Abstract

A design method is proposed that not only improves the invisibility of but also minimizes the size of a two-dimensional (2D) free-space electromagnetic cloak based on the quasi-conformal mapping (QCM) technique. The refractive index profile of the cloak based on the QCM is optimally scaled to minimize performance deterioration due to the imperfect isotropy of the cloak medium. Moreover, the method can be applied to compensate for the performance degradation due to size reduction. Based on the proposed method, as much as a 78.3% reduction in size is demonstrated. Enhancement of invisibility is evidenced by a 71% reduction in the normalized scattering cross section (SCS) at 10 GHz. Performance enhancement and miniaturization are achieved simultaneously with the extremely simple proposed method, making it one of the most practical cloaks reported thus far. Finally, experimental results over a broad bandwidth as well as for a wide range of incident angles are provided for cloaks fabricated using a 3D printer, which validate the effectiveness of the proposed method of cloak design.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact-sized and broadband carpet cloak and free-space cloak

Hui Feng Ma, Wei Xiang Jiang, Xin Mi Yang, Xiao Yang Zhou, and Tie Jun Cui
Opt. Express 17(22) 19947-19959 (2009)

Half-sized cylindrical invisibility cloaks using double near zero slabs with realistic material size and properties

Reza Dehbashi, Konstanty S. Bialkowski, and Amin M. Abbosh
Opt. Express 25(20) 24486-24500 (2017)

Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries

Zheng Chang, Xiaoming Zhou, Jin Hu, and Gengkai Hu
Opt. Express 18(6) 6089-6096 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [Crossref] [PubMed]
  3. H. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83, 055801 (2011).
    [Crossref]
  4. T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86, 043827 (2012).
    [Crossref]
  5. A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009).
    [Crossref]
  6. J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
    [Crossref]
  7. A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, “Mantle cloaking for co-site radio-frequency antennas,” Appl. Phys. Lett. 108, 113502 (2016).
    [Crossref]
  8. J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
    [Crossref]
  9. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
    [Crossref] [PubMed]
  10. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
    [Crossref] [PubMed]
  11. Z. Chang, X. Zhou, J. Hu, and G. Hu, “Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries,” Opt. Express 18, 6089–6096 (2010).
    [Crossref] [PubMed]
  12. H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
    [Crossref] [PubMed]
  13. E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009).
    [Crossref]
  14. P. Knupp and S. Steinberg, Fundamentals of Grid Generation (CRC, 1993).
  15. B. Zhang, T. Chan, and B. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010).
    [Crossref] [PubMed]
  16. B. Vial and Y. Hao, “Topology optimized all-dielectric cloak: design, performances and modal picture of the invisibility effect,” Opt. Express 23, 23551–23560 (2015).
    [Crossref] [PubMed]
  17. X. Liu, X. Wu, L. Zhang, and J. Zhou, “Broadband unidirectional cloak designed by eikonal theory,” Opt. Express 23, 28402–28407 (2015).
    [Crossref] [PubMed]
  18. N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010).
    [Crossref]
  19. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [Crossref]
  20. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 2012).
  21. N. Wang, Y. Ma, R. Huang, and C. K. Ong, “Far field free-space measurement of three dimensional hole -in -Teflon invisibility cloak,” Opt. Express 21, 5941–5948 (2013).
    [Crossref] [PubMed]
  22. Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett. 38, 1606–1608 (2013).
    [Crossref] [PubMed]
  23. L. Lan, F. Sun, Y. Liu, C. K. Ong, and Y. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103, 121113 (2013).
    [Crossref]
  24. Y. Luo, J. Zhang, H. Chen, L. Ran, B. I. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57, 3926–3933 (2009).
    [Crossref]
  25. W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107, 034911 (2010).
    [Crossref]
  26. H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010).
    [Crossref] [PubMed]
  27. Z. L. Mei, J. Bai, and T. J. Cui, “Experimental verification of a broadband planar focusing antenna based on transformation optics,” New J. Phys. 13, 063028 (2011).
    [Crossref]

2016 (1)

A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, “Mantle cloaking for co-site radio-frequency antennas,” Appl. Phys. Lett. 108, 113502 (2016).
[Crossref]

2015 (3)

