Abstract

For far-field optical imaging of three-dimensional objects and such critical applications as quantitative optical imaging, optical metrology, and optical lithography, it is necessary not only to meet the Kohler illumination condition (i.e. uniform spatial intensity) but also to minimize angular illumination asymmetry (ANILAS) at the sample plane. The presence of ANILAS results in distorted optical images, and most likely in erroneous quantitative measurements. ANILAS results from optical and illumination aberrations, optical misalignment and other problems. We present a detailed procedure to measure and create maps of ANILAS across the field-of-view (FOV). ANILAS maps enable visualization of the state of illumination at the sample plane. Since the presence of ANILAS is detrimental to quantitative measurements, it is important to know the magnitude and type of ANILAS across the FOV before making any attempt to correct it. Here we intentionally create different types of illumination distortions and generate corresponding ANILAS maps, which help us evaluate the state of illumination beyond the Kohler illumination criterion. We expect that the ANILAS maps will be helpful for a wide range of far-field imaging applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical microscope angular illumination analysis

Ravikiran Attota and Richard Silver
Opt. Express 20(6) 6693-6702 (2012)

Enhanced field-of-view integral imaging display using multi-Köhler illumination

Ángel Tolosa, Raúl Martinez-Cuenca, Héctor Navarro, Genaro Saavedra, Manuel Martínez-Corral, Bahram Javidi, and Amparo Pons
Opt. Express 22(26) 31853-31863 (2014)

Near-field ptychographic microscope for quantitative phase imaging

Samuel McDermott and Andrew Maiden
Opt. Express 26(19) 25471-25480 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Bernas, D. Barnes, E. K. Asem, J. P. Robinson, and B. Rajwa, “Precision of light intensity measurement in biological optical microscopy,” J. Microsc. 226(2), 163–174 (2007).
    [Crossref] [PubMed]
  2. J. C. Waters and T. Wittmann, “Concepts in quantitative fluorescence microscopy,” Methods Cell Biol. 123, 1–18 (2014).
    [Crossref] [PubMed]
  3. M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
    [Crossref] [PubMed]
  4. P. Memmolo, L. Miccio, F. Merola, O. Gennari, M. Mugnano, P. A. Netti, and P. Ferraro, “Lab on chip optical imaging of biological sample by quantitative phase microscopy,” Proc. SPIE 9336, 933625 (2015).
    [Crossref]
  5. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
    [Crossref]
  6. R. Attota and R. G. Dixson, “Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes,” Appl. Phys. Lett. 105(4), 043101 (2014).
    [Crossref]
  7. B. J. Lin, “Optical lithography - present and future challenges,” C. R. Phys. 7(8), 858–874 (2006).
    [Crossref]
  8. R. Attota, R. M. Silver, T. A. Germer, M. Bishop, R. Larrabee, M. T. Stocker, and L. Howard, “Application of through-focus focus-metric analysis in high resolution optical metrology,” Proc. SPIE 5752, 1441–1449 (2005).
    [Crossref]
  9. R. Attota, P. P. Kavuri, H. Kang, R. Kasica, and L. Chen, “Nanoparticle size determination using optical microscopes,” Appl. Phys. Lett. 105(16), 163105 (2014).
    [Crossref]
  10. H. Kang, R. Attota, V. Tondare, A. E. Vladár, and P. Kavuri, “A method to determine the number of nanoparticles in a cluster using conventional optical microscopes,” Appl. Phys. Lett. 107(10), 103106 (2015).
    [Crossref]
  11. J. Song, W. Chu, T. V. Vorburger, R. Thompson, T. B. Renegar, A. Zheng, J. Yen, R. Silver, and M. Ols, “Development of ballistics identification-from image comparison to topography measurement in surface metrology,” Meas. Sci. Technol. 23(5), 054010 (2012).
    [Crossref]
  12. J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
    [Crossref]
  13. R. M. Zucker, “Quality assessment of confocal microscopy slide-based systems: instability,” Cytometry A 69A(7), 677–690 (2006).
    [Crossref] [PubMed]
  14. R. M. Zucker and O. Price, “Evaluation of confocal microscopy system performance,” Cytometry 44(4), 273–294 (2001).
    [Crossref] [PubMed]
  15. K. M. Kedziora, J. H. M. Prehn, J. Dobrucki, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244(1), 101–111 (2011).
    [Crossref] [PubMed]
  16. M. Halter, E. Bier, P. C. DeRose, G. A. Cooksey, S. J. Choquette, A. L. Plant, and J. T. Elliott, “An automated protocol for performance benchmarking a widefield fluorescence microscope,” Cytometry A 85(11), 978–985 (2014).
    [Crossref] [PubMed]
  17. R. Attota, R. M. Silver, M. Stocker, E. Marx, J. Jun, M. Davidson, and R. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
    [Crossref]
  18. D. J. Coleman, P. J. Larson, A. D. Lopata, W. A. Muth, and A. Starikov, “Accuracy of overlay measurements: tool and mark asymmetry effects,” Proc. SPIE 1261, 139–161 (1990).
    [Crossref]
  19. R. Attota and R. Silver, “Optical microscope angular illumination analysis,” Opt. Express 20(6), 6693–6702 (2012).
    [Crossref] [PubMed]

