Abstract

Recently the ever-growing demand for dynamic and high-capacity services in optical networks has resulted in new challenges that require improved network agility and flexibility in order for network resources to become more “consumable” and dynamic, or elastic, in response to requests from higher network layers. Flexible and scalable wavelength conversion or multicast is one of the most important technologies needed for developing agility in the physical layer. This paper will investigate how, using a reconfigurable coherent multi-carrier as a pump, the multicast scalability and the flexibility in wavelength allocation of the converted signals can be effectively improved. Moreover, the coherence in the multiple carriers prevents the phase noise transformation from the local pump to the converted signals, which is imperative for the phase-noise-sensitive multi-level single- or multi-carrier modulated signal. To verify the feasibility of the proposed scheme, we experimentally demonstrate the wavelength multicast of coherent optical orthogonal frequency division multiplexing (CO-OFDM) signals using a reconfigurable coherent multi-carrier pump, showing flexibility in wavelength allocation, scalability in multicast, and tolerance against pump phase noise. Less than 0.5 dB and 1.8 dB power penalties at a bit-error rate (BER) of 10−3 are obtained for the converted CO-OFDM-quadrature phase-shift keying (QPSK) and CO-OFDM-16-ary quadrature amplitude modulation (16QAM) signals, respectively, even when using a distributed feedback laser (DFB) as a pump source. In contrast, with a free-running pumping scheme, the phase noise from DFB pumps severely deteriorates the CO-OFDM signals, resulting in a visible error-floor at a BER of 10−2 in the converted CO-OFDM-16QAM signals.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical subcarrier processing for Nyquist SCM signals via coherent spectrum overlapping in four-wave mixing with coherent multi-tone pump

Guo-Wei Lu, Ruben S. Luís, José Manuel Delgado Mendinueta, Takahide Sakamoto, and Naokatsu Yamamoto
Opt. Express 26(2) 1488-1496 (2018)

Pump-linewidth-tolerant optical wavelength conversion for high-order QAM signals using coherent pumps

Guo-Wei Lu, André Albuquerque, Benjamin J. Puttnam, Takahide Sakamoto, Miguel Drummond, Rogério Nogueira, Atsushi Kanno, Satoshi Shinada, Naoya Wada, and Tetsuya Kawanishi
Opt. Express 22(5) 5067-5075 (2014)

Linewidth-tolerant and multi-format carrier phase estimation schemes for coherent optical m-QAM flexible transmission systems

