Abstract

Tank experiments were performed at different water turbidities to examine relationships between the beam attenuation coefficient (c) and Weibull shape parameters derived from LiDAR waveforms measured with the Fine Structure Underwater LiDAR (FSUIL). Optical inversions were made at 532 nm, within a c range of 0.045-1.52 m-1, and based on a LiDAR system having two field-of-view (15 and 75.7 mrad) and two linear polarizations. Consistently, the Weibull scale parameter or P2 showed the strongest covariation with c and was a more accurate proxy with respect to the LiDAR attenuation coefficient.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater

Qun Liu, Dong Liu, Jian Bai, YuPeng Zhang, Yudi Zhou, Peituo Xu, Zhipeng Liu, Sijie Chen, Haochi Che, Lan Wu, Yibing Shen, and Chong Liu
Opt. Express 26(23) 30278-30291 (2018)

Relationships between water attenuation coefficients derived from active and passive remote sensing: a case study from two coastal environments

Martin A. Montes, James Churnside, Zhongping Lee, Richard Gould, Robert Arnone, and Alan Weidemann
Appl. Opt. 50(18) 2990-2999 (2011)

References

  • View by:
  • |
  • |
  • |

  1. V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41(6), 1378–1387 (2003).
    [Crossref]
  2. M. A. Montes-Hugo, S. Alvarez Borrego, and G. Gaxiola Castro, “Annual primary production of a shallow estuarine system during non-El Niño years,” Mar. Ecol. Prog. Ser. 277, 51–60 (2004).
    [Crossref]
  3. F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53(5), 051410 (2014).
    [Crossref]
  4. B. Ouyang, F. R. Dalgleish, F. M. Caimi, T. E. Giddings, W. B. Britton, A. K. Vuorenkoski, and G. A. Nootz, “Compressive line sensing underwater imaging system,” Opt. Eng. 53(5), 051409 (2014).
    [Crossref]
  5. Q. Yang, D. Stramski, and M. X. He, “Modeling the effects of near-surface plumes of suspended particulate matter on remote-sensing reflectance of coastal waters,” Appl. Opt. 52(3), 359–374 (2013).
    [Crossref] [PubMed]
  6. M. J. Behrenfeld and E. Boss, “The beam attenuation to chlorophyll ratio: an optical index of phytoplankton physiology in the surface ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 50(12), 1537–1549 (2003).
    [Crossref]
  7. D. A. Carr, “A study of the target detection capabilities of an airborne LiDAR bathymetry system,” Ms Sc Thesis, Georgia Institute of Technology, 133 p. (2013).
  8. M. A. Montes, J. Churnside, Z. Lee, R. Gould, R. Arnone, and A. Weidemann, “Relationships between water attenuation coefficients derived from active and passive remote sensing: a case study from two coastal environments,” Appl. Opt. 50(18), 2990–2999 (2011).
    [Crossref] [PubMed]
  9. H. R. Gordon, “Interpretation of airborne oceanic LiDAR: effects of multiple scattering,” Appl. Opt. 21(16), 2996–3001 (1982).
    [Crossref] [PubMed]
  10. R. E. Walker and J. W. McLean, “LiDAR equations for turbid media with pulse stretching,” Appl. Opt. 38(12), 2384–2397 (1999).
    [Crossref] [PubMed]
  11. Y. I. Kopelevich and A. G. Surkov, “Mathematical Modeling of the Input Signals of Oceanological LiDARs,” J. of Opt. Tech. 75(5), 321–326 (2008).
    [Crossref]
  12. D. Josset, P. W. Zhai, Y. Hu, J. Pelon, and P. L. Lucker, “Lidar equation for ocean surface and subsurface,” Opt. Express 18(20), 20862–20875 (2010).
    [Crossref] [PubMed]
  13. J. H. Churnside, V. V. Tatarskii, and J. J. Wilson, “Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight,” Appl. Opt. 37(15), 3105–3112 (1998).
    [Crossref] [PubMed]
  14. V. I. Feygels, Y. I. Kopelevich, A. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical properties measurement,” Proc. SPIE 5155, 12–21 (2003).
    [Crossref]
  15. G. Roy, L. Bissonnette, C. Bastille, and G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation,” Appl. Opt. 38(24), 5202–5211 (1999).
    [Crossref] [PubMed]
  16. A. K. Vuorenkoski, F. R. Dalgleish, M. S. Twardowski, B. Ouyang, and C. Trees, “Semi-empirical inversion technique for retrieval of quantitative attenuation profiles with underwater scanning lidar system,” Proc. SPIE 9459, 94590E (2015).
    [Crossref]
  17. F. R. Hampel, “A general qualitative definition of robustness,” Ann. Math. Stat. 42(6), 1887–1896 (1971).
    [Crossref]
  18. T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (Scripps Institute of Oceanography, Visibility Laboratory, 1972), SIO Ref. 72–78, 79 p.
  19. V. I. Mankovsky and V. I. Haltrin, “Phase Functions of Light Scattering Measured in Waters of World Ocean and Lake Baykal,” in IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada (IEEE, Library of the Congress, 2002), 105858, paper I2E09–1759.
    [Crossref]
  20. O.V. Kopelevich, “Experimental data on the optical properties of seawater,” Ocean Opt., 1, Nauka, Moskva, 166–207, (in Russian).
  21. A. A. Gilerson, J. Stepinski, A. I. Ibrahim, Y. You, J. M. Sullivan, M. S. Twardowski, H. M. Dierssen, B. Russell, M. E. Cummings, P. Brady, S. A. Ahmed, and G. W. Kattawar, “Benthic effects on the polarization of light in shallow waters,” Appl. Opt. 52(36), 8685–8705 (2013).
    [Crossref] [PubMed]
  22. J. Churnside, “Review of profiling oceanographic LiDAR,” Opt. Eng. 53(5), 051405 (2013).
    [Crossref]
  23. J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt. 52(4), 786–794 (2013).
    [Crossref] [PubMed]
  24. F. M. Caimi and F. R. Dalgleish, “Performance considerations for continuous-wave and pulsed laser line scan (LLS) imaging systems,” J. Eur. Opt. Soc. 5, 10020S (2010).
    [Crossref]

