Abstract

A large piston-displacement electrothermal micromirror with closed-loop control of both piston scan and tilting of the mirror plate is demonstrated for use in a miniature Fourier transform spectrometer. Constant scan velocity in an ultra large piston scan range has been demonstrated by the proposed closed-loop piston control scheme which can be easily implemented without considerably increasing system complexity. The experimental results show that the usable linear scan range generated by the micromirror has been extended up to 505 μm. The measured spectral resolution in a compact spectrometer reaches 20 cm−1, or 0.57 nm at 532 nm wavelength. Compared to other presented systems, this microspectrometer will benefit from the closed-loop thermal actuator approach utilizing both the piston servo and tilt control to provide more consistent spectral response, improved spectral resolution and enhanced robustness to disturbances.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fourier transform infrared spectrometer based on an electrothermal MEMS mirror

Donglin Wang, Hongqiong Liu, Jicheng Zhang, Qiao Chen, Wei Wang, Xiaoyang Zhang, and Huikai Xie
Appl. Opt. 57(21) 5956-5961 (2018)

Integrated tilt angle sensing for large displacement scanning MEMS mirrors

Yan Liu, Yongjian Feng, Xinglin Sun, Lijun Zhu, Xiang Cheng, Qiao Chen, Yabing Liu, and Huikai Xie
Opt. Express 26(20) 25736-25749 (2018)

Miniaturization of holographic Fourier-transform spectrometers

Nikolay I. Agladze and Albert J. Sievers
Appl. Opt. 43(36) 6568-6579 (2004)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (John Wiley & Sons, 2007), Chap. 2.
  2. L. Maidment, Z. Zhang, C. R. Howle, and D. T. Reid, “Stand-off identification of aerosols using mid-infrared backscattering Fourier-transform spectroscopy,” Opt. Lett. 41(10), 2266–2269 (2016).
    [Crossref] [PubMed]
  3. T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 μm diameter,” Opt. Express 23(9), 11105–11113 (2015).
    [Crossref] [PubMed]
  4. H. Xie, S. Lan, D. Wang, J. Sun, H. Liu, J. Cheng, J. Ding, Z. Qin, Q. Chen, H. Kang, and Z. Tian, “Miniature Fourier transform spectrometers based on electrothermal MEMS mirrors with large piston scan range,” in Proc. IEEE Sensors (IEEE, 2015), pp. 1–4.
  5. N. Pelin Ayerden, U. Aygun, S. T. Holmstrom, S. Olcer, B. Can, J. L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53(31), 7267–7272 (2014).
    [Crossref] [PubMed]
  6. U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuat. A 123–124, 459–467 (2005).
    [Crossref]
  7. H. Yu, G. Zhou, S. F. Chau, F. Lee, S. Wang, and M. Zhang, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
    [Crossref]
  8. T. Sandner, T. Grasshoff, E. Gaumont, H. Schenk, and A. Kenda, “Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers,” J. Micro. Nanolithogr. MEMS MOEMS 13(1), 011115 (2014).
    [Crossref]
  9. C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16(12), 2517–2523 (2006).
    [Crossref]
  10. K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuat. A 130–131, 523–530 (2006).
    [Crossref]
  11. W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier transform spectrometer with an electrothermal micromirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
    [Crossref]
  12. W. Wang, J. Chen, A. Zivkovic, Q. Tanguy, and H. Xie, “A compact Fourier transform spectrometer on a silicon optical bench with an electrothermal MEMS mirror,” J. Microelectromech. Syst. 25(2), 347–355 (2016).
    [Crossref]
  13. F. T. Han, W. Wang, X. Zhang, and H. Xie, “Modeling and control of a large-stroke electrothermal MEMS mirror for Fourier transform microspectrometers,” J. Microelectromech. Syst. 25, 750–760 (2016).
  14. R. C. M. Learner, A. P. Thorne, and J. W. Brault, “Ghosts and artifacts in Fourier-transform spectrometry,” Appl. Opt. 35(16), 2947–2954 (1996).
    [Crossref] [PubMed]
  15. A. S. Zachor, “Drive nonlinearities: their effects in Fourier spectroscopy,” Appl. Opt. 16(5), 1412–1424 (1977).
    [Crossref] [PubMed]
  16. L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145, 371–379 (2008).
    [Crossref]
  17. S. Pal and H. Xie, “Pre-shaped open loop drive of electrothermal micromirror by continuous and pulse width modulated waveforms,” IEEE J. Quantum Electron. 46(9), 1254–1260 (2010).
    [Crossref]
  18. B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
    [Crossref]
  19. L. Palchetti and D. Lastrucci, “Spectral noise due to sampling errors in Fourier-transform spectroscopy,” Appl. Opt. 40(19), 3235–3243 (2001).
    [Crossref] [PubMed]

