Abstract

A kind of grating-type mid-infrared light absorber based on silicon carbide (SiC) material is designed and its absorption properties are studied using the finite-difference frequency-domain (FDFD) method. The results show that, its absorption mechanism is the excitation of surface plasmon and magnetic polariton as well as the loss of materials. Due to the optical characteristics of the SiC material in the mid-infrared band and the truncated pyramid structure in the grating, in the range of 10.5-12.5μm and 0-80°, absorptivity of higher than 80% can be obtained with optimized structural parameters. Among six structural parameters, the layer number of the composite layers has a relatively great influence on the absorption properties, while the thickness of the dielectric layer has less influence on the absorption properties.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers

Timothy D. Corrigan, Dong Hun Park, H. Dennis Drew, Shy-Hauh Guo, Paul W. Kolb, Warren N. Herman, and Raymond J. Phaneuf
Appl. Opt. 51(8) 1109-1114 (2012)

Noise sources and improved performance of a mid-wave infrared uncooled silicon carbide optical photodetector

Geunsik Lim, Tariq Manzur, and Aravinda Kar
Appl. Opt. 53(36) 8410-8423 (2014)

Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial

Yang Bai, Li Zhao, Dongquan Ju, Yongyuan Jiang, and Linhua Liu
Opt. Express 23(7) 8670-8680 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  3. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [Crossref]
  4. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
    [Crossref]
  5. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
    [Crossref]
  6. F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
    [Crossref]
  7. Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2 /Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
    [Crossref]
  8. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  9. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  10. A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
    [Crossref] [PubMed]
  11. P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
    [Crossref] [PubMed]
  12. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  13. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  14. J. Grant, I. J. H. McCrindle, and D. R. S. Cumming, “Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber,” Opt. Express 24(4), 3451–3463 (2016).
    [Crossref] [PubMed]
  15. W. Yue, Z. Wang, J. Whittaker, F. Schedin, Z. Wu, and J. Han, “Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs,” Nanotechnology 27(5), 055303 (2016).
    [Crossref] [PubMed]
  16. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
    [Crossref]
  17. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
    [Crossref]
  18. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  19. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
    [Crossref] [PubMed]
  20. L. Meng, D. Zhao, Q. Li, and M. Qiu, “Polarization-sensitive perfect absorbers at near-infrared wavelengths,” Opt. Express 21(S1), A111–A122 (2013).
    [Crossref] [PubMed]
  21. Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, and N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28(11), 2827–2832 (2011).
    [Crossref]
  22. X. L. Liu, B. Zhao, and Z. M. Zhang, “Wide-angle near infrared polarizer with extremely high extinction ratio,” Opt. Express 21(9), 10502–10510 (2013).
    [Crossref] [PubMed]
  23. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
    [Crossref]
  24. W. Gu, G. Tang, and W. Tao, “High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array,” Opt. Express 23(24), 30681–30694 (2015).
    [Crossref] [PubMed]
  25. C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
    [Crossref]
  26. Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [Crossref]
  27. R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
    [Crossref] [PubMed]
  28. Y. Bai, L. Zhao, D. Ju, Y. Jiang, and L. Liu, “Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial,” Opt. Express 23(7), 8670–8680 (2015).
    [Crossref] [PubMed]
  29. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  30. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
    [Crossref] [PubMed]
  31. D. Zhou and S. Seraphine, “Production of silicon carbide whiskers from carbon nanoclusters,” Chem. Phys. Lett. 222(3), 233–238 (1994).
    [Crossref]
  32. R. Wu, K. Zhou, C. Y. Yue, J. Wei, and Y. Pan, “Recent progress in synthesis, properties and potential applications of SiC nanomaterials,” Prog. Mater. Sci. 72, 1–60 (2015).
    [Crossref]
  33. B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
    [Crossref]
  34. G. C. R. Devarapu and S. Foteinopoulou, “Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity,” Opt. Express 20(12), 13040–13054 (2012).
    [Crossref] [PubMed]
  35. D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23(3), 468–478 (2006).
    [Crossref]
  36. R. C. Rumpf, “Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain,” Prog. Electromagnetics Research B 36, 221–248 (2012).
    [Crossref]
  37. L. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27(12), 2595–2604 (2010).
    [Crossref]