2015 (1)

A. K. Vuorenkoski, F. R. Dalgleish, M. S. Twardowski, B. Ouyang, and C. Trees, “Semi-empirical inversion technique for retrieval of quantitative attenuation profiles with underwater scanning lidar system,” Proc. SPIE 9459, 94590E (2015).
[Crossref]

2014 (2)

F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53(5), 051410 (2014).
[Crossref]

B. Ouyang, F. R. Dalgleish, F. M. Caimi, T. E. Giddings, W. B. Britton, A. K. Vuorenkoski, and G. A. Nootz, “Compressive line sensing underwater imaging system,” Opt. Eng. 53(5), 051409 (2014).
[Crossref]

2013 (4)

2011 (1)

2010 (2)

D. Josset, P. W. Zhai, Y. Hu, J. Pelon, and P. L. Lucker, “Lidar equation for ocean surface and subsurface,” Opt. Express 18(20), 20862–20875 (2010).
[Crossref] [PubMed]

F. M. Caimi and F. R. Dalgleish, “Performance considerations for continuous-wave and pulsed laser line scan (LLS) imaging systems,” J. Eur. Opt. Soc. 5, 10020S (2010).
[Crossref]

2008 (1)

Y. I. Kopelevich and A. G. Surkov, “Mathematical Modeling of the Input Signals of Oceanological LiDARs,” J. of Opt. Tech. 75(5), 321–326 (2008).
[Crossref]

2004 (1)

M. A. Montes-Hugo, S. Alvarez Borrego, and G. Gaxiola Castro, “Annual primary production of a shallow estuarine system during non-El Niño years,” Mar. Ecol. Prog. Ser. 277, 51–60 (2004).
[Crossref]

2003 (3)

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41(6), 1378–1387 (2003).
[Crossref]

M. J. Behrenfeld and E. Boss, “The beam attenuation to chlorophyll ratio: an optical index of phytoplankton physiology in the surface ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 50(12), 1537–1549 (2003).
[Crossref]

V. I. Feygels, Y. I. Kopelevich, A. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical properties measurement,” Proc. SPIE 5155, 12–21 (2003).
[Crossref]

1999 (2)

1998 (1)

1982 (1)

1971 (1)

F. R. Hampel, “A general qualitative definition of robustness,” Ann. Math. Stat. 42(6), 1887–1896 (1971).
[Crossref]

Ahmed, S. A.