2015 (3)

M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
[Crossref] [PubMed]

P. Memmolo, L. Miccio, F. Merola, O. Gennari, M. Mugnano, P. A. Netti, and P. Ferraro, “Lab on chip optical imaging of biological sample by quantitative phase microscopy,” Proc. SPIE 9336, 933625 (2015).
[Crossref]

H. Kang, R. Attota, V. Tondare, A. E. Vladár, and P. Kavuri, “A method to determine the number of nanoparticles in a cluster using conventional optical microscopes,” Appl. Phys. Lett. 107(10), 103106 (2015).
[Crossref]

2014 (4)

J. C. Waters and T. Wittmann, “Concepts in quantitative fluorescence microscopy,” Methods Cell Biol. 123, 1–18 (2014).
[Crossref] [PubMed]

R. Attota and R. G. Dixson, “Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes,” Appl. Phys. Lett. 105(4), 043101 (2014).
[Crossref]

R. Attota, P. P. Kavuri, H. Kang, R. Kasica, and L. Chen, “Nanoparticle size determination using optical microscopes,” Appl. Phys. Lett. 105(16), 163105 (2014).
[Crossref]

M. Halter, E. Bier, P. C. DeRose, G. A. Cooksey, S. J. Choquette, A. L. Plant, and J. T. Elliott, “An automated protocol for performance benchmarking a widefield fluorescence microscope,” Cytometry A 85(11), 978–985 (2014).
[Crossref] [PubMed]

2013 (1)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

2012 (2)

J. Song, W. Chu, T. V. Vorburger, R. Thompson, T. B. Renegar, A. Zheng, J. Yen, R. Silver, and M. Ols, “Development of ballistics identification-from image comparison to topography measurement in surface metrology,” Meas. Sci. Technol. 23(5), 054010 (2012).
[Crossref]

R. Attota and R. Silver, “Optical microscope angular illumination analysis,” Opt. Express 20(6), 6693–6702 (2012).
[Crossref] [PubMed]

2011 (1)

K. M. Kedziora, J. H. M. Prehn, J. Dobrucki, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244(1), 101–111 (2011).
[Crossref] [PubMed]

2007 (1)

T. Bernas, D. Barnes, E. K. Asem, J. P. Robinson, and B. Rajwa, “Precision of light intensity measurement in biological optical microscopy,” J. Microsc. 226(2), 163–174 (2007).
[Crossref] [PubMed]

2006 (3)

J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
[Crossref]

R. M. Zucker, “Quality assessment of confocal microscopy slide-based systems: instability,” Cytometry A 69A(7), 677–690 (2006).
[Crossref] [PubMed]

B. J. Lin, “Optical lithography - present and future challenges,” C. R. Phys. 7(8), 858–874 (2006).
[Crossref]

2005 (1)

R. Attota, R. M. Silver, T. A. Germer, M. Bishop, R. Larrabee, M. T. Stocker, and L. Howard, “Application of through-focus focus-metric analysis in high resolution optical metrology,” Proc. SPIE 5752, 1441–1449 (2005).
[Crossref]

2003 (1)

R. Attota, R. M. Silver, M. Stocker, E. Marx, J. Jun, M. Davidson, and R. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

2001 (1)

R. M. Zucker and O. Price, “Evaluation of confocal microscopy system performance,” Cytometry 44(4), 273–294 (2001).
[Crossref] [PubMed]

1990 (1)

D. J. Coleman, P. J. Larson, A. D. Lopata, W. A. Muth, and A. Starikov, “Accuracy of overlay measurements: tool and mark asymmetry effects,” Proc. SPIE 1261, 139–161 (1990).
[Crossref]

Asem, E. K.

T. Bernas, D. Barnes, E. K. Asem, J. P. Robinson, and B. Rajwa, “Precision of light intensity measurement in biological optical microscopy,” J. Microsc. 226(2), 163–174 (2007).
[Crossref] [PubMed]

Attota, R.