Tao Yang, Chen Shi, Xue Chen, Min Zhang, Yuefeng Ji, Feng Hua, and Yufei Chen
Opt. Express 26(8) 10599-10615 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Charbonneau and V. Vokkarane, “Static routing and wavelength assignment for multicast advance reservation in all-optical wavelength-routed WDM networks,” IEEE/ACM Trans. Netw. 20(1), 1–14 (2012).
    [Crossref]
  2. X. Wang, I. Kim, Q. Zhang, P. Palacharla, and T. Ikeuchi, “Efficient all-optical wavelength converter placement and wavelength assignment in optical networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W2A.52.
    [Crossref]
  3. Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
    [Crossref]
  4. P. Zhu, J. Li, Y. Chen, X. Chen, Z. Wu, D. Ge, Z. Chen, and Y. He, “Experimental demonstration of EON node supporting reconfigurable optical superchannel multicasting,” Opt. Express 23(16), 20495–20504 (2015).
    [Crossref] [PubMed]
  5. G. Lu, T. Sakamoto, and T. Kawanishi, “Coherently-pumped FWM in HNLF for 16QAM wavelength conversion free of phase noise from pumps,” in Proc. European Conference of Optical Communications (2014), paper P.1.16.
    [Crossref]
  6. G. Lu, T. Sakamoto, and T. Kawanishi, “Pump-phase-noise-tolerant wavelength multicasting for QAM signals using flexible coherent multi-carrier pump,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper M2E.2.
    [Crossref]
  7. W. Shieh, “Maximum-likelihood phase and channel estimation for coherent optical OFDM,” IEEE Photonics Technol. Lett. 20(8), 605–607 (2008).
    [Crossref]
  8. G. Colavolpe, T. Foggi, E. Forestieri, and M. Secondini, “Impact of phase noise and compensation techniques in coherent optical systems,” J. Lightwave Technol. 29(18), 2790–2800 (2011).
    [Crossref]
  9. Z. Dong, J. Yu, H.-C. Chien, L. Chen, and G.-K. Chang, “Wavelength conversion for 1.2Tb/s optical OFDM superchannel based on four-wave mixing in HNLF with digital coherent detection,” in Proc. European Conference of Optical Communications (2011), paper Th.11.LeSaleve.5.
  10. G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express 20(25), 27902–27907 (2012).
    [Crossref] [PubMed]
  11. X. Wu, W.-R. Peng, V. Arbab, J. Wang, and A. Willner, “Tunable optical wavelength conversion of OFDM signal using a periodically-poled lithium niobate waveguide,” Opt. Express 17(11), 9177–9182 (2009).
    [Crossref] [PubMed]
  12. C. Li, M. Luo, Z. He, H. Li, J. Xu, S. You, Q. Yang, and S. Yu, “Phase noise canceled polarization-insensitive all-optical wavelength conversion of 557-Gb/s PDM-OFDM signal using coherent dual-pump,” J. Lightwave Technol. 33(13), 2848–2854 (2015).
    [Crossref]
  13. G. Lu, T. Bo, and C. Chan, “Pump-phase-noise-tolerant wavelength conversion for coherent optical OFDM using coherent DFB pumping,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W3D.3.
    [Crossref]
  14. X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photonics Technol. Lett. 19(12), 919–921 (2007).
    [Crossref]
  15. G. W. Lu, T. Sakamoto, and T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
    [Crossref] [PubMed]

2015 (2)

2014 (1)

2012 (2)

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express 20(25), 27902–27907 (2012).
[Crossref] [PubMed]

N. Charbonneau and V. Vokkarane, “Static routing and wavelength assignment for multicast advance reservation in all-optical wavelength-routed WDM networks,” IEEE/ACM Trans. Netw. 20(1), 1–14 (2012).
[Crossref]

2011 (2)

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

G. Colavolpe, T. Foggi, E. Forestieri, and M. Secondini, “Impact of phase noise and compensation techniques in coherent optical systems,” J. Lightwave Technol. 29(18), 2790–2800 (2011).
[Crossref]

2009 (1)

2008 (1)

W. Shieh, “Maximum-likelihood phase and channel estimation for coherent optical OFDM,” IEEE Photonics Technol. Lett. 20(8), 605–607 (2008).
[Crossref]

2007 (1)

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photonics Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

Arbab, V.

Besnard, P.

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

Borgne, E.

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

Bramerie, L.

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

Charbonneau, N.

N. Charbonneau and V. Vokkarane, “Static routing and wavelength assignment for multicast advance reservation in all-optical wavelength-routed WDM networks,” IEEE/ACM Trans. Netw. 20(1), 1–14 (2012).
[Crossref]

Chen, X.

Chen, Y.

Chen, Z.

Colavolpe, G.

Contestabile, G.

Foggi, T.

Forestieri, E.

Ge, D.

He, Y.

He, Z.

Kawanishi, T.

Kitayama, K.

LaRochelle, S.

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

Le, Q. T.

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

Lelarge, F.

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

Li, C.

Li, H.

Li, J.

Lu, G. W.

Luo, M.

M’Sallem, Y. B.

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

Maruta, A.

Nguyen, Q.

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

Peng, W.-R.

Rusch, L. A.

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

Sakamoto, T.

Secondini, M.

Shen, A.

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

Shieh, W.

W. Shieh, “Maximum-likelihood phase and channel estimation for coherent optical OFDM,” IEEE Photonics Technol. Lett. 20(8), 605–607 (2008).
[Crossref]

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photonics Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

Simon, J.

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

Tang, Y.

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photonics Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

Vokkarane, V.

N. Charbonneau and V. Vokkarane, “Static routing and wavelength assignment for multicast advance reservation in all-optical wavelength-routed WDM networks,” IEEE/ACM Trans. Netw. 20(1), 1–14 (2012).
[Crossref]

Wang, J.

