Abstract

In this paper, we present electrooptic experiments on photonic crystal fibers filled with a liquid crystalline blue phase. These fibers guide light via photonic band gaps (PBGs). The blue phase is isotropic in the field-off state but becomes birefringent under an electric field. This leads to a polarization dependent shift of the PBGs. Interestingly, the effect on the PBGs is asymmetrical: while the short wavelength edges of the PBGs shift, the long wavelength edges are almost unaffected. By performing band gap and modal analyses via the finite element simulations, we find that the asymmetric shift is the result of the mixed polarization of the involved photonic bands. Finally, we use the band gap shifts to calculate effective Kerr constants of the blue phase.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical properties of cubic blue phase liquid crystal in photonic microstructures

Kamil Orzechowski, Marzena M. Sala-Tefelska, Marek W. Sierakowski, Tomasz R. Woliński, Olga Strzeżysz, and Przemysław Kula
Opt. Express 27(10) 14270-14282 (2019)

Electrically tunable high Q-factor micro-ring resonator based on blue phase liquid crystal cladding

Chun-Ta Wang, Yuan-Cheng Li, Jui-Hao Yu, Cheng Yu Wang, Chih-Wei Tseng, Hung-Chang Jau, Yung-Jui Chen, and Tsung-Hsien Lin
Opt. Express 22(15) 17776-17781 (2014)

Blue-phase liquid crystal cored optical fiber array with photonic bandgaps and nonlinear transmission properties

Iam Choon Khoo, Kuan Lung Hong, Shuo Zhao, Ding Ma, and Tsung-Hsien Lin
Opt. Express 21(4) 4319-4328 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Meiboom, M. Sammon, and D. W. Berreman, “Lattice symmetry of the cholesteric blue phases,” Phys. Rev. A 28(6), 3553–3560 (1983).
    [Crossref]
  2. S. Meiboom, M. Sammon, and W. F. Brinkman, “Lattice of disclinations, The structure of the blue phases of cholesteric liquid crystals,” Phys. Rev. A 27(1), 438–454 (1983).
    [Crossref]
  3. H. Choi, H. Higuchi, and H. Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98(13),7–10 (2011).
    [Crossref]
  4. L. Rao, J. Yan, S. T. Wu, S. I. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 2009–2012 (2011).
    [Crossref]
  5. G. Nordendorf, A. Lorenz, A. Hoischen, J. Schmidtke, H. Kitzerow, D. Wilkes, and M. Wittek, “Hysteresis and memory factor of the Kerr effect in blue phases,” J. Appl. Phys.114(17) (2013).
    [Crossref]
  6. H.-S. Kitzerow, “Blue Phases, Prior Art, Potential Polar Effects, Challenges,“ Ferroelectrics 395(1), 66–85 (2010).
    [Crossref]
  7. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Light. Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  8. C. R Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express 15(19), 12145–12150 (2007).
    [Crossref] [PubMed]
  9. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 10–13 (2008).
    [Crossref]
  10. A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal, behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
    [Crossref]
  11. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232 (2010).
    [Crossref] [PubMed]
  12. M. Wahle and H. Kitzerow, “Measurement of group velocity dispersion in a solid-core photonic crystal fiber filled with a nematic liquid crystal,” Opt. Lett. 39(16), 4816–4819 (2014).
    [Crossref] [PubMed]
  13. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, David M Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (204).
    [PubMed]
  14. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006).
    [Crossref] [PubMed]
  15. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express,  13(1), 309 (2005).
    [Crossref]
  16. N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004).
    [Crossref] [PubMed]
  17. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–25962003.
    [Crossref] [PubMed]
  18. K. Milenko, T. R. Wolinski, P. P. Shum, and D. J. Juan Hu, “Temperature-Sensitive Photonic Liquid Crystal Fiber Modal Interferometer,” IEEE Photonics J. 4(5), 1855–1860 (2012).
    [Crossref]
  19. Lara Scolari, Thomas Alkeskjold, Jesper Riishede, Anders Bjarklev, David Hermann, Anawati Anawati, Martin Nielsen, and Paolo Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
    [Crossref] [PubMed]
  20. Alexander Lorenz, Rolf Schuhmann, and Heinz-Siegfried Kitzerow, “Switchable waveguiding in two liquid-crystal-filled photonic crystal fibers,” Appl. Opt. 49(20), 3846–3853 (2010).
    [Crossref] [PubMed]
  21. M. Wahle and H.-S. Kitzerow, “Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal,” Appl. Phys. Lett. 107(20), 201114 (2015).
    [Crossref]
  22. I. C. Khoo, K. L. Hong, S. Zhao, D. Ma, and T.-H. Lin, “Blue-phase liquid crystal cored optical fiber array with photonic bandgaps and nonlinear transmission properties,” Opt. Express 21(4), 4319–4327 (2013).
    [Crossref] [PubMed]
  23. D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900 (2014).
  24. Y. Chen, D. Xu, S.-t. Wu, S.-i. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
    [Crossref]
  25. P. R. Gerber, “Electro-Optical Effects of a Small-Pitch Blue-Phase System,” Mol. Cryst. Liq. Cryst. 116(3–4), 197–206 (1985).
    [Crossref]
  26. J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
    [Crossref]
  27. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref]
  28. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M.J. Steel, C. Martijn de Sterke, and B. J. Eggleton, “Long wavelength anti-resonant guidance in high index inclusion microstructured fibers,” Opt. Express 12, 5424–5433 (2004)
    [Crossref]
  29. A. W. Snyder and J. D. Love, Optical Waveguide Theory, 2nd ed. (Springer, 1983).
  30. P. Steinvurzel, C. Martijn de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14, 8797–8811 (2006).
    [Crossref] [PubMed]
  31. John David Jackson, Classical Electrodynamics, 3rd Ed. (Wiley, 1999).
  32. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd Ed. (John Wiley and Sons, 2006).
  33. Comsol 4.2, www.comsol.com .
  34. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205 (1965).
    [Crossref]
  35. G. Ren, P. Shum, J. Hu, X. Yu, and Y. Gong, “Polarization-dependent bandgap splitting and mode guiding in liquid crystal photonic bandgap fibers,” J. Light. Technol. 26(22), 3650–3659 (2008).
    [Crossref]
  36. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58(3), 3896–3908 (1998).
    [Crossref]
  37. R. Spittel, H. Bartelt, and M. Schmidt, “A semi-analytical model for the approximation of plasmonic bands in arrays of metal wires in photonic crystal fibers,” Opt. Express 22(10), 11741 (2014).
    [Crossref] [PubMed]