2013 (4)

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[Crossref]

N. Wang, Y. Ma, R. Huang, and C. K. Ong, “Far field free-space measurement of three dimensional hole -in -Teflon invisibility cloak,” Opt. Express 21, 5941–5948 (2013).
[Crossref] [PubMed]

Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett. 38, 1606–1608 (2013).
[Crossref] [PubMed]

L. Lan, F. Sun, Y. Liu, C. K. Ong, and Y. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103, 121113 (2013).
[Crossref]

2012 (1)

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86, 043827 (2012).
[Crossref]

2011 (2)

H. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83, 055801 (2011).
[Crossref]

Z. L. Mei, J. Bai, and T. J. Cui, “Experimental verification of a broadband planar focusing antenna based on transformation optics,” New J. Phys. 13, 063028 (2011).
[Crossref]

2010 (5)

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107, 034911 (2010).
[Crossref]

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010).
[Crossref] [PubMed]

N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010).
[Crossref]

Z. Chang, X. Zhou, J. Hu, and G. Hu, “Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries,” Opt. Express 18, 6089–6096 (2010).
[Crossref] [PubMed]

B. Zhang, T. Chan, and B. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010).
[Crossref] [PubMed]

2009 (5)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
[Crossref] [PubMed]

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009).
[Crossref]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009).
[Crossref]

Y. Luo, J. Zhang, H. Chen, L. Ran, B. I. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57, 3926–3933 (2009).
[Crossref]

2008 (1)

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref] [PubMed]

2006 (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

2002 (1)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Alù, A.

A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, “Mantle cloaking for co-site radio-frequency antennas,” Appl. Phys. Lett. 108, 113502 (2016).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[Crossref]

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009).
[Crossref]

Argyropoulos, C.

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009).
[Crossref]

Bai, J.

Z. L. Mei, J. Bai, and T. J. Cui, “Experimental verification of a broadband planar focusing antenna based on transformation optics,” New J. Phys. 13, 063028 (2011).
[Crossref]

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 2012).

Barbuto, M.

A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, “Mantle cloaking for co-site radio-frequency antennas,” Appl. Phys. Lett. 108, 113502 (2016).
[Crossref]

Basov, D.

Bilotti, F.

A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, “Mantle cloaking for co-site radio-frequency antennas,” Appl. Phys. Lett. 108, 113502 (2016).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

Chan, T.

B. Zhang, T. Chan, and B. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010).
[Crossref] [PubMed]

Chang, Z.

Chen, H.

H. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83, 055801 (2011).
[Crossref]

Y. Luo, J. Zhang, H. Chen, L. Ran, B. I. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57, 3926–3933 (2009).
[Crossref]

Chen, P. Y.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[Crossref]

Cheng, Q.

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107, 034911 (2010).
[Crossref]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

Cui, T. J.

Z. L. Mei, J. Bai, and T. J. Cui, “Experimental verification of a broadband planar focusing antenna based on transformation optics,” New J. Phys. 13, 063028 (2011).
[Crossref]

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107, 034911 (2010).
[Crossref]

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Driscoll, T.

Gaultney, D.

N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010).
[Crossref]

Hao, Y.

Hu, G.

Hu, J.

Huang, R.

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

Jiang, W. X.

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107, 034911 (2010).
[Crossref]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kallos, E.

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009).
[Crossref]

Kerkhoff, A.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[Crossref]

Knupp, P.

P. Knupp and S. Steinberg, Fundamentals of Grid Generation (CRC, 1993).

Kong, J. A.

Y. Luo, J. Zhang, H. Chen, L. Ran, B. I. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57, 3926–3933 (2009).
[Crossref]

Kundtz, N.

N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010).
[Crossref]

Lan, L.

L. Lan, F. Sun, Y. Liu, C. K. Ong, and Y. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103, 121113 (2013).
[Crossref]

Landy, N.

Leonhardt, U.

H. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83, 055801 (2011).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

Li, J.

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref] [PubMed]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

Liu, X.

Liu, Y.

L. Lan, F. Sun, Y. Liu, C. K. Ong, and Y. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103, 121113 (2013).
[Crossref]

Liu, Y. C.

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86, 043827 (2012).
[Crossref]

Luo, Y.