2016 (3)

L. Maidment, Z. Zhang, C. R. Howle, and D. T. Reid, “Stand-off identification of aerosols using mid-infrared backscattering Fourier-transform spectroscopy,” Opt. Lett. 41(10), 2266–2269 (2016).
[Crossref] [PubMed]

W. Wang, J. Chen, A. Zivkovic, Q. Tanguy, and H. Xie, “A compact Fourier transform spectrometer on a silicon optical bench with an electrothermal MEMS mirror,” J. Microelectromech. Syst. 25(2), 347–355 (2016).
[Crossref]

F. T. Han, W. Wang, X. Zhang, and H. Xie, “Modeling and control of a large-stroke electrothermal MEMS mirror for Fourier transform microspectrometers,” J. Microelectromech. Syst. 25, 750–760 (2016).

2015 (2)

T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 μm diameter,” Opt. Express 23(9), 11105–11113 (2015).
[Crossref] [PubMed]

W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier transform spectrometer with an electrothermal micromirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
[Crossref]

2014 (2)

T. Sandner, T. Grasshoff, E. Gaumont, H. Schenk, and A. Kenda, “Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers,” J. Micro. Nanolithogr. MEMS MOEMS 13(1), 011115 (2014).
[Crossref]

N. Pelin Ayerden, U. Aygun, S. T. Holmstrom, S. Olcer, B. Can, J. L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53(31), 7267–7272 (2014).
[Crossref] [PubMed]

2010 (1)

S. Pal and H. Xie, “Pre-shaped open loop drive of electrothermal micromirror by continuous and pulse width modulated waveforms,” IEEE J. Quantum Electron. 46(9), 1254–1260 (2010).
[Crossref]

2008 (2)

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145, 371–379 (2008).
[Crossref]

H. Yu, G. Zhou, S. F. Chau, F. Lee, S. Wang, and M. Zhang, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

2006 (2)

C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16(12), 2517–2523 (2006).
[Crossref]

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuat. A 130–131, 523–530 (2006).
[Crossref]

2005 (2)

U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuat. A 123–124, 459–467 (2005).
[Crossref]

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

2001 (1)

1996 (1)

1977 (1)

Ataman, C.

C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16(12), 2517–2523 (2006).
[Crossref]

Aygun, U.

Borovic, B.

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

Brault, J. W.

Cai, H.

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

Can, B.

Chau, S. F.

H. Yu, G. Zhou, S. F. Chau, F. Lee, S. Wang, and M. Zhang, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

Chen, J.

W. Wang, J. Chen, A. Zivkovic, Q. Tanguy, and H. Xie, “A compact Fourier transform spectrometer on a silicon optical bench with an electrothermal MEMS mirror,” J. Microelectromech. Syst. 25(2), 347–355 (2016).
[Crossref]

W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier transform spectrometer with an electrothermal micromirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
[Crossref]

Gaumont, E.

T. Sandner, T. Grasshoff, E. Gaumont, H. Schenk, and A. Kenda, “Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers,” J. Micro. Nanolithogr. MEMS MOEMS 13(1), 011115 (2014).
[Crossref]

Giessen, H.

Grasshoff, T.

T. Sandner, T. Grasshoff, E. Gaumont, H. Schenk, and A. Kenda, “Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers,” J. Micro. Nanolithogr. MEMS MOEMS 13(1), 011115 (2014).
[Crossref]

Han, F. T.

F. T. Han, W. Wang, X. Zhang, and H. Xie, “Modeling and control of a large-stroke electrothermal MEMS mirror for Fourier transform microspectrometers,” J. Microelectromech. Syst. 25, 750–760 (2016).

Holmstrom, S. T.

Howle, C. R.

Kenda, A.

T. Sandner, T. Grasshoff, E. Gaumont, H. Schenk, and A. Kenda, “Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers,” J. Micro. Nanolithogr. MEMS MOEMS 13(1), 011115 (2014).
[Crossref]

Korvink, J. G.

U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuat. A 123–124, 459–467 (2005).
[Crossref]

Krishnamoorthy, U.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuat. A 130–131, 523–530 (2006).
[Crossref]

Lastrucci, D.

Learner, R. C. M.

Lee, D.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuat. A 130–131, 523–530 (2006).
[Crossref]

Lee, F.

H. Yu, G. Zhou, S. F. Chau, F. Lee, S. Wang, and M. Zhang, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

Lewis, F. L.

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

Liu, A. Q.

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

Maidment, L.

Mohr, J.

U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuat. A 123–124, 459–467 (2005).
[Crossref]

Neubrech, F.

Olcer, S.

Pal, S.

