surf. Coat. Tech. 202(3), 509–521 (2007).
[Crossref]

Li, C. J.

G. J. Yang, P. H. Gao, C. X. Li, and C. J. Li, “Simultaneous strengthening and toughening effects in WC-(nanoWC-Co),” Scr. Mater. 66(10), 777–780 (2012).
[Crossref]

Li, C. X.

G. J. Yang, P. H. Gao, C. X. Li, and C. J. Li, “Simultaneous strengthening and toughening effects in WC-(nanoWC-Co),” Scr. Mater. 66(10), 777–780 (2012).
[Crossref]

Li, S.

Z. Geng, S. Li, D. L. Duan, and Y. Liu, “Wear behaviour of WC-Co HVOF coatings at different temperatures in air and argon,” Wear 330–331, 348–353 (2015).
[Crossref]

Lifshitz, I. M.

M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, “Relaxation between electrons and the Crystalline Lattice,” Sov. Phys. JETP 4, 173–177 (1957).

Liu, H.

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[Crossref] [PubMed]

Liu, X.

X. Wang, X. Song, X. Liu, X. Liu, H. Wang, and C. Zhou, “Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions,” Nanotechnology 26(14), 145705 (2015).
[Crossref] [PubMed]

X. Wang, X. Song, X. Liu, X. Liu, H. Wang, and C. Zhou, “Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions,” Nanotechnology 26(14), 145705 (2015).
[Crossref] [PubMed]

Liu, Y.

Z. Geng, S. Li, D. L. Duan, and Y. Liu, “Wear behaviour of WC-Co HVOF coatings at different temperatures in air and argon,” Wear 330–331, 348–353 (2015).
[Crossref]

Llanes, L.

J. M. Tarragó, J. J. Roa, V. Valle, J. M. Marshall, and L. Llanes, “Fracture and fatigue behavior of WC-Co and WC-CoNi cemented carbides,” Int. J. Refract. Met. Hard Mater. 49, 184–191 (2015).
[Crossref]

Ma, W. G.

H. D. Wang, W. G. Ma, Z. Y. Guo, X. Zhang, and W. Wang, “Experimental study of ultra-fast conduction process in metals using femtosecond laser thermal reflection method,” J. Eng. Thermophys. 32, 465–468 (2011).

Malheiros, L. F.

E. Soares, L. F. Malheiros, J. Sacramento, M. A. Valente, and F. J. Oliveira, “Microstructures and properties of submicrometer carbides obtained by conventional sintering,” J. Am. Ceram. Soc. 95, 951–961 (2012).

Marshall, J. M.

J. M. Tarragó, J. J. Roa, V. Valle, J. M. Marshall, and L. Llanes, “Fracture and fatigue behavior of WC-Co and WC-CoNi cemented carbides,” Int. J. Refract. Met. Hard Mater. 49, 184–191 (2015).
[Crossref]

Merle, J.-C.

J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
[Crossref]

Oliveira, F. J.

E. Soares, L. F. Malheiros, J. Sacramento, M. A. Valente, and F. J. Oliveira, “Microstructures and properties of submicrometer carbides obtained by conventional sintering,” J. Am. Ceram. Soc. 95, 951–961 (2012).

Perrin, B.

C. A. Antonelli, B. Perrin, B. C. Daly, and D. G. Cahill, “Characterization of mechanical and thermal properties using ultrafast optical metrology,” MRS Bull. 31(08), 607–613 (2006).
[Crossref]

Polman, A.

Rabalais, J. W.

R. J. Colton, J.-T. J. Huang, and J. W. Rabalais, “Electronic structure of tungsten carbide and its catalytic behavior,” Chem. Phys. Lett. 34(2), 337–339 (1975).
[Crossref]

Recoules, V.

E. Bévillon, J. P. Colombier, V. Recoules, and R. Stoian, “Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study,” Phys. Rev. B 89(11), 115117 (2014).
[Crossref]

Roa, J. J.

J. M. Tarragó, J. J. Roa, V. Valle, J. M. Marshall, and L. Llanes, “Fracture and fatigue behavior of WC-Co and WC-CoNi cemented carbides,” Int. J. Refract. Met. Hard Mater. 49, 184–191 (2015).
[Crossref]

Rubahn, H.-G.

J.-H. Klein-Wiele, P. Simon, and H.-G. Rubahn, “Size-dependent plasmon lifetimes and electron-phonon coupling time constants for surface bound Na clusters,” Phys. Rev. Lett. 80, 0319007 (1998).

Sacramento, J.

E. Soares, L. F. Malheiros, J. Sacramento, M. A. Valente, and F. J. Oliveira, “Microstructures and properties of submicrometer carbides obtained by conventional sintering,” J. Am. Ceram. Soc. 95, 951–961 (2012).

Shinoda, K.