2015 (1)

M. Wahle and H.-S. Kitzerow, “Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal,” Appl. Phys. Lett. 107(20), 201114 (2015).
[Crossref]

2014 (3)

2013 (2)

Y. Chen, D. Xu, S.-t. Wu, S.-i. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

I. C. Khoo, K. L. Hong, S. Zhao, D. Ma, and T.-H. Lin, “Blue-phase liquid crystal cored optical fiber array with photonic bandgaps and nonlinear transmission properties,” Opt. Express 21(4), 4319–4327 (2013).
[Crossref] [PubMed]

2012 (1)

K. Milenko, T. R. Wolinski, P. P. Shum, and D. J. Juan Hu, “Temperature-Sensitive Photonic Liquid Crystal Fiber Modal Interferometer,” IEEE Photonics J. 4(5), 1855–1860 (2012).
[Crossref]

2011 (2)

H. Choi, H. Higuchi, and H. Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98(13),7–10 (2011).
[Crossref]

L. Rao, J. Yan, S. T. Wu, S. I. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 2009–2012 (2011).
[Crossref]

2010 (4)

H.-S. Kitzerow, “Blue Phases, Prior Art, Potential Polar Effects, Challenges,“ Ferroelectrics 395(1), 66–85 (2010).
[Crossref]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232 (2010).
[Crossref] [PubMed]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Alexander Lorenz, Rolf Schuhmann, and Heinz-Siegfried Kitzerow, “Switchable waveguiding in two liquid-crystal-filled photonic crystal fibers,” Appl. Opt. 49(20), 3846–3853 (2010).
[Crossref] [PubMed]

2008 (3)

G. Ren, P. Shum, J. Hu, X. Yu, and Y. Gong, “Polarization-dependent bandgap splitting and mode guiding in liquid crystal photonic bandgap fibers,” J. Light. Technol. 26(22), 3650–3659 (2008).
[Crossref]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 10–13 (2008).
[Crossref]

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal, behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[Crossref]

2007 (1)

2006 (3)

2005 (2)

2004 (2)

2003 (1)

2002 (1)