Y. Luo, J. Zhang, H. Chen, L. Ran, B. I. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57, 3926–3933 (2009).
[Crossref]

Ma, H. F.

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107, 034911 (2010).
[Crossref]

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010).
[Crossref] [PubMed]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
[Crossref] [PubMed]

Ma, Y.

N. Wang, Y. Ma, R. Huang, and C. K. Ong, “Far field free-space measurement of three dimensional hole -in -Teflon invisibility cloak,” Opt. Express 21, 5941–5948 (2013).
[Crossref] [PubMed]

L. Lan, F. Sun, Y. Liu, C. K. Ong, and Y. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103, 121113 (2013).
[Crossref]

Ma, Y. G.

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86, 043827 (2012).
[Crossref]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Mei, Z. L.

Z. L. Mei, J. Bai, and T. J. Cui, “Experimental verification of a broadband planar focusing antenna based on transformation optics,” New J. Phys. 13, 063028 (2011).
[Crossref]

Melin, K.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[Crossref]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Monti, A.

A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, “Mantle cloaking for co-site radio-frequency antennas,” Appl. Phys. Lett. 108, 113502 (2016).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

Ong, C. K.

L. Lan, F. Sun, Y. Liu, C. K. Ong, and Y. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103, 121113 (2013).
[Crossref]

N. Wang, Y. Ma, R. Huang, and C. K. Ong, “Far field free-space measurement of three dimensional hole -in -Teflon invisibility cloak,” Opt. Express 21, 5941–5948 (2013).
[Crossref] [PubMed]

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86, 043827 (2012).
[Crossref]

Pendry, J. B.

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Rainwater, D.

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[Crossref]

Ramaccia, D.

A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, “Mantle cloaking for co-site radio-frequency antennas,” Appl. Phys. Lett. 108, 113502 (2016).
[Crossref]

Ran, L.

Y. Luo, J. Zhang, H. Chen, L. Ran, B. I. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57, 3926–3933 (2009).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Smith, D. R.

Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett. 38, 1606–1608 (2013).
[Crossref] [PubMed]

N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010).
[Crossref]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Soric, J.

A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, “Mantle cloaking for co-site radio-frequency antennas,” Appl. Phys. Lett. 108, 113502 (2016).
[Crossref]

Soric, J. C.

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[Crossref]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Steinberg, S.

P. Knupp and S. Steinberg, Fundamentals of Grid Generation (CRC, 1993).

Sun, F.

L. Lan, F. Sun, Y. Liu, C. K. Ong, and Y. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103, 121113 (2013).
[Crossref]

Toscano, A.

A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, “Mantle cloaking for co-site radio-frequency antennas,” Appl. Phys. Lett. 108, 113502 (2016).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

Trotta, F.

A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, “Mantle cloaking for co-site radio-frequency antennas,” Appl. Phys. Lett. 108, 113502 (2016).
[Crossref]

Tyc, T.

H. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83, 055801 (2011).
[Crossref]

Urzhumov, Y.

Vellucci, S.

A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, “Mantle cloaking for co-site radio-frequency antennas,” Appl. Phys. Lett. 108, 113502 (2016).
[Crossref]

Vial, B.

Wang, N.

Wu, B.

B. Zhang, T. Chan, and B. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010).
[Crossref] [PubMed]

Wu, B. I.

Y. Luo, J. Zhang, H. Chen, L. Ran, B. I. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57, 3926–3933 (2009).
[Crossref]

Wu, X.

Xu, T.

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86, 043827 (2012).
[Crossref]

Yang, X. M.

Zhang, B.

B. Zhang, T. Chan, and B. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010).
[Crossref] [PubMed]

Zhang, J.

Y. Luo, J. Zhang, H. Chen, L. Ran, B. I. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57, 3926–3933 (2009).
[Crossref]

Zhang, L.

Zhang, Y.

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86, 043827 (2012).
[Crossref]

Zhou, J.

Zhou, X.

Zhou, X. Y.