S. Pal and H. Xie, “Pre-shaped open loop drive of electrothermal micromirror by continuous and pulse width modulated waveforms,” IEEE J. Quantum Electron. 46(9), 1254–1260 (2010).
[Crossref]

Palchetti, L.

Park, N.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuat. A 130–131, 523–530 (2006).
[Crossref]

Pelin Ayerden, N.

Popa, D.

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

Reid, D. T.

Samuelson, S. R.

W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier transform spectrometer with an electrothermal micromirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
[Crossref]

Sandner, T.

T. Sandner, T. Grasshoff, E. Gaumont, H. Schenk, and A. Kenda, “Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers,” J. Micro. Nanolithogr. MEMS MOEMS 13(1), 011115 (2014).
[Crossref]

Schenk, H.

T. Sandner, T. Grasshoff, E. Gaumont, H. Schenk, and A. Kenda, “Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers,” J. Micro. Nanolithogr. MEMS MOEMS 13(1), 011115 (2014).
[Crossref]

Solf, C.

U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuat. A 123–124, 459–467 (2005).
[Crossref]

Solgaard, O.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuat. A 130–131, 523–530 (2006).
[Crossref]

Stehle, J. L.

Steinle, T.

Steinmann, A.

Tanguy, Q.

W. Wang, J. Chen, A. Zivkovic, Q. Tanguy, and H. Xie, “A compact Fourier transform spectrometer on a silicon optical bench with an electrothermal MEMS mirror,” J. Microelectromech. Syst. 25(2), 347–355 (2016).
[Crossref]

Thorne, A. P.

Urey, H.

N. Pelin Ayerden, U. Aygun, S. T. Holmstrom, S. Olcer, B. Can, J. L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53(31), 7267–7272 (2014).
[Crossref] [PubMed]

C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16(12), 2517–2523 (2006).
[Crossref]

Wallrabe, U.

U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuat. A 123–124, 459–467 (2005).
[Crossref]

Wang, S.

H. Yu, G. Zhou, S. F. Chau, F. Lee, S. Wang, and M. Zhang, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

Wang, W.

F. T. Han, W. Wang, X. Zhang, and H. Xie, “Modeling and control of a large-stroke electrothermal MEMS mirror for Fourier transform microspectrometers,” J. Microelectromech. Syst. 25, 750–760 (2016).

W. Wang, J. Chen, A. Zivkovic, Q. Tanguy, and H. Xie, “A compact Fourier transform spectrometer on a silicon optical bench with an electrothermal MEMS mirror,” J. Microelectromech. Syst. 25(2), 347–355 (2016).
[Crossref]

W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier transform spectrometer with an electrothermal micromirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
[Crossref]

Wolter, A.

C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16(12), 2517–2523 (2006).
[Crossref]

Wu, L.

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145, 371–379 (2008).
[Crossref]

Xie, H.

F. T. Han, W. Wang, X. Zhang, and H. Xie, “Modeling and control of a large-stroke electrothermal MEMS mirror for Fourier transform microspectrometers,” J. Microelectromech. Syst. 25, 750–760 (2016).

W. Wang, J. Chen, A. Zivkovic, Q. Tanguy, and H. Xie, “A compact Fourier transform spectrometer on a silicon optical bench with an electrothermal MEMS mirror,” J. Microelectromech. Syst. 25(2), 347–355 (2016).
[Crossref]

W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier transform spectrometer with an electrothermal micromirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
[Crossref]

S. Pal and H. Xie, “Pre-shaped open loop drive of electrothermal micromirror by continuous and pulse width modulated waveforms,” IEEE J. Quantum Electron. 46(9), 1254–1260 (2010).
[Crossref]

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145, 371–379 (2008).
[Crossref]

Yin, X.

Yu, H.

H. Yu, G. Zhou, S. F. Chau, F. Lee, S. Wang, and M. Zhang, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

Yu, K.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuat. A 130–131, 523–530 (2006).
[Crossref]

Zachor, A. S.

Zhang, M.

H. Yu, G. Zhou, S. F. Chau, F. Lee, S. Wang, and M. Zhang, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

Zhang, X.

F. T. Han, W. Wang, X. Zhang, and H. Xie, “Modeling and control of a large-stroke electrothermal MEMS mirror for Fourier transform microspectrometers,” J. Microelectromech. Syst. 25, 750–760 (2016).

Zhang, Z.

Zhou, G.

H. Yu, G. Zhou, S. F. Chau, F. Lee, S. Wang, and M. Zhang, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

Zivkovic, A.