H. Kang, R. Attota, V. Tondare, A. E. Vladár, and P. Kavuri, “A method to determine the number of nanoparticles in a cluster using conventional optical microscopes,” Appl. Phys. Lett. 107(10), 103106 (2015).
[Crossref]

R. Attota and R. G. Dixson, “Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes,” Appl. Phys. Lett. 105(4), 043101 (2014).
[Crossref]

R. Attota, P. P. Kavuri, H. Kang, R. Kasica, and L. Chen, “Nanoparticle size determination using optical microscopes,” Appl. Phys. Lett. 105(16), 163105 (2014).
[Crossref]

R. Attota and R. Silver, “Optical microscope angular illumination analysis,” Opt. Express 20(6), 6693–6702 (2012).
[Crossref] [PubMed]

R. Attota, R. M. Silver, T. A. Germer, M. Bishop, R. Larrabee, M. T. Stocker, and L. Howard, “Application of through-focus focus-metric analysis in high resolution optical metrology,” Proc. SPIE 5752, 1441–1449 (2005).
[Crossref]

R. Attota, R. M. Silver, M. Stocker, E. Marx, J. Jun, M. Davidson, and R. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

Bachrach, B.

J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
[Crossref]

Ballou, S.

J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
[Crossref]

Barnes, D.

T. Bernas, D. Barnes, E. K. Asem, J. P. Robinson, and B. Rajwa, “Precision of light intensity measurement in biological optical microscopy,” J. Microsc. 226(2), 163–174 (2007).
[Crossref] [PubMed]

Bernas, T.

K. M. Kedziora, J. H. M. Prehn, J. Dobrucki, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244(1), 101–111 (2011).
[Crossref] [PubMed]

T. Bernas, D. Barnes, E. K. Asem, J. P. Robinson, and B. Rajwa, “Precision of light intensity measurement in biological optical microscopy,” J. Microsc. 226(2), 163–174 (2007).
[Crossref] [PubMed]

Bier, E.

M. Halter, E. Bier, P. C. DeRose, G. A. Cooksey, S. J. Choquette, A. L. Plant, and J. T. Elliott, “An automated protocol for performance benchmarking a widefield fluorescence microscope,” Cytometry A 85(11), 978–985 (2014).
[Crossref] [PubMed]

Bishop, M.

R. Attota, R. M. Silver, T. A. Germer, M. Bishop, R. Larrabee, M. T. Stocker, and L. Howard, “Application of through-focus focus-metric analysis in high resolution optical metrology,” Proc. SPIE 5752, 1441–1449 (2005).
[Crossref]

Bogart, K.

J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
[Crossref]

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Butzlaff, M.

M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
[Crossref] [PubMed]

Chen, L.

R. Attota, P. P. Kavuri, H. Kang, R. Kasica, and L. Chen, “Nanoparticle size determination using optical microscopes,” Appl. Phys. Lett. 105(16), 163105 (2014).
[Crossref]

Choquette, S. J.

M. Halter, E. Bier, P. C. DeRose, G. A. Cooksey, S. J. Choquette, A. L. Plant, and J. T. Elliott, “An automated protocol for performance benchmarking a widefield fluorescence microscope,” Cytometry A 85(11), 978–985 (2014).
[Crossref] [PubMed]

Chu, W.

J. Song, W. Chu, T. V. Vorburger, R. Thompson, T. B. Renegar, A. Zheng, J. Yen, R. Silver, and M. Ols, “Development of ballistics identification-from image comparison to topography measurement in surface metrology,” Meas. Sci. Technol. 23(5), 054010 (2012).
[Crossref]

Coleman, D. J.

D. J. Coleman, P. J. Larson, A. D. Lopata, W. A. Muth, and A. Starikov, “Accuracy of overlay measurements: tool and mark asymmetry effects,” Proc. SPIE 1261, 139–161 (1990).
[Crossref]

Cooksey, G. A.

M. Halter, E. Bier, P. C. DeRose, G. A. Cooksey, S. J. Choquette, A. L. Plant, and J. T. Elliott, “An automated protocol for performance benchmarking a widefield fluorescence microscope,” Cytometry A 85(11), 978–985 (2014).
[Crossref] [PubMed]

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Davidson, M.

R. Attota, R. M. Silver, M. Stocker, E. Marx, J. Jun, M. Davidson, and R. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

Depeursinge, C.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

DeRose, P. C.