1998 (1)

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58(3), 3896–3908 (1998).
[Crossref]

1985 (1)

P. R. Gerber, “Electro-Optical Effects of a Small-Pitch Blue-Phase System,” Mol. Cryst. Liq. Cryst. 116(3–4), 197–206 (1985).
[Crossref]

1983 (2)

S. Meiboom, M. Sammon, and D. W. Berreman, “Lattice symmetry of the cholesteric blue phases,” Phys. Rev. A 28(6), 3553–3560 (1983).
[Crossref]

S. Meiboom, M. Sammon, and W. F. Brinkman, “Lattice of disclinations, The structure of the blue phases of cholesteric liquid crystals,” Phys. Rev. A 27(1), 438–454 (1983).
[Crossref]

1965 (1)

Abeeluck, A. K.

Alkeskjold, Thomas

Anawati, Anawati

Argyros, A.

Bang, O.

Bartelt, H.

Bassi, Paolo

Bennet, F. H.

Berreman, D. W.

S. Meiboom, M. Sammon, and D. W. Berreman, “Lattice symmetry of the cholesteric blue phases,” Phys. Rev. A 28(6), 3553–3560 (1983).
[Crossref]

Bird, D. M.

Bird, David M

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, David M Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (204).
[PubMed]

Birks, T. A.

Bjarklev, A.

Bjarklev, Anders

Brinkman, W. F.

S. Meiboom, M. Sammon, and W. F. Brinkman, “Lattice of disclinations, The structure of the blue phases of cholesteric liquid crystals,” Phys. Rev. A 27(1), 438–454 (1983).
[Crossref]

Broeng, J.

Busch, K.

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58(3), 3896–3908 (1998).
[Crossref]

Chen, Y.

Y. Chen, D. Xu, S.-t. Wu, S.-i. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

Cheng, H.-C.

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Choi, H.

H. Choi, H. Higuchi, and H. Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98(13),7–10 (2011).
[Crossref]

Chojnowska, O.

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900 (2014).

Cordeiro, C. M. B.

de Sterke, C.

Dunn, S.

Eggleton, B.

Eggleton, B. J.

Gauza, S.

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

George, A. K.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, David M Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (204).
[PubMed]

Gerber, P. R.

P. R. Gerber, “Electro-Optical Effects of a Small-Pitch Blue-Phase System,” Mol. Cryst. Liq. Cryst. 116(3–4), 197–206 (1985).
[Crossref]

Giessen, H.

Gissibl, T.

Gong, Y.

G. Ren, P. Shum, J. Hu, X. Yu, and Y. Gong, “Polarization-dependent bandgap splitting and mode guiding in liquid crystal photonic bandgap fibers,” J. Light. Technol. 26(22), 3650–3659 (2008).
[Crossref]

Haseba, Y.

Y. Chen, D. Xu, S.-t. Wu, S.-i. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

L. Rao, J. Yan, S. T. Wu, S. I. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 2009–2012 (2011).
[Crossref]

Headley, C.

Hedley, T. D.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, David M Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (204).
[PubMed]

Hermann, D.

Hermann, David

Higuchi, H.

H. Choi, H. Higuchi, and H. Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98(13),7–10 (2011).
[Crossref]

Hoischen, A.

G. Nordendorf, A. Lorenz, A. Hoischen, J. Schmidtke, H. Kitzerow, D. Wilkes, and M. Wittek, “Hysteresis and memory factor of the Kerr effect in blue phases,” J. Appl. Phys.114(17) (2013).
[Crossref]

Hong, K. L.

Hu, J.

G. Ren, P. Shum, J. Hu, X. Yu, and Y. Gong, “Polarization-dependent bandgap splitting and mode guiding in liquid crystal photonic bandgap fibers,” J. Light. Technol. 26(22), 3650–3659 (2008).
[Crossref]

Jackson, John David

John David Jackson, Classical Electrodynamics, 3rd Ed. (Wiley, 1999).

Jiao, M.

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

John, S.

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58(3), 3896–3908 (1998).
[Crossref]

Juan Hu, D. J.

K. Milenko, T. R. Wolinski, P. P. Shum, and D. J. Juan Hu, “Temperature-Sensitive Photonic Liquid Crystal Fiber Modal Interferometer,” IEEE Photonics J. 4(5), 1855–1860 (2012).
[Crossref]

Khoo, I. C.