Alvarez Borrego, S.

M. A. Montes-Hugo, S. Alvarez Borrego, and G. Gaxiola Castro, “Annual primary production of a shallow estuarine system during non-El Niño years,” Mar. Ecol. Prog. Ser. 277, 51–60 (2004).
[Crossref]

Arnone, R.

Bastille, C.

Behrenfeld, M. J.

V. I. Feygels, Y. I. Kopelevich, A. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical properties measurement,” Proc. SPIE 5155, 12–21 (2003).
[Crossref]

M. J. Behrenfeld and E. Boss, “The beam attenuation to chlorophyll ratio: an optical index of phytoplankton physiology in the surface ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 50(12), 1537–1549 (2003).
[Crossref]

Bissonnette, L.

Boss, E.

M. J. Behrenfeld and E. Boss, “The beam attenuation to chlorophyll ratio: an optical index of phytoplankton physiology in the surface ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 50(12), 1537–1549 (2003).
[Crossref]

Brady, P.

Brando, V. E.

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41(6), 1378–1387 (2003).
[Crossref]

Britton, W. B.

B. Ouyang, F. R. Dalgleish, F. M. Caimi, T. E. Giddings, W. B. Britton, A. K. Vuorenkoski, and G. A. Nootz, “Compressive line sensing underwater imaging system,” Opt. Eng. 53(5), 051409 (2014).
[Crossref]

Caimi, F. M.

F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53(5), 051410 (2014).
[Crossref]

B. Ouyang, F. R. Dalgleish, F. M. Caimi, T. E. Giddings, W. B. Britton, A. K. Vuorenkoski, and G. A. Nootz, “Compressive line sensing underwater imaging system,” Opt. Eng. 53(5), 051409 (2014).
[Crossref]

F. M. Caimi and F. R. Dalgleish, “Performance considerations for continuous-wave and pulsed laser line scan (LLS) imaging systems,” J. Eur. Opt. Soc. 5, 10020S (2010).
[Crossref]

Cardei, I.

F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53(5), 051410 (2014).
[Crossref]

Cardei, M.

F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53(5), 051410 (2014).
[Crossref]

Churnside, J.

Churnside, J. H.

Cummings, M. E.

Dalgleish, F. R.

A. K. Vuorenkoski, F. R. Dalgleish, M. S. Twardowski, B. Ouyang, and C. Trees, “Semi-empirical inversion technique for retrieval of quantitative attenuation profiles with underwater scanning lidar system,” Proc. SPIE 9459, 94590E (2015).
[Crossref]

B. Ouyang, F. R. Dalgleish, F. M. Caimi, T. E. Giddings, W. B. Britton, A. K. Vuorenkoski, and G. A. Nootz, “Compressive line sensing underwater imaging system,” Opt. Eng. 53(5), 051409 (2014).
[Crossref]

F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53(5), 051410 (2014).
[Crossref]

F. M. Caimi and F. R. Dalgleish, “Performance considerations for continuous-wave and pulsed laser line scan (LLS) imaging systems,” J. Eur. Opt. Soc. 5, 10020S (2010).
[Crossref]

Dekker, A. G.

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41(6), 1378–1387 (2003).
[Crossref]

Dierssen, H. M.

Donaghay, P. L.

Feygels, V. I.

V. I. Feygels, Y. I. Kopelevich, A. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical properties measurement,” Proc. SPIE 5155, 12–21 (2003).
[Crossref]

Gaxiola Castro, G.