M. Halter, E. Bier, P. C. DeRose, G. A. Cooksey, S. J. Choquette, A. L. Plant, and J. T. Elliott, “An automated protocol for performance benchmarking a widefield fluorescence microscope,” Cytometry A 85(11), 978–985 (2014).
[Crossref] [PubMed]

Dixson, R. G.

R. Attota and R. G. Dixson, “Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes,” Appl. Phys. Lett. 105(4), 043101 (2014).
[Crossref]

Dobrucki, J.

K. M. Kedziora, J. H. M. Prehn, J. Dobrucki, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244(1), 101–111 (2011).
[Crossref] [PubMed]

Elliott, J. T.

M. Halter, E. Bier, P. C. DeRose, G. A. Cooksey, S. J. Choquette, A. L. Plant, and J. T. Elliott, “An automated protocol for performance benchmarking a widefield fluorescence microscope,” Cytometry A 85(11), 978–985 (2014).
[Crossref] [PubMed]

Ferraro, P.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, M. Mugnano, P. A. Netti, and P. Ferraro, “Lab on chip optical imaging of biological sample by quantitative phase microscopy,” Proc. SPIE 9336, 933625 (2015).
[Crossref]

Gennari, O.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, M. Mugnano, P. A. Netti, and P. Ferraro, “Lab on chip optical imaging of biological sample by quantitative phase microscopy,” Proc. SPIE 9336, 933625 (2015).
[Crossref]

Germer, T. A.

R. Attota, R. M. Silver, T. A. Germer, M. Bishop, R. Larrabee, M. T. Stocker, and L. Howard, “Application of through-focus focus-metric analysis in high resolution optical metrology,” Proc. SPIE 5752, 1441–1449 (2005).
[Crossref]

Halter, M.

M. Halter, E. Bier, P. C. DeRose, G. A. Cooksey, S. J. Choquette, A. L. Plant, and J. T. Elliott, “An automated protocol for performance benchmarking a widefield fluorescence microscope,” Cytometry A 85(11), 978–985 (2014).
[Crossref] [PubMed]

Howard, L.

R. Attota, R. M. Silver, T. A. Germer, M. Bishop, R. Larrabee, M. T. Stocker, and L. Howard, “Application of through-focus focus-metric analysis in high resolution optical metrology,” Proc. SPIE 5752, 1441–1449 (2005).
[Crossref]

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Jun, J.

R. Attota, R. M. Silver, M. Stocker, E. Marx, J. Jun, M. Davidson, and R. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

Kang, H.

H. Kang, R. Attota, V. Tondare, A. E. Vladár, and P. Kavuri, “A method to determine the number of nanoparticles in a cluster using conventional optical microscopes,” Appl. Phys. Lett. 107(10), 103106 (2015).
[Crossref]

R. Attota, P. P. Kavuri, H. Kang, R. Kasica, and L. Chen, “Nanoparticle size determination using optical microscopes,” Appl. Phys. Lett. 105(16), 163105 (2014).
[Crossref]

Kasica, R.

R. Attota, P. P. Kavuri, H. Kang, R. Kasica, and L. Chen, “Nanoparticle size determination using optical microscopes,” Appl. Phys. Lett. 105(16), 163105 (2014).
[Crossref]

Kavuri, P.

H. Kang, R. Attota, V. Tondare, A. E. Vladár, and P. Kavuri, “A method to determine the number of nanoparticles in a cluster using conventional optical microscopes,” Appl. Phys. Lett. 107(10), 103106 (2015).
[Crossref]

Kavuri, P. P.

R. Attota, P. P. Kavuri, H. Kang, R. Kasica, and L. Chen, “Nanoparticle size determination using optical microscopes,” Appl. Phys. Lett. 105(16), 163105 (2014).
[Crossref]

Kedziora, K. M.

K. M. Kedziora, J. H. M. Prehn, J. Dobrucki, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244(1), 101–111 (2011).
[Crossref] [PubMed]

Larrabee, R.

R. Attota, R. M. Silver, T. A. Germer, M. Bishop, R. Larrabee, M. T. Stocker, and L. Howard, “Application of through-focus focus-metric analysis in high resolution optical metrology,” Proc. SPIE 5752, 1441–1449 (2005).
[Crossref]

R. Attota, R. M. Silver, M. Stocker, E. Marx, J. Jun, M. Davidson, and R. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

Larson, P. J.

D. J. Coleman, P. J. Larson, A. D. Lopata, W. A. Muth, and A. Starikov, “Accuracy of overlay measurements: tool and mark asymmetry effects,” Proc. SPIE 1261, 139–161 (1990).
[Crossref]

Libert, J.