Kikuchi, H.

H. Choi, H. Higuchi, and H. Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98(13),7–10 (2011).
[Crossref]

Kitzerow, H.

M. Wahle and H. Kitzerow, “Measurement of group velocity dispersion in a solid-core photonic crystal fiber filled with a nematic liquid crystal,” Opt. Lett. 39(16), 4816–4819 (2014).
[Crossref] [PubMed]

G. Nordendorf, A. Lorenz, A. Hoischen, J. Schmidtke, H. Kitzerow, D. Wilkes, and M. Wittek, “Hysteresis and memory factor of the Kerr effect in blue phases,” J. Appl. Phys.114(17) (2013).
[Crossref]

Kitzerow, H.-S.

M. Wahle and H.-S. Kitzerow, “Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal,” Appl. Phys. Lett. 107(20), 201114 (2015).
[Crossref]

H.-S. Kitzerow, “Blue Phases, Prior Art, Potential Polar Effects, Challenges,“ Ferroelectrics 395(1), 66–85 (2010).
[Crossref]

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal, behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[Crossref]

Kitzerow, Heinz-Siegfried

Kivshar, Y. S.

Knight, J. C.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, David M Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (204).
[PubMed]

Kobelke, J.

Krolikowski, W.

Kuhlmey, B. T.

Larsen, T.

Lee, H. W.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 10–13 (2008).
[Crossref]

Leon-Saval, S. G.

Li, Y.

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Lin, T.-H.

Litchinitser, N.

Litchinitser, N. M.

Lorenz, A.

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal, behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[Crossref]

G. Nordendorf, A. Lorenz, A. Hoischen, J. Schmidtke, H. Kitzerow, D. Wilkes, and M. Wittek, “Hysteresis and memory factor of the Kerr effect in blue phases,” J. Appl. Phys.114(17) (2013).
[Crossref]

Lorenz, Alexander

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory, 2nd ed. (Springer, 1983).

Luan, F.

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express,  13(1), 309 (2005).
[Crossref]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, David M Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (204).
[PubMed]

Ma, D.

Malitson, I. H.

Martijn de Sterke, C.

McPhedran, R.

Meiboom, S.

S. Meiboom, M. Sammon, and W. F. Brinkman, “Lattice of disclinations, The structure of the blue phases of cholesteric liquid crystals,” Phys. Rev. A 27(1), 438–454 (1983).
[Crossref]

S. Meiboom, M. Sammon, and D. W. Berreman, “Lattice symmetry of the cholesteric blue phases,” Phys. Rev. A 28(6), 3553–3560 (1983).
[Crossref]

Milenko, K.

K. Milenko, T. R. Wolinski, P. P. Shum, and D. J. Juan Hu, “Temperature-Sensitive Photonic Liquid Crystal Fiber Modal Interferometer,” IEEE Photonics J. 4(5), 1855–1860 (2012).
[Crossref]

Neshev, D. N.

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd Ed. (John Wiley and Sons, 2006).

Nielsen, Martin

Nordendorf, G.

G. Nordendorf, A. Lorenz, A. Hoischen, J. Schmidtke, H. Kitzerow, D. Wilkes, and M. Wittek, “Hysteresis and memory factor of the Kerr effect in blue phases,” J. Appl. Phys.114(17) (2013).
[Crossref]

Orzechowski, K.

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900 (2014).

Otón, J. M.

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900 (2014).

Pearce, G. J.

T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006).
[Crossref] [PubMed]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, David M Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (204).
[PubMed]

Poudereux, D.

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900 (2014).

Pricking, S.

Prill Sempere, L.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 10–13 (2008).
[Crossref]

Rao, L.

L. Rao, J. Yan, S. T. Wu, S. I. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 2009–2012 (2011).
[Crossref]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Rasmussen, P. D.

Ren, G.

G. Ren, P. Shum, J. Hu, X. Yu, and Y. Gong, “Polarization-dependent bandgap splitting and mode guiding in liquid crystal photonic bandgap fibers,” J. Light. Technol. 26(22), 3650–3659 (2008).
[Crossref]

Riishede, Jesper

Rosberg, C. R

Russell, P. St. J.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 10–13 (2008).
[Crossref]

P. St. J. Russell, “Photonic-Crystal Fibers,” J. Light. Technol. 24(12), 4729–4749 (2006).
[Crossref]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express,  13(1), 309 (2005).
[Crossref]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, David M Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (204).
[PubMed]

Sammon, M.