2016 (3)

2015 (5)

Y. Bai, L. Zhao, D. Ju, Y. Jiang, and L. Liu, “Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial,” Opt. Express 23(7), 8670–8680 (2015).
[Crossref] [PubMed]

R. Wu, K. Zhou, C. Y. Yue, J. Wei, and Y. Pan, “Recent progress in synthesis, properties and potential applications of SiC nanomaterials,” Prog. Mater. Sci. 72, 1–60 (2015).
[Crossref]

W. Gu, G. Tang, and W. Tao, “High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array,” Opt. Express 23(24), 30681–30694 (2015).
[Crossref] [PubMed]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

2014 (1)

2013 (4)

2012 (5)

G. C. R. Devarapu and S. Foteinopoulou, “Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity,” Opt. Express 20(12), 13040–13054 (2012).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

R. C. Rumpf, “Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain,” Prog. Electromagnetics Research B 36, 221–248 (2012).
[Crossref]

2011 (8)

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, and N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28(11), 2827–2832 (2011).
[Crossref]

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

2010 (5)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

L. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27(12), 2595–2604 (2010).
[Crossref]

2009 (1)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

2008 (3)

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2 /Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

2006 (1)

1994 (1)

D. Zhou and S. Seraphine, “Production of silicon carbide whiskers from carbon nanoclusters,” Chem. Phys. Lett. 222(3), 233–238 (1994).
[Crossref]

Bai, Y.

Bouchon, P.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Brener, I.

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

Cattoni, A.

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Chang, Y.-T.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2 /Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[Crossref]

Chen, C.-Y.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2 /Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[Crossref]

Chen, H.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Chen, J.

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Chen, L.

Collin, S.

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Cui, T. J.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, and N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28(11), 2827–2832 (2011).
[Crossref]

Cumming, D. R. S.

Decanini, D.

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Devarapu, G. C. R.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Ding, F.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Ding, W.

Eyck, G. T.

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

Fan, S.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, and N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28(11), 2827–2832 (2011).
[Crossref]

Feng, R.

Foteinopoulou, S.

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, and N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28(11), 2827–2832 (2011).
[Crossref]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Ghenuche, P.

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Grant, J.

Gu, W.

Haghiri-Gosnet, A.-M.

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Haidar, R.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Han, J.

W. Yue, Z. Wang, J. Whittaker, F. Schedin, Z. Wu, and J. Han, “Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs,” Nanotechnology 27(5), 055303 (2016).
[Crossref] [PubMed]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

He, S.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, and N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28(11), 2827–2832 (2011).
[Crossref]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Huffaker, D. L.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Hung, C.-H.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Jaeck, J.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Ji, J.

Jiang, Y.

Jiang, Y.-W.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2 /Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[Crossref]

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

John, J.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Ju, D.

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Koechlin, C.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Korobkin, D.

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Kumar, A.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Lafosse, X.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, J.-Y.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Lee, S.-C.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2 /Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[Crossref]

Li, J.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Li, Q.

Liang, B.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Lin, A.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Ling, F.

Liu, L.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, S.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, X. L.

Luo, C.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

McCrindle, I. J. H.

Meng, L.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Milder, A.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Min, C.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Mo, L.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Neuner, B.

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pan, Y.

R. Wu, K. Zhou, C. Y. Yue, J. Wei, and Y. Pan, “Recent progress in synthesis, properties and potential applications of SiC nanomaterials,” Prog. Mater. Sci. 72, 1–60 (2015).
[Crossref]

Pardo, F.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Pelouard, J.-L.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Peumans, P.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Qiu, J.

Qiu, M.

L. Meng, D. Zhao, Q. Li, and M. Qiu, “Polarization-sensitive perfect absorbers at near-infrared wavelengths,” Opt. Express 21(S1), A111–A122 (2013).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

Rumpf, R. C.

R. C. Rumpf, “Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain,” Prog. Electromagnetics Research B 36, 221–248 (2012).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Savoy, S.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Schedin, F.