J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
[Crossref]

Lin, B. J.

B. J. Lin, “Optical lithography - present and future challenges,” C. R. Phys. 7(8), 858–874 (2006).
[Crossref]

Lopata, A. D.

D. J. Coleman, P. J. Larson, A. D. Lopata, W. A. Muth, and A. Starikov, “Accuracy of overlay measurements: tool and mark asymmetry effects,” Proc. SPIE 1261, 139–161 (1990).
[Crossref]

Ma, L.

J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
[Crossref]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Marquet, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Marx, E.

R. Attota, R. M. Silver, M. Stocker, E. Marx, J. Jun, M. Davidson, and R. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

Memmolo, P.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, M. Mugnano, P. A. Netti, and P. Ferraro, “Lab on chip optical imaging of biological sample by quantitative phase microscopy,” Proc. SPIE 9336, 933625 (2015).
[Crossref]

Merola, F.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, M. Mugnano, P. A. Netti, and P. Ferraro, “Lab on chip optical imaging of biological sample by quantitative phase microscopy,” Proc. SPIE 9336, 933625 (2015).
[Crossref]

Miccio, L.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, M. Mugnano, P. A. Netti, and P. Ferraro, “Lab on chip optical imaging of biological sample by quantitative phase microscopy,” Proc. SPIE 9336, 933625 (2015).
[Crossref]

Mugnano, M.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, M. Mugnano, P. A. Netti, and P. Ferraro, “Lab on chip optical imaging of biological sample by quantitative phase microscopy,” Proc. SPIE 9336, 933625 (2015).
[Crossref]

Muth, W. A.

D. J. Coleman, P. J. Larson, A. D. Lopata, W. A. Muth, and A. Starikov, “Accuracy of overlay measurements: tool and mark asymmetry effects,” Proc. SPIE 1261, 139–161 (1990).
[Crossref]

Netti, P. A.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, M. Mugnano, P. A. Netti, and P. Ferraro, “Lab on chip optical imaging of biological sample by quantitative phase microscopy,” Proc. SPIE 9336, 933625 (2015).
[Crossref]

Ols, M.

J. Song, W. Chu, T. V. Vorburger, R. Thompson, T. B. Renegar, A. Zheng, J. Yen, R. Silver, and M. Ols, “Development of ballistics identification-from image comparison to topography measurement in surface metrology,” Meas. Sci. Technol. 23(5), 054010 (2012).
[Crossref]

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Plant, A. L.

M. Halter, E. Bier, P. C. DeRose, G. A. Cooksey, S. J. Choquette, A. L. Plant, and J. T. Elliott, “An automated protocol for performance benchmarking a widefield fluorescence microscope,” Cytometry A 85(11), 978–985 (2014).
[Crossref] [PubMed]

Ponimaskin, E.

M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
[Crossref] [PubMed]

Prehn, J. H. M.

K. M. Kedziora, J. H. M. Prehn, J. Dobrucki, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244(1), 101–111 (2011).
[Crossref] [PubMed]

Price, O.

R. M. Zucker and O. Price, “Evaluation of confocal microscopy system performance,” Cytometry 44(4), 273–294 (2001).
[Crossref] [PubMed]

Rajwa, B.

T. Bernas, D. Barnes, E. K. Asem, J. P. Robinson, and B. Rajwa, “Precision of light intensity measurement in biological optical microscopy,” J. Microsc. 226(2), 163–174 (2007).
[Crossref] [PubMed]

Renegar, T.

J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
[Crossref]

Renegar, T. B.

J. Song, W. Chu, T. V. Vorburger, R. Thompson, T. B. Renegar, A. Zheng, J. Yen, R. Silver, and M. Ols, “Development of ballistics identification-from image comparison to topography measurement in surface metrology,” Meas. Sci. Technol. 23(5), 054010 (2012).
[Crossref]

Rhee, H.

J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
[Crossref]

Robinson, J. P.

T. Bernas, D. Barnes, E. K. Asem, J. P. Robinson, and B. Rajwa, “Precision of light intensity measurement in biological optical microscopy,” J. Microsc. 226(2), 163–174 (2007).
[Crossref] [PubMed]

Silver, R.

J. Song, W. Chu, T. V. Vorburger, R. Thompson, T. B. Renegar, A. Zheng, J. Yen, R. Silver, and M. Ols, “Development of ballistics identification-from image comparison to topography measurement in surface metrology,” Meas. Sci. Technol. 23(5), 054010 (2012).
[Crossref]

R. Attota and R. Silver, “Optical microscope angular illumination analysis,” Opt. Express 20(6), 6693–6702 (2012).
[Crossref] [PubMed]

Silver, R. M.