M. A. Montes-Hugo, S. Alvarez Borrego, and G. Gaxiola Castro, “Annual primary production of a shallow estuarine system during non-El Niño years,” Mar. Ecol. Prog. Ser. 277, 51–60 (2004).
[Crossref]

Giddings, T. E.

F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53(5), 051410 (2014).
[Crossref]

B. Ouyang, F. R. Dalgleish, F. M. Caimi, T. E. Giddings, W. B. Britton, A. K. Vuorenkoski, and G. A. Nootz, “Compressive line sensing underwater imaging system,” Opt. Eng. 53(5), 051409 (2014).
[Crossref]

Gilerson, A. A.

Gordon, H. R.

Gould, R.

Hampel, F. R.

F. R. Hampel, “A general qualitative definition of robustness,” Ann. Math. Stat. 42(6), 1887–1896 (1971).
[Crossref]

He, M. X.

Hu, Y.

Ibrahim, A. I.

Josset, D.

Kattawar, G. W.

Kopelevich, Y. I.

Y. I. Kopelevich and A. G. Surkov, “Mathematical Modeling of the Input Signals of Oceanological LiDARs,” J. of Opt. Tech. 75(5), 321–326 (2008).
[Crossref]

V. I. Feygels, Y. I. Kopelevich, A. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical properties measurement,” Proc. SPIE 5155, 12–21 (2003).
[Crossref]

Lee, J. H.

Lee, Z.

Lucker, P. L.

Marchbanks, R. D.

McLean, J. W.

Montes, M. A.

Montes-Hugo, M. A.

M. A. Montes-Hugo, S. Alvarez Borrego, and G. Gaxiola Castro, “Annual primary production of a shallow estuarine system during non-El Niño years,” Mar. Ecol. Prog. Ser. 277, 51–60 (2004).
[Crossref]

Nootz, G. A.

B. Ouyang, F. R. Dalgleish, F. M. Caimi, T. E. Giddings, W. B. Britton, A. K. Vuorenkoski, and G. A. Nootz, “Compressive line sensing underwater imaging system,” Opt. Eng. 53(5), 051409 (2014).
[Crossref]

Ouyang, B.

A. K. Vuorenkoski, F. R. Dalgleish, M. S. Twardowski, B. Ouyang, and C. Trees, “Semi-empirical inversion technique for retrieval of quantitative attenuation profiles with underwater scanning lidar system,” Proc. SPIE 9459, 94590E (2015).
[Crossref]

B. Ouyang, F. R. Dalgleish, F. M. Caimi, T. E. Giddings, W. B. Britton, A. K. Vuorenkoski, and G. A. Nootz, “Compressive line sensing underwater imaging system,” Opt. Eng. 53(5), 051409 (2014).
[Crossref]

F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53(5), 051410 (2014).
[Crossref]

Pelon, J.

Rashkin, D.

F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53(5), 051410 (2014).
[Crossref]

Roy, G.

Russell, B.

Shirron, J. J.

F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53(5), 051410 (2014).
[Crossref]

Stepinski, J.

Stramski, D.

Sullivan, J. M.

Surkov, A.

V. I. Feygels, Y. I. Kopelevich, A. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical properties measurement,” Proc. SPIE 5155, 12–21 (2003).
[Crossref]

Surkov, A. G.

Y. I. Kopelevich and A. G. Surkov, “Mathematical Modeling of the Input Signals of Oceanological LiDARs,” J. of Opt. Tech. 75(5), 321–326 (2008).
[Crossref]

Tatarskii, V. V.

Trees, C.

A. K. Vuorenkoski, F. R. Dalgleish, M. S. Twardowski, B. Ouyang, and C. Trees, “Semi-empirical inversion technique for retrieval of quantitative attenuation profiles with underwater scanning lidar system,” Proc. SPIE 9459, 94590E (2015).
[Crossref]

Twardowski, M. S.

