Abstract

We demonstrated a quasi-continuous wave (QCW) Nd:YAG planar waveguide laser amplifier with the single pulse output energy of 944 mJ. At the pulse repetition frequency (PRF) of 100 Hz, 1064 nm seed laser was coupled into the planar waveguide laser amplifier with the single pulse energy of 128 mJ and the pulse duration of 192 μs. With the total pump energy of 1582 mJ, the extracted energy of 816 mJ was obtained, leading to an optical to optical efficiency of 52% and an electrical to optical efficiency of 28%. To the best our knowledge, it is up to now the highest efficiency and output energy in Nd:YAG planar waveguide laser amplifier reported. At the maximum output, the beam quality factors M2 were measured to be 3.44 and 4.81 in the guided direction and unguided direction respectively, and the polarization degree was 98.6%. Higher average power could be obtained with the better performance of seeder oscillator.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1.5  kW efficient CW Nd:YAG planar waveguide MOPA laser

Juntao Wang, Zhenhai Wu, Hua Su, Tangjian Zhou, Jun Lei, Wenqiang Lv, Jing He, Liu Xu, Yuejian Chen, Dan Wang, Lixin Tong, Hao Hu, Qingsong Gao, and Chun Tang
Opt. Lett. 42(16) 3149-3152 (2017)

Continuous-wave and passively Q-switched cladding-pumped planar waveguide lasers

R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd
Opt. Lett. 26(12) 881-883 (2001)

Compact, high-power, high-beam-quality quasi-CW microsecond five-pass zigzag slab 1319  nm amplifier

Chuan Guo, Junwei Zuo, Qi Bian, Chang Xu, Qinshuang Zong, Yong Bo, Yu Shen, Nan Zong, Hongwei Gao, Yanyong Lin, Lei Yuan, Yang Liu, Dafu Cui, Qinjun Peng, and Zuyan Xu
Appl. Opt. 56(12) 3445-3448 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Du, N. Wu, J. Xu, J. Giesekus, P. Loosen, and R. Poprawe, “Partially end-pumped Nd:YAG slab laser with a hybrid resonator,” Opt. Lett. 23(5), 370–372 (1998).
    [Crossref] [PubMed]
  2. X. Ma, J. Wang, J. Zhou, X. Zhu, and W. Chen, “Conductively-cooled, high-energy, single-frequency diode pumped slab laser for space applications,” Appl. Phys. B 103(4), 809–812 (2011).
    [Crossref]
  3. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
    [Crossref] [PubMed]
  4. F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “Tm-based fiber-laser system with more than 200 MW peak power,” Opt. Lett. 40(1), 9–12 (2015).
    [Crossref] [PubMed]
  5. H. Injeyan and G. D. Goodno, High Power Laser Handbook (McGraw-Hill Companies, 2011), Chap.15.
  6. M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  7. H. Injeyan and G. D. Goodno, High Power Laser Handbook (McGraw-Hill Companies, 2011), Chap.8.
  8. S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100-kW Coherently Combined Nd:YAG MOPA Laser Array,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009, OSA Optics & Photonics Technical Digest, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.
  9. J. P. van der Ziel, W. A. Bonner, L. Kopf, S. Singh, and L. G. Van Uitert, “Laser oscillation from Ho and Nd ions in epitaxially grown thin aluminum garnet films,” Appl. Phys. Lett. 22(12), 656–657 (1973).
    [Crossref]
  10. H. Baker, J. Lee, and D. Hall, “Self-imaging and high-beam-quality operation in multi-mode planar waveguide optical amplifiers,” Opt. Express 10(6), 297–302 (2002).
    [Crossref] [PubMed]
  11. D. Filgas, T. Clatterbuck, M. Cashen, A. Daniele, S. Hughes, and D. Mordaunt, “Recent results for the Raytheon RELI program,” Proc. SPIE 8381, 83810W (2012).
    [Crossref]
  12. Y. Tan, Z. Shang, S. K. Vanga, A. A. Bettiol, and F. Chen, “High-gain optical waveguide amplifier based on proton beam writing of Nd:YAG crystal,” Opt. Express 23(11), 14612–14617 (2015).
    [Crossref] [PubMed]
  13. S. J. Beecher, J. A. Grant-Jacob, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “11.5W Yb:YAG planar waveguide lasers grown by pulsed laser deposition: 70% slope efficiencies at 16 W of output power,” Proc. SPIE 9726, 97261Z (2016).
    [Crossref]
  14. J. Liu, L. Ge, L. Feng, H. Jiang, H. Su, T. Zhou, J. Wang, Q. Gao, and J. Li, “Diode-pumped composite ceramic Nd:YAG planar waveguide amplifier with 327 mJ output at 100 Hz repetition rate,” Chin. Opt. Lett. 14(5), 051404 (2016).
    [Crossref]
  15. T. L. Parsonage, S. J. Beecher, A. Choudhary, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Pulsed laser deposited diode-pumped 7.4 W Yb:Lu2O3 planar waveguide laser,” Opt. Express 23(25), 31691–31697 (2015).
    [Crossref] [PubMed]
  16. L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun. 281(14), 3781–3785 (2008).
    [Crossref]
  17. G. Wagner, B. Callicoatt, G. Bennett, M. Tartaglia, S. Field, A. Malm, and C. Ryan, “375 W, 20 kHz, 1.5 ns Nd:YAG Planar Waveguide MOPA, ” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB1.
  18. H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
    [Crossref]
  19. W. Koechner, Solid-State Laser Engineering (Springer, 2006), Chap.3.