S. Meiboom, M. Sammon, and D. W. Berreman, “Lattice symmetry of the cholesteric blue phases,” Phys. Rev. A 28(6), 3553–3560 (1983).
[Crossref]

S. Meiboom, M. Sammon, and W. F. Brinkman, “Lattice of disclinations, The structure of the blue phases of cholesteric liquid crystals,” Phys. Rev. A 27(1), 438–454 (1983).
[Crossref]

Schmidt, M.

Schmidt, M. A.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 10–13 (2008).
[Crossref]

Schmidtke, J.

G. Nordendorf, A. Lorenz, A. Hoischen, J. Schmidtke, H. Kitzerow, D. Wilkes, and M. Wittek, “Hysteresis and memory factor of the Kerr effect in blue phases,” J. Appl. Phys.114(17) (2013).
[Crossref]

Schuhmann, Rolf

Schwuchow, A.

Scolari, Lara

Shum, P.

G. Ren, P. Shum, J. Hu, X. Yu, and Y. Gong, “Polarization-dependent bandgap splitting and mode guiding in liquid crystal photonic bandgap fibers,” J. Light. Technol. 26(22), 3650–3659 (2008).
[Crossref]

Shum, P. P.

K. Milenko, T. R. Wolinski, P. P. Shum, and D. J. Juan Hu, “Temperature-Sensitive Photonic Liquid Crystal Fiber Modal Interferometer,” IEEE Photonics J. 4(5), 1855–1860 (2012).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory, 2nd ed. (Springer, 1983).

Spittel, R.

Steel, M. J.

Steel, M.J.

Steinvurzel, P.

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd Ed. (John Wiley and Sons, 2006).

Tefelska, M.

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900 (2014).

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 10–13 (2008).
[Crossref]

Vieweg, M.

Wahle, M.

M. Wahle and H.-S. Kitzerow, “Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal,” Appl. Phys. Lett. 107(20), 201114 (2015).
[Crossref]

M. Wahle and H. Kitzerow, “Measurement of group velocity dispersion in a solid-core photonic crystal fiber filled with a nematic liquid crystal,” Opt. Lett. 39(16), 4816–4819 (2014).
[Crossref] [PubMed]

White, T.

White, T. P.

Wilkes, D.

G. Nordendorf, A. Lorenz, A. Hoischen, J. Schmidtke, H. Kitzerow, D. Wilkes, and M. Wittek, “Hysteresis and memory factor of the Kerr effect in blue phases,” J. Appl. Phys.114(17) (2013).
[Crossref]

Wittek, M.

G. Nordendorf, A. Lorenz, A. Hoischen, J. Schmidtke, H. Kitzerow, D. Wilkes, and M. Wittek, “Hysteresis and memory factor of the Kerr effect in blue phases,” J. Appl. Phys.114(17) (2013).
[Crossref]

Wolinski, T. R.

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900 (2014).

K. Milenko, T. R. Wolinski, P. P. Shum, and D. J. Juan Hu, “Temperature-Sensitive Photonic Liquid Crystal Fiber Modal Interferometer,” IEEE Photonics J. 4(5), 1855–1860 (2012).
[Crossref]

Wu, D. C.

Wu, S. T.

L. Rao, J. Yan, S. T. Wu, S. I. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 2009–2012 (2011).
[Crossref]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Wu, S.-t.

Y. Chen, D. Xu, S.-t. Wu, S.-i. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

Xu, D.

Y. Chen, D. Xu, S.-t. Wu, S.-i. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

Yamamoto, S. I.

L. Rao, J. Yan, S. T. Wu, S. I. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 2009–2012 (2011).
[Crossref]

Yamamoto, S.-i.

Y. Chen, D. Xu, S.-t. Wu, S.-i. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

Yan, J.

L. Rao, J. Yan, S. T. Wu, S. I. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 2009–2012 (2011).
[Crossref]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

Yu, X.

G. Ren, P. Shum, J. Hu, X. Yu, and Y. Gong, “Polarization-dependent bandgap splitting and mode guiding in liquid crystal photonic bandgap fibers,” J. Light. Technol. 26(22), 3650–3659 (2008).
[Crossref]

Zhao, S.