Willner, A.

Wu, X.

Wu, Z.

Xu, J.

Yang, Q.

Yi, X.

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photonics Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

Yoshida, Y.

You, S.

Yu, S.

Zhu, P.

IEEE Photonics Technol. Lett. (3)

Y. B. M’Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-dash mode-locked laser as a source for 56-Gb/s DQPSK modulation in WDM multicast applications,” IEEE Photonics Technol. Lett. 23(7), 453–455 (2011).
[Crossref]

W. Shieh, “Maximum-likelihood phase and channel estimation for coherent optical OFDM,” IEEE Photonics Technol. Lett. 20(8), 605–607 (2008).
[Crossref]

X. Yi, W. Shieh, and Y. Tang, “Phase estimation for coherent optical OFDM,” IEEE Photonics Technol. Lett. 19(12), 919–921 (2007).
[Crossref]

IEEE/ACM Trans. Netw. (1)

N. Charbonneau and V. Vokkarane, “Static routing and wavelength assignment for multicast advance reservation in all-optical wavelength-routed WDM networks,” IEEE/ACM Trans. Netw. 20(1), 1–14 (2012).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (4)

Other (5)

G. Lu, T. Sakamoto, and T. Kawanishi, “Coherently-pumped FWM in HNLF for 16QAM wavelength conversion free of phase noise from pumps,” in Proc. European Conference of Optical Communications (2014), paper P.1.16.
[Crossref]

G. Lu, T. Sakamoto, and T. Kawanishi, “Pump-phase-noise-tolerant wavelength multicasting for QAM signals using flexible coherent multi-carrier pump,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper M2E.2.
[Crossref]

Z. Dong, J. Yu, H.-C. Chien, L. Chen, and G.-K. Chang, “Wavelength conversion for 1.2Tb/s optical OFDM superchannel based on four-wave mixing in HNLF with digital coherent detection,” in Proc. European Conference of Optical Communications (2011), paper Th.11.LeSaleve.5.

X. Wang, I. Kim, Q. Zhang, P. Palacharla, and T. Ikeuchi, “Efficient all-optical wavelength converter placement and wavelength assignment in optical networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W2A.52.
[Crossref]

G. Lu, T. Bo, and C. Chan, “Pump-phase-noise-tolerant wavelength conversion for coherent optical OFDM using coherent DFB pumping,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2016), paper W3D.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Flexible and scalable wavelength multicast with tolerance against pump phase noise using a coherent multi-carrier pump.
Fig. 2
Fig. 2 Experimental setup of flexible and scalable wavelength multicast.
Fig. 3
Fig. 3 Measured optical spectra after HNLF with (a) 2-carrier 25 GHz-spaced pump, (b) 2-carrier 50 GHz-spaced pump and (c) 3-carrier pump.
Fig. 4
Fig. 4 Measured EVM and conversion efficiency when tuning pump and signal power launched to HNLF in the 1-to-7 multicast of CO-OFDM-QPSK: (a) signal power: −4.4dBm, pump power: 15~24dBm; (b) single power: −10~14.5dBm, pump power: 22.2dBm.
Fig. 5
Fig. 5 Measured constellations of (a) (d) the input, and the converted signal (b) (e) with coherent pump and (c) (f) with free-running pump. (a)-(c): CO-OFDM-QPSK at OSNR = 7 dB, and (d)-(f): CO-OFDM-16QAM at OSNR = 16 dB.
Fig. 6
Fig. 6 Measured BER vs. OSNR of the input and converted CO-OFDM-QPSK signals with coherent pumping and free-running pumping in 1-to-3 multicast with (a) 25 GHz spacing and (b) 50 GHz spacing, and (c) 1-to-7 multicast.
Fig. 7
Fig. 7 Measured BER vs. OSNR of the input and converted CO-OFDM-16QAM signals with coherent pumping and free-running pumping in 1-to-3 multicast with (a) 25 GHz spacing and (b) 50 GHz spacing, and (c) 1-to-7 multicast.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ sij* = θ s ±(Δ θ i Δ θ j )+C

Metrics