2016 (2)

S. J. Beecher, J. A. Grant-Jacob, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “11.5W Yb:YAG planar waveguide lasers grown by pulsed laser deposition: 70% slope efficiencies at 16 W of output power,” Proc. SPIE 9726, 97261Z (2016).
[Crossref]

J. Liu, L. Ge, L. Feng, H. Jiang, H. Su, T. Zhou, J. Wang, Q. Gao, and J. Li, “Diode-pumped composite ceramic Nd:YAG planar waveguide amplifier with 327 mJ output at 100 Hz repetition rate,” Chin. Opt. Lett. 14(5), 051404 (2016).
[Crossref]

2015 (3)

2014 (1)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

2012 (1)

D. Filgas, T. Clatterbuck, M. Cashen, A. Daniele, S. Hughes, and D. Mordaunt, “Recent results for the Raytheon RELI program,” Proc. SPIE 8381, 83810W (2012).
[Crossref]

2011 (1)

X. Ma, J. Wang, J. Zhou, X. Zhu, and W. Chen, “Conductively-cooled, high-energy, single-frequency diode pumped slab laser for space applications,” Appl. Phys. B 103(4), 809–812 (2011).
[Crossref]

2008 (2)

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun. 281(14), 3781–3785 (2008).
[Crossref]

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

2004 (1)

2002 (1)

1998 (1)

1973 (1)

J. P. van der Ziel, W. A. Bonner, L. Kopf, S. Singh, and L. G. Van Uitert, “Laser oscillation from Ho and Nd ions in epitaxially grown thin aluminum garnet films,” Appl. Phys. Lett. 22(12), 656–657 (1973).
[Crossref]

Baker, H.

Beecher, S. J.

S. J. Beecher, J. A. Grant-Jacob, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “11.5W Yb:YAG planar waveguide lasers grown by pulsed laser deposition: 70% slope efficiencies at 16 W of output power,” Proc. SPIE 9726, 97261Z (2016).
[Crossref]

T. L. Parsonage, S. J. Beecher, A. Choudhary, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Pulsed laser deposited diode-pumped 7.4 W Yb:Lu2O3 planar waveguide laser,” Opt. Express 23(25), 31691–31697 (2015).
[Crossref] [PubMed]

Bettiol, A. A.

Bonner, W. A.

J. P. van der Ziel, W. A. Bonner, L. Kopf, S. Singh, and L. G. Van Uitert, “Laser oscillation from Ho and Nd ions in epitaxially grown thin aluminum garnet films,” Appl. Phys. Lett. 22(12), 656–657 (1973).
[Crossref]

Cashen, M.

D. Filgas, T. Clatterbuck, M. Cashen, A. Daniele, S. Hughes, and D. Mordaunt, “Recent results for the Raytheon RELI program,” Proc. SPIE 8381, 83810W (2012).
[Crossref]

Chen, F.

Chen, W.