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. Wahle and H.-S. Kitzerow, “Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal,” Appl. Phys. Lett. 107(20), 201114 (2015).
[Crossref]

Y. Chen, D. Xu, S.-t. Wu, S.-i. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[Crossref]

H. Choi, H. Higuchi, and H. Kikuchi, “Fast electro-optic switching in liquid crystal blue phase II,” Appl. Phys. Lett. 98(13),7–10 (2011).
[Crossref]

L. Rao, J. Yan, S. T. Wu, S. I. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 2009–2012 (2011).
[Crossref]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. Prill Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 10–13 (2008).
[Crossref]

Ferroelectrics (1)

H.-S. Kitzerow, “Blue Phases, Prior Art, Potential Polar Effects, Challenges,“ Ferroelectrics 395(1), 66–85 (2010).
[Crossref]

IEEE Photonics J. (1)

K. Milenko, T. R. Wolinski, P. P. Shum, and D. J. Juan Hu, “Temperature-Sensitive Photonic Liquid Crystal Fiber Modal Interferometer,” IEEE Photonics J. 4(5), 1855–1860 (2012).
[Crossref]

J. Light. Technol. (2)

P. St. J. Russell, “Photonic-Crystal Fibers,” J. Light. Technol. 24(12), 4729–4749 (2006).
[Crossref]

G. Ren, P. Shum, J. Hu, X. Yu, and Y. Gong, “Polarization-dependent bandgap splitting and mode guiding in liquid crystal photonic bandgap fibers,” J. Light. Technol. 26(22), 3650–3659 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

Mol. Cryst. Liq. Cryst. (1)

P. R. Gerber, “Electro-Optical Effects of a Small-Pitch Blue-Phase System,” Mol. Cryst. Liq. Cryst. 116(3–4), 197–206 (1985).
[Crossref]

Opt. Express (12)

I. C. Khoo, K. L. Hong, S. Zhao, D. Ma, and T.-H. Lin, “Blue-phase liquid crystal cored optical fiber array with photonic bandgaps and nonlinear transmission properties,” Opt. Express 21(4), 4319–4327 (2013).
[Crossref] [PubMed]

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M.J. Steel, C. Martijn de Sterke, and B. J. Eggleton, “Long wavelength anti-resonant guidance in high index inclusion microstructured fibers,” Opt. Express 12, 5424–5433 (2004)
[Crossref]

P. Steinvurzel, C. Martijn de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14, 8797–8811 (2006).
[Crossref] [PubMed]

C. R Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express 15(19), 12145–12150 (2007).
[Crossref] [PubMed]

Lara Scolari, Thomas Alkeskjold, Jesper Riishede, Anders Bjarklev, David Hermann, Anawati Anawati, Martin Nielsen, and Paolo Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005).
[Crossref] [PubMed]

T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14(20), 9483–9490 (2006).
[Crossref] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express,  13(1), 309 (2005).
[Crossref]

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004).
[Crossref] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–25962003.
[Crossref] [PubMed]

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal, behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[Crossref]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232 (2010).
[Crossref] [PubMed]

R. Spittel, H. Bartelt, and M. Schmidt, “A semi-analytical model for the approximation of plasmonic bands in arrays of metal wires in photonic crystal fibers,” Opt. Express 22(10), 11741 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (2)

S. Meiboom, M. Sammon, and D. W. Berreman, “Lattice symmetry of the cholesteric blue phases,” Phys. Rev. A 28(6), 3553–3560 (1983).
[Crossref]

S. Meiboom, M. Sammon, and W. F. Brinkman, “Lattice of disclinations, The structure of the blue phases of cholesteric liquid crystals,” Phys. Rev. A 27(1), 438–454 (1983).
[Crossref]

Phys. Rev. E (1)

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58(3), 3896–3908 (1998).
[Crossref]

Proc. SPIE (1)

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900 (2014).

Other (6)

A. W. Snyder and J. D. Love, Optical Waveguide Theory, 2nd ed. (Springer, 1983).

John David Jackson, Classical Electrodynamics, 3rd Ed. (Wiley, 1999).

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd Ed. (John Wiley and Sons, 2006).

Comsol 4.2, www.comsol.com .