Appl. Phys. Lett. (2)

A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, “Mantle cloaking for co-site radio-frequency antennas,” Appl. Phys. Lett. 108, 113502 (2016).
[Crossref]

L. Lan, F. Sun, Y. Liu, C. K. Ong, and Y. Ma, “Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization,” Appl. Phys. Lett. 103, 121113 (2013).
[Crossref]

IEEE Trans. Antennas Propag. (2)

Y. Luo, J. Zhang, H. Chen, L. Ran, B. I. Wu, and J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57, 3926–3933 (2009).
[Crossref]

J. C. Soric, A. Monti, A. Toscano, F. Bilotti, and A. Alù, “Multiband and wideband bilayer mantle cloaks,” IEEE Trans. Antennas Propag. 63, 3235–3240 (2015).
[Crossref]

J. Appl. Phys. (1)

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “A class of line-transformed cloaks with easily realizable constitutive parameters,” J. Appl. Phys. 107, 034911 (2010).
[Crossref]

Nat. Commun. (1)

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010).
[Crossref] [PubMed]

New J. Phys. (3)

Z. L. Mei, J. Bai, and T. J. Cui, “Experimental verification of a broadband planar focusing antenna based on transformation optics,” New J. Phys. 13, 063028 (2011).
[Crossref]

N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys. 12, 043039 (2010).
[Crossref]

J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15, 033037 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (3)

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009).
[Crossref]

H. Chen, U. Leonhardt, and T. Tyc, “Conformal cloak for waves,” Phys. Rev. A 83, 055801 (2011).
[Crossref]

T. Xu, Y. C. Liu, Y. Zhang, C. K. Ong, and Y. G. Ma, “Perfect invisibility cloaking by isotropic media,” Phys. Rev. A 86, 043827 (2012).
[Crossref]

Phys. Rev. B (2)

A. Alù, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B 80, 245115 (2009).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Phys. Rev. Lett. (2)

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref] [PubMed]

B. Zhang, T. Chan, and B. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104, 233903 (2010).
[Crossref] [PubMed]

Science (3)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

Other (2)

P. Knupp and S. Steinberg, Fundamentals of Grid Generation (CRC, 1993).

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Free-space cloak designed using quasi-conformal mapping (QCM). (a) Virtual and (b) physical spaces. (c) Proposed approximated model. (d) Flowchart to obtain approximated model.
Fig. 2
Fig. 2 Free-space cloak based on QCM. (a) Calculated refractive index profile. Simulated scattered fields of (b) diamond object (PEC), (c) cloak, and (d) approximated model. (e) Far-field scattered power densities of (b), (c), and (d).
Fig. 3
Fig. 3 Far-field scattered power densities in forward direction and normalized SCSs of approximated model vs β.
Fig. 4
Fig. 4 Results of free-space cloak based on QCM and its approximated model after scaling refractive indices by scaling factor β = 0.987. (a) Far-field scattered power densities. (b) Effect of optimal scaling on normalized SCS of free-space cloak over broad frequency range.
Fig. 5
Fig. 5 Reduced-size cloaks. (a) Refractive index profile and ray simulation results for h = 40.6 mm. (b) Optimally-scaled refractive index profile and ray simulation results for h = 26 mm. (c) Far-field scattered power densities.
Fig. 6
Fig. 6 Fabricated reduced-size free-space cloaks and measurement system. (a) Unscaled (h =39.2 mm) cloak, (b) proposed (h =34 mm) cloak, and (c) electromagnetic field scanner.
Fig. 7
Fig. 7 Simulated and measured results of unscaled and proposed reduced-size free-space cloaks at 10 GHz. Simulated scattered fields of (a) diamond object (PEC), (b) unscaled cloak, and (c) proposed cloak. (d) Normalized far-field scattered power densities. Measured scattered fields of (e) diamond object (aluminum), (f) fabricated unscaled cloak, and (g) proposed cloak. (h) Normalized far-field scattered power densities. (i) Simulated and measured normalized SCSs in the X band. (j) Normalized SCSs vs incident angles at 10 GHz.

Tables (1)

Tables Icon

Table 1 Comparison of scattered power densities in forward direction and normalized SCSs at f =10 GHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϵ = μ = Λ Λ T | Λ | = ( δ x δ y 0 0 0 δ y δ x 0 0 0 1 δ x δ y ) ,
n = n x n y = 1 δ x δ y .

Metrics