R. Attota, R. M. Silver, T. A. Germer, M. Bishop, R. Larrabee, M. T. Stocker, and L. Howard, “Application of through-focus focus-metric analysis in high resolution optical metrology,” Proc. SPIE 5752, 1441–1449 (2005).
[Crossref]

R. Attota, R. M. Silver, M. Stocker, E. Marx, J. Jun, M. Davidson, and R. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

Song, J.

J. Song, W. Chu, T. V. Vorburger, R. Thompson, T. B. Renegar, A. Zheng, J. Yen, R. Silver, and M. Ols, “Development of ballistics identification-from image comparison to topography measurement in surface metrology,” Meas. Sci. Technol. 23(5), 054010 (2012).
[Crossref]

J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
[Crossref]

Starikov, A.

D. J. Coleman, P. J. Larson, A. D. Lopata, W. A. Muth, and A. Starikov, “Accuracy of overlay measurements: tool and mark asymmetry effects,” Proc. SPIE 1261, 139–161 (1990).
[Crossref]

Stocker, M.

R. Attota, R. M. Silver, M. Stocker, E. Marx, J. Jun, M. Davidson, and R. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

Stocker, M. T.

R. Attota, R. M. Silver, T. A. Germer, M. Bishop, R. Larrabee, M. T. Stocker, and L. Howard, “Application of through-focus focus-metric analysis in high resolution optical metrology,” Proc. SPIE 5752, 1441–1449 (2005).
[Crossref]

Thompson, R.

J. Song, W. Chu, T. V. Vorburger, R. Thompson, T. B. Renegar, A. Zheng, J. Yen, R. Silver, and M. Ols, “Development of ballistics identification-from image comparison to topography measurement in surface metrology,” Meas. Sci. Technol. 23(5), 054010 (2012).
[Crossref]

Tondare, V.

H. Kang, R. Attota, V. Tondare, A. E. Vladár, and P. Kavuri, “A method to determine the number of nanoparticles in a cluster using conventional optical microscopes,” Appl. Phys. Lett. 107(10), 103106 (2015).
[Crossref]

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Vladár, A. E.

H. Kang, R. Attota, V. Tondare, A. E. Vladár, and P. Kavuri, “A method to determine the number of nanoparticles in a cluster using conventional optical microscopes,” Appl. Phys. Lett. 107(10), 103106 (2015).
[Crossref]

Vorburger, T.

J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
[Crossref]

Vorburger, T. V.

J. Song, W. Chu, T. V. Vorburger, R. Thompson, T. B. Renegar, A. Zheng, J. Yen, R. Silver, and M. Ols, “Development of ballistics identification-from image comparison to topography measurement in surface metrology,” Meas. Sci. Technol. 23(5), 054010 (2012).
[Crossref]

Waters, J. C.

J. C. Waters and T. Wittmann, “Concepts in quantitative fluorescence microscopy,” Methods Cell Biol. 123, 1–18 (2014).
[Crossref] [PubMed]

Weigel, A.

M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
[Crossref] [PubMed]

Wittmann, T.

J. C. Waters and T. Wittmann, “Concepts in quantitative fluorescence microscopy,” Methods Cell Biol. 123, 1–18 (2014).
[Crossref] [PubMed]

Yen, J.

J. Song, W. Chu, T. V. Vorburger, R. Thompson, T. B. Renegar, A. Zheng, J. Yen, R. Silver, and M. Ols, “Development of ballistics identification-from image comparison to topography measurement in surface metrology,” Meas. Sci. Technol. 23(5), 054010 (2012).
[Crossref]

Zeug, A.

M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
[Crossref] [PubMed]

Zheng, A.

J. Song, W. Chu, T. V. Vorburger, R. Thompson, T. B. Renegar, A. Zheng, J. Yen, R. Silver, and M. Ols, “Development of ballistics identification-from image comparison to topography measurement in surface metrology,” Meas. Sci. Technol. 23(5), 054010 (2012).
[Crossref]

J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
[Crossref]

Zucker, R. M.