W. Wang, J. Chen, A. Zivkovic, Q. Tanguy, and H. Xie, “A compact Fourier transform spectrometer on a silicon optical bench with an electrothermal MEMS mirror,” J. Microelectromech. Syst. 25(2), 347–355 (2016).
[Crossref]

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

S. Pal and H. Xie, “Pre-shaped open loop drive of electrothermal micromirror by continuous and pulse width modulated waveforms,” IEEE J. Quantum Electron. 46(9), 1254–1260 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Wang, S. R. Samuelson, J. Chen, and H. Xie, “Miniaturizing Fourier transform spectrometer with an electrothermal micromirror,” IEEE Photonics Technol. Lett. 27(13), 1418–1421 (2015).
[Crossref]

J. Micro. Nanolithogr. MEMS MOEMS (1)

T. Sandner, T. Grasshoff, E. Gaumont, H. Schenk, and A. Kenda, “Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers,” J. Micro. Nanolithogr. MEMS MOEMS 13(1), 011115 (2014).
[Crossref]

J. Microelectromech. Syst. (2)

W. Wang, J. Chen, A. Zivkovic, Q. Tanguy, and H. Xie, “A compact Fourier transform spectrometer on a silicon optical bench with an electrothermal MEMS mirror,” J. Microelectromech. Syst. 25(2), 347–355 (2016).
[Crossref]

F. T. Han, W. Wang, X. Zhang, and H. Xie, “Modeling and control of a large-stroke electrothermal MEMS mirror for Fourier transform microspectrometers,” J. Microelectromech. Syst. 25, 750–760 (2016).

J. Micromech. Microeng. (3)

B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: choices and issues,” J. Micromech. Microeng. 15(10), 1917–1924 (2005).
[Crossref]

H. Yu, G. Zhou, S. F. Chau, F. Lee, S. Wang, and M. Zhang, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” J. Micromech. Microeng. 16(12), 2517–2523 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Sens. Actuat. A (2)

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuat. A 130–131, 523–530 (2006).
[Crossref]

U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuat. A 123–124, 459–467 (2005).
[Crossref]

Sens. Actuators A Phys. (1)

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145, 371–379 (2008).
[Crossref]

Other (2)

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (John Wiley & Sons, 2007), Chap. 2.

H. Xie, S. Lan, D. Wang, J. Sun, H. Liu, J. Cheng, J. Ding, Z. Qin, Q. Chen, H. Kang, and Z. Tian, “Miniature Fourier transform spectrometers based on electrothermal MEMS mirrors with large piston scan range,” in Proc. IEEE Sensors (IEEE, 2015), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Electrothermal micromirror: (a) Scanning mirror with LSF bimorph actuation. (b) SEM of a fabricated device. (c) Measured static actuation and tilt angle versus drive voltage. (d) Residual mirror tilt angle using closed-loop tilting control.
Fig. 2
Fig. 2 Schematic of the closed-loop controlled electrothermal micromirror with both piston (z) servo and tilting (θ) control.
Fig. 3
Fig. 3 Block diagram of the closed-loop piston position servo system.
Fig. 4
Fig. 4 Open-loop frequency responses of the uncompensated (Gm) and compensated (GmGc) micromirror systems by setting Vb = 3.0V.
Fig. 5
Fig. 5 Measured time response of the closed-loop controlled micromirror: (a) Drive voltage and displacement. (b) Position tracking error.
Fig. 6
Fig. 6 Comparison of mirror scanning responses by applying a sine disturbance input: (a) Open-loop drive signal, position response and (b) position tracking error. (c) Closed-loop drive signal, position response and (d) position tracking error.
Fig. 7
Fig. 7 Schematic of the FTS setup with dual closed-loop controlled micromirror.
Fig. 8
Fig. 8 FTS experimental results with open-loop (left-side) and closed-loop (right-side) scan drives: (a) and (e) Drive voltages and generated OPDs. (b) and (f) Signal frequency of the reference light interferogram vs. scan time. (c) and (g) Acquired interferogram signals of the testing light in time domain. (d) and (h) Recovered spectra of the testing light at 18790 cm−1.
Fig. 9
Fig. 9 The recovered scan velocity spectra: (a) open-loop drive and (b) closed-loop drive.
Fig. 10
Fig. 10 (a) A proposed unidirectional scanning scheme with two time segments, the forward scan T1 by closed-loop piston control and retracement T2 at open-loop operation. (b) Measured OPD with different time settings where the upper and lower limits of the drive voltage are Vmax = 6.5 V and Vmin = 0.4 V, respectively.

Tables (1)

Tables Icon

Table 1 Comparison between the Open Loop and Closed-loop Scan Operations

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G m (s)= Z(s) V b (s) = K a ( V b ) (1+ τ 3 s) (1+ τ 1 s)(1+ τ 2 s) 1 (m s 2 + b z s+ K z ) ,
G c (s)= V b (s) ΔZ(s) = G LC (s) G LPF (s) G NF (s).
G c (s)= V b (s) ΔZ(s) = G LC (s) G LPF (s) G NF (s) K a , V b =3V K a (S V b ) .

Metrics