W. Yue, Z. Wang, J. Whittaker, F. Schedin, Z. Wu, and J. Han, “Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs,” Nanotechnology 27(5), 055303 (2016).
[Crossref] [PubMed]

Senanayake, P.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Seraphine, S.

D. Zhou and S. Seraphine, “Production of silicon carbide whiskers from carbon nanoclusters,” Chem. Phys. Lett. 222(3), 233–238 (1994).
[Crossref]

Shapiro, J.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Shvets, G.

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23(3), 468–478 (2006).
[Crossref]

Sinclair, M.

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Tang, G.

Tao, W.

Tsai, M.-W.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2 /Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Tzuang, D.-C.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2 /Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[Crossref]

Urzhumov, Y.

Veronis, G.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Wang, H.

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, L.

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

Wang, Z.

W. Yue, Z. Wang, J. Whittaker, F. Schedin, Z. Wu, and J. Han, “Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs,” Nanotechnology 27(5), 055303 (2016).
[Crossref] [PubMed]

Wei, J.

R. Wu, K. Zhou, C. Y. Yue, J. Wei, and Y. Pan, “Recent progress in synthesis, properties and potential applications of SiC nanomaterials,” Prog. Mater. Sci. 72, 1–60 (2015).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Whittaker, J.

W. Yue, Z. Wang, J. Whittaker, F. Schedin, Z. Wu, and J. Han, “Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs,” Nanotechnology 27(5), 055303 (2016).
[Crossref] [PubMed]

Williams, B. S.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Wu, C.

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Wu, R.

R. Wu, K. Zhou, C. Y. Yue, J. Wei, and Y. Pan, “Recent progress in synthesis, properties and potential applications of SiC nanomaterials,” Prog. Mater. Sci. 72, 1–60 (2015).
[Crossref]

Wu, Y.-T.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2 /Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[Crossref]

Wu, Z.

W. Yue, Z. Wang, J. Whittaker, F. Schedin, Z. Wu, and J. Han, “Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs,” Nanotechnology 27(5), 055303 (2016).
[Crossref] [PubMed]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, and N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28(11), 2827–2832 (2011).
[Crossref]

Yao, G.

Yao, J.

Ye, Y.-H.

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2 /Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[Crossref]

Yi, J.

Yue, C. Y.

R. Wu, K. Zhou, C. Y. Yue, J. Wei, and Y. Pan, “Recent progress in synthesis, properties and potential applications of SiC nanomaterials,” Prog. Mater. Sci. 72, 1–60 (2015).
[Crossref]

Yue, J.

Yue, W.

W. Yue, Z. Wang, J. Whittaker, F. Schedin, Z. Wu, and J. Han, “Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs,” Nanotechnology 27(5), 055303 (2016).
[Crossref] [PubMed]

Zhang, Z. M.

Zhao, B.

Zhao, D.

Zhao, L.

Zhou, D.

D. Zhou and S. Seraphine, “Production of silicon carbide whiskers from carbon nanoclusters,” Chem. Phys. Lett. 222(3), 233–238 (1994).
[Crossref]

Zhou, K.

R. Wu, K. Zhou, C. Y. Yue, J. Wei, and Y. Pan, “Recent progress in synthesis, properties and potential applications of SiC nanomaterials,” Prog. Mater. Sci. 72, 1–60 (2015).
[Crossref]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhu, J.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Appl. Phys. Lett. (11)

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2 /Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

B. Neuner, C. Wu, G. T. Eyck, M. Sinclair, I. Brener, and G. Shvets, “Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces,” Appl. Phys. Lett. 102(21), 211111 (2013).
[Crossref]

Chem. Phys. Lett. (1)

D. Zhou and S. Seraphine, “Production of silicon carbide whiskers from carbon nanoclusters,” Chem. Phys. Lett. 222(3), 233–238 (1994).
[Crossref]

J. Opt. Soc. Am. B (3)

Nano Lett. (4)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface plasmon-enhanced nanopillar photodetectors,” Nano Lett. 11(12), 5279–5283 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

W. Yue, Z. Wang, J. Whittaker, F. Schedin, Z. Wu, and J. Han, “Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs,” Nanotechnology 27(5), 055303 (2016).
[Crossref] [PubMed]