R. M. Zucker, “Quality assessment of confocal microscopy slide-based systems: instability,” Cytometry A 69A(7), 677–690 (2006).
[Crossref] [PubMed]

R. M. Zucker and O. Price, “Evaluation of confocal microscopy system performance,” Cytometry 44(4), 273–294 (2001).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

R. Attota, P. P. Kavuri, H. Kang, R. Kasica, and L. Chen, “Nanoparticle size determination using optical microscopes,” Appl. Phys. Lett. 105(16), 163105 (2014).
[Crossref]

H. Kang, R. Attota, V. Tondare, A. E. Vladár, and P. Kavuri, “A method to determine the number of nanoparticles in a cluster using conventional optical microscopes,” Appl. Phys. Lett. 107(10), 103106 (2015).
[Crossref]

R. Attota and R. G. Dixson, “Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes,” Appl. Phys. Lett. 105(4), 043101 (2014).
[Crossref]

C. R. Phys. (1)

B. J. Lin, “Optical lithography - present and future challenges,” C. R. Phys. 7(8), 858–874 (2006).
[Crossref]

Cytometry (1)

R. M. Zucker and O. Price, “Evaluation of confocal microscopy system performance,” Cytometry 44(4), 273–294 (2001).
[Crossref] [PubMed]

Cytometry A (2)

M. Halter, E. Bier, P. C. DeRose, G. A. Cooksey, S. J. Choquette, A. L. Plant, and J. T. Elliott, “An automated protocol for performance benchmarking a widefield fluorescence microscope,” Cytometry A 85(11), 978–985 (2014).
[Crossref] [PubMed]

R. M. Zucker, “Quality assessment of confocal microscopy slide-based systems: instability,” Cytometry A 69A(7), 677–690 (2006).
[Crossref] [PubMed]

J. Microsc. (2)

K. M. Kedziora, J. H. M. Prehn, J. Dobrucki, and T. Bernas, “Method of calibration of a fluorescence microscope for quantitative studies,” J. Microsc. 244(1), 101–111 (2011).
[Crossref] [PubMed]

T. Bernas, D. Barnes, E. K. Asem, J. P. Robinson, and B. Rajwa, “Precision of light intensity measurement in biological optical microscopy,” J. Microsc. 226(2), 163–174 (2007).
[Crossref] [PubMed]

Meas. Sci. Technol. (2)

J. Song, W. Chu, T. V. Vorburger, R. Thompson, T. B. Renegar, A. Zheng, J. Yen, R. Silver, and M. Ols, “Development of ballistics identification-from image comparison to topography measurement in surface metrology,” Meas. Sci. Technol. 23(5), 054010 (2012).
[Crossref]

J. Song, T. Vorburger, T. Renegar, H. Rhee, A. Zheng, L. Ma, J. Libert, S. Ballou, B. Bachrach, and K. Bogart, “Correlation of topography measurements of NIST SRM 2460 standard bullets by four techniques,” Meas. Sci. Technol. 17(3), 500–503 (2006).
[Crossref]

Methods Cell Biol. (1)

J. C. Waters and T. Wittmann, “Concepts in quantitative fluorescence microscopy,” Methods Cell Biol. 123, 1–18 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7(2), 113–117 (2013).
[Crossref]

Opt. Express (1)

PLoS One (1)

M. Butzlaff, A. Weigel, E. Ponimaskin, and A. Zeug, “eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration,” PLoS One 10(8), e0134980 (2015).
[Crossref] [PubMed]

Proc. SPIE (4)

P. Memmolo, L. Miccio, F. Merola, O. Gennari, M. Mugnano, P. A. Netti, and P. Ferraro, “Lab on chip optical imaging of biological sample by quantitative phase microscopy,” Proc. SPIE 9336, 933625 (2015).
[Crossref]

R. Attota, R. M. Silver, T. A. Germer, M. Bishop, R. Larrabee, M. T. Stocker, and L. Howard, “Application of through-focus focus-metric analysis in high resolution optical metrology,” Proc. SPIE 5752, 1441–1449 (2005).
[Crossref]

R. Attota, R. M. Silver, M. Stocker, E. Marx, J. Jun, M. Davidson, and R. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