G. Nordendorf, A. Lorenz, A. Hoischen, J. Schmidtke, H. Kitzerow, D. Wilkes, and M. Wittek, “Hysteresis and memory factor of the Kerr effect in blue phases,” J. Appl. Phys.114(17) (2013).
[Crossref]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, David M Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (204).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Polarizing optical microscope image of a blue phase I in reflection. (b) Cubic arrangement of double twist cylinders in a blue phase I unit cell [6]. (c) Schematic of the cross section of a photonic crystal fibers. (d) Close-up of the period cladding with inclusion diamter d and pitch Λ.
Fig. 2
Fig. 2 (a) Splitting of the refractive index of the initially isotropic blue phase due to an electric field. The blue phase becomes uniaxial with ordinary refractive index no and extraordinary refractive index ne. The inset shows the quadratic dependence of the induced birefringence δn on the electric field. (b) Schematic of the transmission (solid line) through an ARROW structure, in which the inclusion material has an isotropic refractive index n. The resonances are labeled according to the corresponding order m and are marked with red lines. The dashed gray line shows the transmission if the refractive index is increased by dn > 0. The change dn is isotropic.
Fig. 3
Fig. 3 (a) Setup for measuring the transmission through a blue phase photonic crystal fiber. The light of a broad band Xe-arc lamp is collimated, then passes through a grating monochromator (GM). The monochromatic light is coupled into a fiber (CF) which is butt-coupled to the BPPCF and placed on a hot stage (HS). The transmitted light passes through a polarizer (Pol) and is detected by a photo multiplier tube (PMT). (b) The BPPCF sample is sandwiched between conducting ITO plates and fixed with an adhesive NOA65 (Norland Optical Adhesive 65).
Fig. 4
Fig. 4 Polarizing microscope images of a BPPCF in transmission for different temperatures: (a) the cholesteric phase, (b, c) BP I, (d, e) BP II and (f) BP II-isotropic coexistence.
Fig. 5
Fig. 5 Transmission spectra of white light coupled into a BPPCF for different voltages. (a) Polarization of light (x direction) is perpendicular to the external electric field, (b) polarization is parallel to the electric field. (c) and (d) are enlargements of (a) and (b) for the band gap around 575 nm. The spectra are recorded at 65.5 °C.
Fig. 6
Fig. 6 (a) Electric field confined to the core of the fundamental mode of a single band gap around 580 nm for three different cases (i) 0 V (blue), (ii) 650 V with ny = ne, nx = nz = no (green) and (iii) ny = nx = ne, nz = no (red). On the short wavelength edge, we marked the wavelength shift λ λ ˜. (b) Simulated mode profiles (normalized electric field) at 610 nm for the described cases. Each image is 7 µm × 7 µm. (c) DOS plot for 0 V (case (i)). (d) DOS plot for 650 V (case (ii)): the orange regions correspond to bands with η ≤ 1 and the blue regions to bands with 0.1 ≤ η < 1. The green line in (c) and (d) corresponds to the effective refractive index of the guided mode. The wavelength shift of the band edges (Δλl and Δλr) of the transmission window are marked separately for short and long wavelength edge. For the simulation, K = 6.0 nm V−2 is assumed.
Fig. 7
Fig. 7 The solid black line corresponds to the measured intensity and the cyan line shows the simulated power confined to the core. The red labels on the top give the respective m-values determined by the ARROW model. The band gaps are labeled correspondingly. The inset shows the refractive index of the blue phase material at 0 V and 68 °C.
Fig. 8
Fig. 8 (a) Electrically induced birefringence δn (filled circles) calculated with the ARROW model for the each band gap at 65.5 °C. The Kerr constant is calculated from the linear fit (solid line). (b) Kerr constants of the different photonic bands versus temperature. The gray dashed line shows the Kerr constant that we measured in a vertical field switching (VFS) cell.
Fig. 9
Fig. 9 (a) Unit cell of the hexagonal photonic crystal cladding in k-space. (b) A quarter of the first Brillouin zone for an uniaxial lattice with optical axis along the y direction. The points represent the discretization of the k-vectors for N nodes per edge. The different node colors indicate the weighting of the node due to symmetry arguments.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ n = K λ E 2 ,
n o = n BP 1 3 δ n and n e = n BP + 2 3 δ n ,
λ m = 4 d 2 m + 1 ( n 2 n s 2 ) ½ ,
d n ( 2 m + 1 4 d ) 2 1 2 n BP ( λ ˜ m 2 λ m 2 ) ½ .
E incl = 2 ϵ s ϵ BP + ϵ s V D

Metrics