Opt. Express (9)

G. C. R. Devarapu and S. Foteinopoulou, “Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity,” Opt. Express 20(12), 13040–13054 (2012).
[Crossref] [PubMed]

L. Meng, D. Zhao, Q. Li, and M. Qiu, “Polarization-sensitive perfect absorbers at near-infrared wavelengths,” Opt. Express 21(S1), A111–A122 (2013).
[Crossref] [PubMed]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Wide-angle near infrared polarizer with extremely high extinction ratio,” Opt. Express 21(9), 10502–10510 (2013).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
[Crossref] [PubMed]

Y. Bai, L. Zhao, D. Ju, Y. Jiang, and L. Liu, “Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial,” Opt. Express 23(7), 8670–8680 (2015).
[Crossref] [PubMed]

W. Gu, G. Tang, and W. Tao, “High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array,” Opt. Express 23(24), 30681–30694 (2015).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

J. Grant, I. J. H. McCrindle, and D. R. S. Cumming, “Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber,” Opt. Express 24(4), 3451–3463 (2016).
[Crossref] [PubMed]

Phys. Rev. B (2)

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Phys. Rev. Lett. (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Prog. Electromagnetics Research B (1)

R. C. Rumpf, “Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain,” Prog. Electromagnetics Research B 36, 221–248 (2012).
[Crossref]

Prog. Mater. Sci. (1)

R. Wu, K. Zhou, C. Y. Yue, J. Wei, and Y. Pan, “Recent progress in synthesis, properties and potential applications of SiC nanomaterials,” Prog. Mater. Sci. 72, 1–60 (2015).
[Crossref]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the mid-infrared light absorber based on SiC material and the computational setting of the FDFD method. Here, Pis the unit length, W 1 is the width of the top layer and W 2 is the width of the bottom layer in the composite layer, T 1 is the thickness of the SiC and T 2 is the thickness of the dielectric in the composite layer, T 3 is the thickness of the silver substrate. The shadow areas located on the top and bottom are the perfect matched layer(PML). The reflecting plane, TF/SF plane and transmission plane are marked by the dotted line respectively. The left and right boundaries are the periodic boundary condition (PBC). The breaks on the left and right boundary indicate that there is sufficient space between the TF/SF plane and the upper surface of the top layer in the composite layer.
Fig. 2
Fig. 2 Recalculated absorption spectra for the sawtooth AMM absorber [29] using our FDFD program. The blue line represents the absorptivity contour with A=0.9 . Black dots on the map are read from the Fig. 2(b) of Ref [29].
Fig. 3
Fig. 3 The contour plot of the absorptivity with the incident wavelength and incident angle. Here the structure parameters are layer=20 , P=3μm , W 1 =0.8μm , W 2 =2.7μm , T 1 =0.3μm , T 2 =1.2μm and T 3 =1.0μm .
Fig. 4
Fig. 4 The dependence of the real part and the imaginary part of the dielectric constant of SiC on the wavelength.
Fig. 5
Fig. 5 The distributions of the Hz field corresponding to the incident TM wave at λ=10.50μm (a), 11.89μm (b) and 12.50μm (c) with the optimized structure parameters.
Fig. 6
Fig. 6 The distributions of the Hz field and the corresponding E field within the subregion of Fig. 5(c). The red arrows on the map indicate E field.
Fig. 7
Fig. 7 The dependence of absorptivity on the incidence wavelength, when the number of composite layers (a), the period of the grating (b), the top width (c) and the bottom width (d) of the truncated pyramid structure, the thickness of the SiC layer (e) and the dielectric layer (f) change separately, while keep the other five parameters unchanged. Here we assume that the TM wave incident at α= 0 .
Fig. 8
Fig. 8 The distributions of the Hz field corresponding to the top layer width W 1 =0.25μm (a), 0.80μm (b) and 1.00μm (c) of the truncated pyramid structure while keeping the other five optimized parameters unchanged.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε SiC = ε ω 2 ω L 2 +iγω ω 2 ω T 2 +iγω
ε Ag (ω)= ε ω p 2 ω 2 +jΓω
[A][x]=[b]

Metrics