D. J. Coleman, P. J. Larson, A. D. Lopata, W. A. Muth, and A. Starikov, “Accuracy of overlay measurements: tool and mark asymmetry effects,” Proc. SPIE 1261, 139–161 (1990).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Differences in the intensity profiles depending on the location in the field-of-view. (a) A typical optical image of the selected box-in-box type of overlay target located at the top-right. A schematic of the cross-sectional profile of this overlay target is shown in the blue inset. (b) A typical optical intensity profile of the selected target. Figures 1 (c1 to c5) The lower portion (as designated by the red box in (b)) of the intensity profiles of the same overlay target from the five locations in the field-of-view indicated by the red circles in (a). Dimensions of the line outer box are the same. Similarly, dimensions of the trench inner box are the same. Outer box center-to-center width = 18 μm, illumination NA = 0.55, collection NA = 0.55, λ = 520 nm.
Fig. 2
Fig. 2 The effect of ANILAS. Schematic representation of (a) asymmetric and (b) symmetric angular illumination intensity conditions. For the sake of simplicity, only one symmetrically opposite illumination angle is shown. In (a) the illumination intensity from the left (red arrows) is more than from the right (blue arrows). Simulated intensity profiles of an isolated line for (c) asymmetric and (d) symmetric illuminations. Line width = 200 nm; Line height = 200 nm; Illumination NA = 0.4; collection NA = 0.8, λ = 546 nm; Si line on Si substrate.
Fig. 3
Fig. 3 Schematics showing angular illumination at the sample plane for different intentionally created illumination imperfections by moving an aperture stop at a (conjugate) back focal plane. The fixed size aperture stop (a) at the correct axial and lateral location (X = 0, Y = 0, Z = 0), (b) moved axially closer to the field stop (X = 0, Y = 0, Z = z), (c) moved axially away from the field stop (X = 0, Y = 0, Z = -z), (d) moved both closer to the field stop and laterally (X = x, Y = 0, Z = z), and (e) at the correct axial location but moved laterally (X = x, Y = 0, Z = 0). Figures 3 (a1), (b1), (c1), (d1) and (e1) show the magnified view of the angular illumination at the sample plane for the illumination shown in (a), (b), (c), (d) and (e), respectively. Blue circles indicate the locations of symmetric angular illumination at the sample plane. The assigned (X,Y,Z) coordinates of the aperture stop are indicated at the top of each schematic.
Fig. 4
Fig. 4 Large focus range focus-metric plots obtained using (a) the 400 μm custom aperture (INA = 0.15 ± 0.01), and (b) the original stop with about 700 μm aperture (INA = 0.28 ± 0.01). The red boxes represent the approximate focus range needed for creating the ANILAS maps. Inset figures in (b) show optical images of the selected grating at those focus positions.
Fig. 5
Fig. 5 FM calculation procedure: From a typical optical image of (a) the grating (only a portion of the image is shown for clarity), (b) select a portion from a given location of the image. (c) Extract the intensity profile by averaging along the direction of the lines. (d) Make a copy (in red) of the original profile (shown in blue) and move it with respect to the original profile (four pixels to the right in this case). (e) Equalize the length of the profiles and take a difference in the intensity between the original and the shifted copy. (f) Square and sum the intensities to produce an FM value.
Fig. 6
Fig. 6 Optical images of the grating in the (a) horizontal and (b) vertical orientations (only a portion of the grating image is shown here for clarity). ANILAS maps from the grating oriented in the (c) horizontal and (d) vertical orientations. (e) The final ANILAS map obtained by taking a mean of the horizontal and the vertical ANILAS maps. (f) A 3D plot of the ANILAS map. The aperture stop location for this figure was: (0,0, −2000 ± 5) μm.
Fig. 7
Fig. 7 ANILAS maps for the aperture stop (a) near the correct location (0,0,0), and axially displaced from the correct axial location (b) toward [(0,0,1000 ± 5) μm], or (c) away [(0,0, −1000 ± 5) μm] from the field stop. Figures 7 (a1), (b1) and (c1) are the 3D plots of (a), (b) and (c), respectively, with the same Z scale for easy comparison.
Fig. 8
Fig. 8 ANILAS maps for the aperture stop moved axially and laterally. (a) Moved laterally in the X-direction and axially toward the field stop [(20 ± 2, 0, 1000 ± 5) μm]. (b) Moved laterally both in the X and Y directions, and axially toward the field stop [(20 ± 2, −20 ± 2, 1000 ± 5) μm]. (c) Moved laterally in the X-direction only near the correct axial location ((20 ± 2, 0, 0) μm). (a1), (b1) and (c1) are the 3D plots of (a), (b) and (c), respectively, with the same Z scale for easy comparison.
Fig. 9
Fig. 9 Variations in the optical intensity profiles as a function of location on the ANILAS map. (a) ANILAS map for the aperture stop location at (10 ± 2, 40 ± 2, −2000 ± 5) μm. ANILAS green radial lines with respect to the lowest ANILAS location are also indicated. (b), (c), (d), (e), (f), and (g) Intensity profiles of the same vertical line placed at different locations shown by the arrows. Dotted lines indicate the location of the extracted intensity profile.
Fig. 10
Fig. 10 ANILAS map obtained using the original aperture stop provided by the microscope manufacturer, but with lateral position optimized.

Metrics