P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, “Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF WC-Co coatings,” Surf. Coat. Tech. 202(3), 509–521 (2007).
[Crossref]

Simon, P.

J.-H. Klein-Wiele, P. Simon, and H.-G. Rubahn, “Size-dependent plasmon lifetimes and electron-phonon coupling time constants for surface bound Na clusters,” Phys. Rev. Lett. 80, 0319007 (1998).

Soares, E.

E. Soares, L. F. Malheiros, J. Sacramento, M. A. Valente, and F. J. Oliveira, “Microstructures and properties of submicrometer carbides obtained by conventional sintering,” J. Am. Ceram. Soc. 95, 951–961 (2012).

Song, X.

X. Wang, X. Song, X. Liu, X. Liu, H. Wang, and C. Zhou, “Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions,” Nanotechnology 26(14), 145705 (2015).
[Crossref] [PubMed]

Stoian, R.

E. Bévillon, J. P. Colombier, V. Recoules, and R. Stoian, “Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study,” Phys. Rev. B 89(11), 115117 (2014).
[Crossref]

Sun, B. Q.

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
[Crossref]

Tanatarov, L. V.

M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, “Relaxation between electrons and the Crystalline Lattice,” Sov. Phys. JETP 4, 173–177 (1957).

Tarragó, J. M.

J. M. Tarragó, J. J. Roa, V. Valle, J. M. Marshall, and L. Llanes, “Fracture and fatigue behavior of WC-Co and WC-CoNi cemented carbides,” Int. J. Refract. Met. Hard Mater. 49, 184–191 (2015).
[Crossref]

Upadhyaya, G.

G. Upadhyaya, “Materials science of cemented carbides - an overview,” Mater. Des. 22(6), 483–489 (2001).
[Crossref]

Valente, M. A.

E. Soares, L. F. Malheiros, J. Sacramento, M. A. Valente, and F. J. Oliveira, “Microstructures and properties of submicrometer carbides obtained by conventional sintering,” J. Am. Ceram. Soc. 95, 951–961 (2012).

Valle, V.

J. M. Tarragó, J. J. Roa, V. Valle, J. M. Marshall, and L. Llanes, “Fracture and fatigue behavior of WC-Co and WC-CoNi cemented carbides,” Int. J. Refract. Met. Hard Mater. 49, 184–191 (2015).
[Crossref]

Wang, H.

X. Wang, X. Song, X. Liu, X. Liu, H. Wang, and C. Zhou, “Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions,” Nanotechnology 26(14), 145705 (2015).
[Crossref] [PubMed]

Wang, H. D.

H. D. Wang, W. G. Ma, Z. Y. Guo, X. Zhang, and W. Wang, “Experimental study of ultra-fast conduction process in metals using femtosecond laser thermal reflection method,” J. Eng. Thermophys. 32, 465–468 (2011).

Wang, W.

H. D. Wang, W. G. Ma, Z. Y. Guo, X. Zhang, and W. Wang, “Experimental study of ultra-fast conduction process in metals using femtosecond laser thermal reflection method,” J. Eng. Thermophys. 32, 465–468 (2011).

Wang, X.

X. Wang, X. Song, X. Liu, X. Liu, H. Wang, and C. Zhou, “Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions,” Nanotechnology 26(14), 145705 (2015).
[Crossref] [PubMed]

Watanabe, M.

P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, “Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF WC-Co coatings,” Surf. Coat. Tech. 202(3), 509–521 (2007).
[Crossref]

Yang, G. J.

G. J. Yang, P. H. Gao, C. X. Li, and C. J. Li, “Simultaneous strengthening and toughening effects in WC-(nanoWC-Co),” Scr. Mater. 66(10), 777–780 (2012).
[Crossref]

Zhang, X.

H. D. Wang, W. G. Ma, Z. Y. Guo, X. Zhang, and W. Wang, “Experimental study of ultra-fast conduction process in metals using femtosecond laser thermal reflection method,” J. Eng. Thermophys. 32, 465–468 (2011).

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[Crossref] [PubMed]

Zhang, X. P.

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
[Crossref]

Zhou, C.

X. Wang, X. Song, X. Liu, X. Liu, H. Wang, and C. Zhou, “Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions,” Nanotechnology 26(14), 145705 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
[Crossref]

Chem. Phys. (1)

J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251(1-3), 181–203 (2000).
[Crossref]

Chem. Phys. Lett. (1)

R. J. Colton, J.-T. J. Huang, and J. W. Rabalais, “Electronic structure of tungsten carbide and its catalytic behavior,” Chem. Phys. Lett. 34(2), 337–339 (1975).
[Crossref]

Int. J. Refract. Met. Hard Mater. (1)

J. M. Tarragó, J. J. Roa, V. Valle, J. M. Marshall, and L. Llanes, “Fracture and fatigue behavior of WC-Co and WC-CoNi cemented carbides,” Int. J. Refract. Met. Hard Mater. 49, 184–191 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

E. Soares, L. F. Malheiros, J. Sacramento, M. A. Valente, and F. J. Oliveira, “Microstructures and properties of submicrometer carbides obtained by conventional sintering,” J. Am. Ceram. Soc. 95, 951–961 (2012).