X. Ma, J. Wang, J. Zhou, X. Zhu, and W. Chen, “Conductively-cooled, high-energy, single-frequency diode pumped slab laser for space applications,” Appl. Phys. B 103(4), 809–812 (2011).
[Crossref]

Cheng, X.

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun. 281(14), 3781–3785 (2008).
[Crossref]

Choudhary, A.

Clatterbuck, T.

D. Filgas, T. Clatterbuck, M. Cashen, A. Daniele, S. Hughes, and D. Mordaunt, “Recent results for the Raytheon RELI program,” Proc. SPIE 8381, 83810W (2012).
[Crossref]

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Daniele, A.

D. Filgas, T. Clatterbuck, M. Cashen, A. Daniele, S. Hughes, and D. Mordaunt, “Recent results for the Raytheon RELI program,” Proc. SPIE 8381, 83810W (2012).
[Crossref]

Du, K.

Eason, R. W.

S. J. Beecher, J. A. Grant-Jacob, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “11.5W Yb:YAG planar waveguide lasers grown by pulsed laser deposition: 70% slope efficiencies at 16 W of output power,” Proc. SPIE 9726, 97261Z (2016).
[Crossref]

T. L. Parsonage, S. J. Beecher, A. Choudhary, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Pulsed laser deposited diode-pumped 7.4 W Yb:Lu2O3 planar waveguide laser,” Opt. Express 23(25), 31691–31697 (2015).
[Crossref] [PubMed]

Feng, L.

Filgas, D.

D. Filgas, T. Clatterbuck, M. Cashen, A. Daniele, S. Hughes, and D. Mordaunt, “Recent results for the Raytheon RELI program,” Proc. SPIE 8381, 83810W (2012).
[Crossref]

Gaida, C.

Gao, Q.

Ge, L.

Gebhardt, M.

Giesekus, J.

Gong, M.

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

Grant-Jacob, J. A.

S. J. Beecher, J. A. Grant-Jacob, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “11.5W Yb:YAG planar waveguide lasers grown by pulsed laser deposition: 70% slope efficiencies at 16 W of output power,” Proc. SPIE 9726, 97261Z (2016).
[Crossref]

T. L. Parsonage, S. J. Beecher, A. Choudhary, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Pulsed laser deposited diode-pumped 7.4 W Yb:Lu2O3 planar waveguide laser,” Opt. Express 23(25), 31691–31697 (2015).
[Crossref] [PubMed]

Hall, D.

Hua, P.

S. J. Beecher, J. A. Grant-Jacob, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “11.5W Yb:YAG planar waveguide lasers grown by pulsed laser deposition: 70% slope efficiencies at 16 W of output power,” Proc. SPIE 9726, 97261Z (2016).
[Crossref]

T. L. Parsonage, S. J. Beecher, A. Choudhary, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Pulsed laser deposited diode-pumped 7.4 W Yb:Lu2O3 planar waveguide laser,” Opt. Express 23(25), 31691–31697 (2015).
[Crossref] [PubMed]

Hughes, S.

D. Filgas, T. Clatterbuck, M. Cashen, A. Daniele, S. Hughes, and D. Mordaunt, “Recent results for the Raytheon RELI program,” Proc. SPIE 8381, 83810W (2012).
[Crossref]

Jansen, F.

Jauregui, C.

Jeong, Y.

Jiang, H.

Kang, H. X.

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

Kopf, L.

J. P. van der Ziel, W. A. Bonner, L. Kopf, S. Singh, and L. G. Van Uitert, “Laser oscillation from Ho and Nd ions in epitaxially grown thin aluminum garnet films,” Appl. Phys. Lett. 22(12), 656–657 (1973).
[Crossref]

Lee, J.

Li, J.

Limpert, J.

Liu, J.

Loosen, P.

Ma, X.

X. Ma, J. Wang, J. Zhou, X. Zhu, and W. Chen, “Conductively-cooled, high-energy, single-frequency diode pumped slab laser for space applications,” Appl. Phys. B 103(4), 809–812 (2011).
[Crossref]

Mackenzie, J. I.