A. K. Vuorenkoski, F. R. Dalgleish, M. S. Twardowski, B. Ouyang, and C. Trees, “Semi-empirical inversion technique for retrieval of quantitative attenuation profiles with underwater scanning lidar system,” Proc. SPIE 9459, 94590E (2015).
[Crossref]

A. A. Gilerson, J. Stepinski, A. I. Ibrahim, Y. You, J. M. Sullivan, M. S. Twardowski, H. M. Dierssen, B. Russell, M. E. Cummings, P. Brady, S. A. Ahmed, and G. W. Kattawar, “Benthic effects on the polarization of light in shallow waters,” Appl. Opt. 52(36), 8685–8705 (2013).
[Crossref] [PubMed]

Vallée, G.

Vuorenkoski, A. K.

A. K. Vuorenkoski, F. R. Dalgleish, M. S. Twardowski, B. Ouyang, and C. Trees, “Semi-empirical inversion technique for retrieval of quantitative attenuation profiles with underwater scanning lidar system,” Proc. SPIE 9459, 94590E (2015).
[Crossref]

B. Ouyang, F. R. Dalgleish, F. M. Caimi, T. E. Giddings, W. B. Britton, A. K. Vuorenkoski, and G. A. Nootz, “Compressive line sensing underwater imaging system,” Opt. Eng. 53(5), 051409 (2014).
[Crossref]

F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53(5), 051410 (2014).
[Crossref]

Walker, R. E.

Weidemann, A.

Wilson, J. J.

Yang, Q.

You, Y.

Yungel, J. K.

V. I. Feygels, Y. I. Kopelevich, A. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical properties measurement,” Proc. SPIE 5155, 12–21 (2003).
[Crossref]

Zhai, P. W.

Ann. Math. Stat. (1)

F. R. Hampel, “A general qualitative definition of robustness,” Ann. Math. Stat. 42(6), 1887–1896 (1971).
[Crossref]

Appl. Opt. (8)

Q. Yang, D. Stramski, and M. X. He, “Modeling the effects of near-surface plumes of suspended particulate matter on remote-sensing reflectance of coastal waters,” Appl. Opt. 52(3), 359–374 (2013).
[Crossref] [PubMed]

J. H. Churnside, V. V. Tatarskii, and J. J. Wilson, “Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight,” Appl. Opt. 37(15), 3105–3112 (1998).
[Crossref] [PubMed]

M. A. Montes, J. Churnside, Z. Lee, R. Gould, R. Arnone, and A. Weidemann, “Relationships between water attenuation coefficients derived from active and passive remote sensing: a case study from two coastal environments,” Appl. Opt. 50(18), 2990–2999 (2011).
[Crossref] [PubMed]

H. R. Gordon, “Interpretation of airborne oceanic LiDAR: effects of multiple scattering,” Appl. Opt. 21(16), 2996–3001 (1982).
[Crossref] [PubMed]

R. E. Walker and J. W. McLean, “LiDAR equations for turbid media with pulse stretching,” Appl. Opt. 38(12), 2384–2397 (1999).
[Crossref] [PubMed]

G. Roy, L. Bissonnette, C. Bastille, and G. Vallée, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation,” Appl. Opt. 38(24), 5202–5211 (1999).
[Crossref] [PubMed]

A. A. Gilerson, J. Stepinski, A. I. Ibrahim, Y. You, J. M. Sullivan, M. S. Twardowski, H. M. Dierssen, B. Russell, M. E. Cummings, P. Brady, S. A. Ahmed, and G. W. Kattawar, “Benthic effects on the polarization of light in shallow waters,” Appl. Opt. 52(36), 8685–8705 (2013).
[Crossref] [PubMed]

J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt. 52(4), 786–794 (2013).
[Crossref] [PubMed]

Deep Sea Res. Part I Oceanogr. Res. Pap. (1)

M. J. Behrenfeld and E. Boss, “The beam attenuation to chlorophyll ratio: an optical index of phytoplankton physiology in the surface ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 50(12), 1537–1549 (2003).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41(6), 1378–1387 (2003).
[Crossref]

J. Eur. Opt. Soc. (1)

F. M. Caimi and F. R. Dalgleish, “Performance considerations for continuous-wave and pulsed laser line scan (LLS) imaging systems,” J. Eur. Opt. Soc. 5, 10020S (2010).
[Crossref]