J. Eng. Thermophys. (1)

H. D. Wang, W. G. Ma, Z. Y. Guo, X. Zhang, and W. Wang, “Experimental study of ultra-fast conduction process in metals using femtosecond laser thermal reflection method,” J. Eng. Thermophys. 32, 465–468 (2011).

Mater. Des. (1)

G. Upadhyaya, “Materials science of cemented carbides - an overview,” Mater. Des. 22(6), 483–489 (2001).
[Crossref]

MRS Bull. (1)

C. A. Antonelli, B. Perrin, B. C. Daly, and D. G. Cahill, “Characterization of mechanical and thermal properties using ultrafast optical metrology,” MRS Bull. 31(08), 607–613 (2006).
[Crossref]

Nanotechnology (2)

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[Crossref] [PubMed]

X. Wang, X. Song, X. Liu, X. Liu, H. Wang, and C. Zhou, “Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions,” Nanotechnology 26(14), 145705 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

E. Bévillon, J. P. Colombier, V. Recoules, and R. Stoian, “Free-electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: A first-principles study,” Phys. Rev. B 89(11), 115117 (2014).
[Crossref]

Phys. Rev. Lett. (1)

J.-H. Klein-Wiele, P. Simon, and H.-G. Rubahn, “Size-dependent plasmon lifetimes and electron-phonon coupling time constants for surface bound Na clusters,” Phys. Rev. Lett. 80, 0319007 (1998).

Scr. Mater. (1)

G. J. Yang, P. H. Gao, C. X. Li, and C. J. Li, “Simultaneous strengthening and toughening effects in WC-(nanoWC-Co),” Scr. Mater. 66(10), 777–780 (2012).
[Crossref]

Sov. Phys. JETP (1)

M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, “Relaxation between electrons and the Crystalline Lattice,” Sov. Phys. JETP 4, 173–177 (1957).

Surf. Coat. Tech. (1)

P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, “Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF WC-Co coatings,” Surf. Coat. Tech. 202(3), 509–521 (2007).
[Crossref]

Wear (1)

Z. Geng, S. Li, D. L. Duan, and Y. Liu, “Wear behaviour of WC-Co HVOF coatings at different temperatures in air and argon,” Wear 330–331, 348–353 (2015).
[Crossref]

Other (1)

R. Feynman, The Feynman Lectures on Physics, 2nd ed. (Addison-Wesley, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) SEM image of the surface of the WC coating. (b) TEM image (left panel) and SADPs of sites A and B (right panel).
Fig. 2
Fig. 2 (a) Schematic illustration of modulation on the electronic band structures of W by strong optical excitation. Laser-pulse-induced electronic heating led to an expansion and higher-energy shift of the d-band, leading to red-shifted and enhanced interband transitions, and consequently enhanced intraband transitions. (b) Dynamics of transient absorption (ΔA) measured at 770 nm on the surface of bulk tungsten, showing band-structure modulation (bs-m) within 290 fs, electron-electron scattering (e-e) within 500 fs, and subsequent electron-phonon (e-p) and phonon-phonon (p-p) scattering processes. Inset: a closer look at the TA dynamics in the first 2 ps, showing the bs-m process that competes with the e-e and e-p processes.
Fig. 3
Fig. 3 (a) and (b): transient absorption spectra within the first 2.6 ps for low-carbon steel uncoated and coated with WC-Co hard metal, respectively. (c) TA dynamics at a wavelength of 750 nm measured on the hard-metal coated (blue) and uncoated (red) steel within the first 300 ps. Inset: comparison between the coated and uncoated sample within the first 5 ps. (d) TA spectra measured at delays of 350 fs, 650 fs, and 1.15 ps. (e) TA dynamics measured at 580 and 755 nm within the first 2 ps, which were normalized to the positive peak.
Fig. 4
Fig. 4 (a) and (b): SEM images of the WC-Co hard metals with different grain sizes. (c) and (d): TA spectra at different delays (0~1.4 ps) measured on samples (a) and (b), respectively.
Fig. 5
Fig. 5 Optical microscopic images of the top surface of the hard-metal coated (a) and uncoated (b) low-carbon steel work piece after it was irradiated by femtosecond pulses.
Fig. 6
Fig. 6 Simulation of the local optical electric field at the top surface of a low-carbon steel work piece without (a) and with (b) nanostructured surface when a femtosecond pulse at 800 nm was sent to the sample along the normal of the substrate. The dashed line in (a) indicates the metal/air interface.

Metrics