S. J. Beecher, J. A. Grant-Jacob, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “11.5W Yb:YAG planar waveguide lasers grown by pulsed laser deposition: 70% slope efficiencies at 16 W of output power,” Proc. SPIE 9726, 97261Z (2016).
[Crossref]

T. L. Parsonage, S. J. Beecher, A. Choudhary, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Pulsed laser deposited diode-pumped 7.4 W Yb:Lu2O3 planar waveguide laser,” Opt. Express 23(25), 31691–31697 (2015).
[Crossref] [PubMed]

Mordaunt, D.

D. Filgas, T. Clatterbuck, M. Cashen, A. Daniele, S. Hughes, and D. Mordaunt, “Recent results for the Raytheon RELI program,” Proc. SPIE 8381, 83810W (2012).
[Crossref]

Nilsson, J.

Parsonage, T. L.

S. J. Beecher, J. A. Grant-Jacob, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “11.5W Yb:YAG planar waveguide lasers grown by pulsed laser deposition: 70% slope efficiencies at 16 W of output power,” Proc. SPIE 9726, 97261Z (2016).
[Crossref]

T. L. Parsonage, S. J. Beecher, A. Choudhary, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Pulsed laser deposited diode-pumped 7.4 W Yb:Lu2O3 planar waveguide laser,” Opt. Express 23(25), 31691–31697 (2015).
[Crossref] [PubMed]

Payne, D.

Poprawe, R.

Sahu, J.

Shang, Z.

Shepherd, D. P.

S. J. Beecher, J. A. Grant-Jacob, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “11.5W Yb:YAG planar waveguide lasers grown by pulsed laser deposition: 70% slope efficiencies at 16 W of output power,” Proc. SPIE 9726, 97261Z (2016).
[Crossref]

T. L. Parsonage, S. J. Beecher, A. Choudhary, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “Pulsed laser deposited diode-pumped 7.4 W Yb:Lu2O3 planar waveguide laser,” Opt. Express 23(25), 31691–31697 (2015).
[Crossref] [PubMed]

Singh, S.

J. P. van der Ziel, W. A. Bonner, L. Kopf, S. Singh, and L. G. Van Uitert, “Laser oscillation from Ho and Nd ions in epitaxially grown thin aluminum garnet films,” Appl. Phys. Lett. 22(12), 656–657 (1973).
[Crossref]

Stutzki, F.

Su, H.

Tan, Y.

Tünnermann, A.

van der Ziel, J. P.

J. P. van der Ziel, W. A. Bonner, L. Kopf, S. Singh, and L. G. Van Uitert, “Laser oscillation from Ho and Nd ions in epitaxially grown thin aluminum garnet films,” Appl. Phys. Lett. 22(12), 656–657 (1973).
[Crossref]

Van Uitert, L. G.

J. P. van der Ziel, W. A. Bonner, L. Kopf, S. Singh, and L. G. Van Uitert, “Laser oscillation from Ho and Nd ions in epitaxially grown thin aluminum garnet films,” Appl. Phys. Lett. 22(12), 656–657 (1973).
[Crossref]

Vanga, S. K.

Wang, D. S.

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

Wang, J.

J. Liu, L. Ge, L. Feng, H. Jiang, H. Su, T. Zhou, J. Wang, Q. Gao, and J. Li, “Diode-pumped composite ceramic Nd:YAG planar waveguide amplifier with 327 mJ output at 100 Hz repetition rate,” Chin. Opt. Lett. 14(5), 051404 (2016).
[Crossref]

X. Ma, J. Wang, J. Zhou, X. Zhu, and W. Chen, “Conductively-cooled, high-energy, single-frequency diode pumped slab laser for space applications,” Appl. Phys. B 103(4), 809–812 (2011).
[Crossref]

Wu, N.

Xiao, L.

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun. 281(14), 3781–3785 (2008).
[Crossref]

Xu, J.

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun. 281(14), 3781–3785 (2008).
[Crossref]

K. Du, N. Wu, J. Xu, J. Giesekus, P. Loosen, and R. Poprawe, “Partially end-pumped Nd:YAG slab laser with a hybrid resonator,” Opt. Lett. 23(5), 370–372 (1998).
[Crossref] [PubMed]

Yan, P.

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Zhang, H.

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

Zhou, J.

X. Ma, J. Wang, J. Zhou, X. Zhu, and W. Chen, “Conductively-cooled, high-energy, single-frequency diode pumped slab laser for space applications,” Appl. Phys. B 103(4), 809–812 (2011).
[Crossref]

Zhou, T.