J. of Opt. Tech. (1)

Y. I. Kopelevich and A. G. Surkov, “Mathematical Modeling of the Input Signals of Oceanological LiDARs,” J. of Opt. Tech. 75(5), 321–326 (2008).
[Crossref]

Mar. Ecol. Prog. Ser. (1)

M. A. Montes-Hugo, S. Alvarez Borrego, and G. Gaxiola Castro, “Annual primary production of a shallow estuarine system during non-El Niño years,” Mar. Ecol. Prog. Ser. 277, 51–60 (2004).
[Crossref]

Opt. Eng. (3)

F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K. Vuorenkoski, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei, “Physical layer simulator for undersea free-space laser communications,” Opt. Eng. 53(5), 051410 (2014).
[Crossref]

B. Ouyang, F. R. Dalgleish, F. M. Caimi, T. E. Giddings, W. B. Britton, A. K. Vuorenkoski, and G. A. Nootz, “Compressive line sensing underwater imaging system,” Opt. Eng. 53(5), 051409 (2014).
[Crossref]

J. Churnside, “Review of profiling oceanographic LiDAR,” Opt. Eng. 53(5), 051405 (2013).
[Crossref]

Opt. Express (1)

Proc. SPIE (2)

V. I. Feygels, Y. I. Kopelevich, A. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical properties measurement,” Proc. SPIE 5155, 12–21 (2003).
[Crossref]

A. K. Vuorenkoski, F. R. Dalgleish, M. S. Twardowski, B. Ouyang, and C. Trees, “Semi-empirical inversion technique for retrieval of quantitative attenuation profiles with underwater scanning lidar system,” Proc. SPIE 9459, 94590E (2015).
[Crossref]

Other (4)

D. A. Carr, “A study of the target detection capabilities of an airborne LiDAR bathymetry system,” Ms Sc Thesis, Georgia Institute of Technology, 133 p. (2013).

T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (Scripps Institute of Oceanography, Visibility Laboratory, 1972), SIO Ref. 72–78, 79 p.

V. I. Mankovsky and V. I. Haltrin, “Phase Functions of Light Scattering Measured in Waters of World Ocean and Lake Baykal,” in IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada (IEEE, Library of the Congress, 2002), 105858, paper I2E09–1759.
[Crossref]

O.V. Kopelevich, “Experimental data on the optical properties of seawater,” Ocean Opt., 1, Nauka, Moskva, 166–207, (in Russian).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Test tank and LiDAR experimental settings.
Fig. 2
Fig. 2 Measured versus modeled FSUIL waveforms. a) channel 1, b) channel 2, c) channel 3, and d) channel 4. c is 0.045 m−1 (red line), 0.236 m−1 (black line) or 1.520 m−1 (blue line); FSUIL measurements (solid lines), MW simulations (broken line), two standard errors (grey bars); TR and TA correspond to trigger and target positions, respectively.
Fig. 3
Fig. 3 Variation of α as a function of c. a) channel 1, b) channel 2, c) channel 3, and d) channel 4. Linear regression model (broken lines), for each datapoint, vertical bars correspond to two standard errors.
Fig. 4
Fig. 4 Relationships between Weibull parameters and c. a) P1, b) P2, c) P3 and d) P4. Uncertainty bars correspond to two standard errors.

Tables (2)

Tables Icon

Table 1 Statistics of α-c relationships. Linear regression model: c’ = m0 + m1 α, c’ is modeled c, for each FSUIL channel, the number of observations was 9, two standard errors are indicated between parentheses

Tables Icon

Table 2 Statistics of P2-c relationships. Non-linear regression model: c' = yo + A loge P2 + B (loge P2)2 + C (loge P2)3, c’ is modeled c, for each FSUIL channel, the number of observations was 9, two standard errors are indicated between parentheses

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

MW(t)=P3( P1 P2 ) ( t P2 ) P11 e ( t P2 ) P1 +P4
MURD=median{ i=1 i=ne | x mod i x meas i x meas i | }
c'= y O +AlogP2+B ( logP2 ) 2 +C ( logP2 ) 3

Metrics