Zhu, X.

X. Ma, J. Wang, J. Zhou, X. Zhu, and W. Chen, “Conductively-cooled, high-energy, single-frequency diode pumped slab laser for space applications,” Appl. Phys. B 103(4), 809–812 (2011).
[Crossref]

Appl. Phys. B (1)

X. Ma, J. Wang, J. Zhou, X. Zhu, and W. Chen, “Conductively-cooled, high-energy, single-frequency diode pumped slab laser for space applications,” Appl. Phys. B 103(4), 809–812 (2011).
[Crossref]

Appl. Phys. Lett. (1)

J. P. van der Ziel, W. A. Bonner, L. Kopf, S. Singh, and L. G. Van Uitert, “Laser oscillation from Ho and Nd ions in epitaxially grown thin aluminum garnet films,” Appl. Phys. Lett. 22(12), 656–657 (1973).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Laser Phys. Lett. (1)

H. X. Kang, H. Zhang, P. Yan, D. S. Wang, and M. Gong, “An end-pumped Nd:YAG planar waveguide laser with an optical to optical conversion efficiency of 58%,” Laser Phys. Lett. 5(12), 879–881 (2008).
[Crossref]

Opt. Commun. (1)

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun. 281(14), 3781–3785 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (2)

D. Filgas, T. Clatterbuck, M. Cashen, A. Daniele, S. Hughes, and D. Mordaunt, “Recent results for the Raytheon RELI program,” Proc. SPIE 8381, 83810W (2012).
[Crossref]

S. J. Beecher, J. A. Grant-Jacob, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “11.5W Yb:YAG planar waveguide lasers grown by pulsed laser deposition: 70% slope efficiencies at 16 W of output power,” Proc. SPIE 9726, 97261Z (2016).
[Crossref]

Other (5)

G. Wagner, B. Callicoatt, G. Bennett, M. Tartaglia, S. Field, A. Malm, and C. Ryan, “375 W, 20 kHz, 1.5 ns Nd:YAG Planar Waveguide MOPA, ” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB1.

W. Koechner, Solid-State Laser Engineering (Springer, 2006), Chap.3.

H. Injeyan and G. D. Goodno, High Power Laser Handbook (McGraw-Hill Companies, 2011), Chap.8.

S. J. McNaught, C. P. Asman, H. Injeyan, A. Jankevics, A. M. Johnson, G. C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M. M. Valley, M. Weber, and S. B. Weiss, “100-kW Coherently Combined Nd:YAG MOPA Laser Array,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009, OSA Optics & Photonics Technical Digest, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2.

H. Injeyan and G. D. Goodno, High Power Laser Handbook (McGraw-Hill Companies, 2011), Chap.15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of Nd:YAG planar waveguide laser amplifier. f1, spherical lens, f = 200 mm; f2, spherical lens, f = 500 mm; fx, cylindrical lens, f = 300 mm; Fy1, cylindrical lens, f = 77 mm; Fy2, cylindrical lens, f = 66 mm; Fx, cylindrical lens, f = 77 mm.
Fig. 2
Fig. 2 Schematic of the structure of the Nd:YAG planar waveguide. L, the length direction; T, thickness, the guided direction.
Fig. 3
Fig. 3 Intensity distribution of simulated pump beam. X axis is the focused direction.
Fig. 4
Fig. 4 Intensity distribution of measured pump beam. Horizontal axis is the focused direction.
Fig. 5
Fig. 5 Output energy (a) and optical-optical efficiency (b) versus pump energy under forward pumping at strong seeder
Fig. 6
Fig. 6 Output energy (a) and optical-optical efficiency (b) versus pump energy under forward pumping at lower seeder.
Fig. 7
Fig. 7 Output energy and optical-optical efficiency versus pump energy under forward pumping and backward pumping when 1 mJ seeded.
Fig. 8
Fig. 8 Output energy and corresponding efficiency versus pump energy under dual end pumping with the pulse duration of 192μs.
Fig. 9
Fig. 9 Output energy and corresponding efficiency versus pump energy under dual end pumping with the pulse duration of 207μs.
Fig. 10
Fig. 10 Fitting curves and measured spot size

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g 0 = η store η abs η u E p ρ s V

Metrics