Abstract

In this paper, we propose a cost-effective wavelength-reused mode-division-multiplexing (MDM) system for high speed symmetrical bidirectional mobile fronthaul application. At the base band unit (BBU) pool, one of the spatial modes is used to transmit signal carrier while the others are used for downstream (DS) signal channels. At the remote radio unit (RRU) side, the signal carrier is split and reused as modulation carrier for all the upstream (US) signal channels after mode demultiplexing. Thanks to the low mode crosstalk characteristic of the mode multiplexer/demultiplexer (MUX/DEMUX) and few-mode fiber (FMF), the signal carrier and each signal channel can be effectively separated. The spectral efficiency (SE) is significantly enhanced when multiple spatial channels are used. Compared with other wavelength reused scheme in which the downstream and upstream be modulated in orthogonal dimension, the modulation format of both directions are independent in the proposed wavelength reused MDM system. Therefore, it can easily achieve symmetrical bidirectional transmission without residual re-modulation crosstalk. The proposed scheme is scalable to multi-wavelength application when wavelength MUX/DEMUX is utilized. With the proposed scheme, we demonstrate a proof of concept intensity modulated 4 × 25-Gb/s 16-QAM orthogonal frequency division multiplexing (OFDM) transmission over 10-km FMF using low modal-crosstalk two-mode FMF and MUX/DEMUX with error free operation. The downstream receiver sensitivity is −21 dBm while the upstream receiver sensitivity is −18 dBm for bidirectional transmission. Due to the Rayleigh backscattering and other spurious reflections, the upstream suffers 2 dB power penalty compared with unidirectional transmission without downstream. To mitigate bidirectional transmission impairments, we propose a simple and effective method to suppress Rayleigh backscattering by shifting the downstream subcarrier frequency. A receiver sensitivity improvement of up to 2.5 dB is achieved for upstream with different downstream power.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks

Yuanxiang Chen, Juhao Li, Paikun Zhu, Zhongying Wu, Peng Zhou, Yu Tian, Fang Ren, Jinyi Yu, Dawei Ge, Jingbiao Chen, Yongqi He, and Zhangyuan Chen
Opt. Express 23(25) 32054-32062 (2015)

Bidirectional 60-GHz radio-over-fiber systems with downstream OFDMA and wavelength reuse upstream SC-FDMA

Cheng Zhang, Jun Duan, Juhao Li, Weiwei Hu, Hongbin Li, Hequan Wu, and Zhangyuan Chen
Opt. Express 18(18) 19429-19437 (2010)

Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang
Opt. Express 18(10) 9791-9808 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things You Should Know about Fronthaul,” J. Lightwave Technol. 33(5), 1077–1083 (2015).
    [Crossref]
  2. P. Rost, C. J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder, D. Sabella, and D. Wübben, “Cloud Technologies for Flexible 5G Radio Access Networks,” IEEE Commun. Mag. 52(5), 68–76 (2014).
    [Crossref]
  3. J. Bartelt, P. Rost, D. Wubben, J. Lessmann, B. Melis, and G. Fettweis, “Fronthaul and Backhaul Requirements of Flexibly Centralized Radio Access Networks,” IEEE Wirel. Commun. 22(5), 105–111 (2015).
    [Crossref]
  4. K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Proc. OFC 2015, Paper Tu2E.1.
  5. CPRI Interface Specification, v. 6.1, July 1st (2014).
  6. B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A Signal Compression on the CPRI Interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
    [Crossref]
  7. P. Chanclou, A. Pizzinat, F. L. Clech, T. Reedeker, Y. Lagadec, F. Saliou, B. L. Guyader, L. Guillo, Q. Deniel, S. Gosselin, S. D. Le, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O’Dull, S. A. Gebrewold, D. Hillerkuss, J. Leuthold, G. Gavioli, and P. Galli, “Optical Fiber Solution for Mobile Fronthaul to Achieve Cloud Radio Access Network,” in Proc. Future Network and Mobile Summit 2013, Paper 1–11.
  8. C. Han, S. Cho, H. S. Chung, and J. H. Lee, “Linearity Improvement of Directly-Modulated Multi-IF-over-Fibre LTE-A Mobile Fronthaul Link Using Shunt Diode Predistorter,” in Proc. ECOC 2015, Paper We 4.4.4.
    [Crossref]
  9. C. Liu, L. Zhang, M. Zhu, J. Wang, L. Cheng, and G. Chang, “A Novel Multi-Service Small-Cell Cloud Radio Access Network for Mobile Backhaul and Computing Based on Radio-Over-Fiber Technologies,” J. Lightwave Technol. 31(17), 2869–2875 (2013).
    [Crossref]
  10. F. Saliou, P. Chanclou, B. Charbonnier, B. L. Guyader, Q. Deniel, A. Pizzinat, N. Genay, Z. Xu, and H. Lin, “Up to 15km Cavity Self Seeded WDM-PON System with 90km Maximum Reach and up to 4.9Gbit/s CPRI Links,” in Proc. ECOC 2012, Paper We.1.B.6.
    [Crossref]
  11. S. Cho, H. S. Chung, C. Han, S. Lee, and J. Hyun Lee, “Experimental demonstrations of next generation cost effective mobile fronthaul with IFoF technique,” in Proc. OFC 2015, Paper M2J.5.
    [Crossref]
  12. J. Kani, “Solutions for future mobile fronthaul access network convergence,” in Proc. OFC 2016, Paper W1H.1.
    [Crossref]
  13. L. Giorgi, A. D’Errico, M. Presi, E. Ciaramella, and F. Testa, “Remote light source for silicon photonic transceivers in mobile fronthaul applications,” IEEE Electron. Lett. 51(4), 355–357 (2015).
    [Crossref]
  14. M. Zhu, F. Li, F. Lu, J. Yu, C. Su, G. Gu, and G. Chang, “Wavelength Resource Sharing in Bidirectional Optical Mobile Fronthaul,” J. Lightwave Technol. 33(15), 3182–3188 (2015).
    [Crossref]
  15. Y. Ma, Z. Xu, C. Zhang, H. Lin, Q. Wang, M. Zhou, H. Wang, J. Yu, and X. Wang, “Demonstration of digital fronthaul over self-seeded WDM-PON in commercial LTE environment,” Opt. Express 23(9), 11927–11935 (2015).
    [Crossref] [PubMed]
  16. F. Saliou, G. Simon, P. Chanclou, M. Brunero, L. Marazzi, P. Parolari, M. Martinelli, R. Brenot, A. Maho, S. Barbet, G. Gavioli, G. Parladori, S. Gebrewold, and J. Leuthold, “Self-Seeded RSOAs WDM PON Field Trial for Business and Mobile Fronthaul Applications,” in Proc. OFC 2015, Paper M2A.2.
    [Crossref]
  17. X. Zhou and N. Deng, “A 25-Gb/s 20-km Wavelength Reused WDM System for Mobile Fronthaul Applications,” in Proc. ECOC 2015, paper We.3.4.3.
    [Crossref]
  18. Q. Guo and A. V. Tran, “40 Gb/s Operation of SOA-REAM in Single-Feeder WDM-PON,” J. Opt. Commun. Netw. 4(11), B77–B84 (2012).
    [Crossref]
  19. F. Lu, Y. Chi, M. Xu, L. Cheng, J. Wang, C. Tsai, G. Lin, and G. Chang, “Cost-Effective Bi-Directional Mobile Fronthaul Employing WRC-FPLD for beyond LTE-Advanced Services,” in Proc. OFC 2016, Paper Tu2B.5.
    [Crossref]
  20. D. Richardson, J. Fin, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  21. C. Xia, N. Chand, A. M. Velázquez-Benítez, Z. Yang, X. Liu, J. E. Antonio-Lopez, H. Wen, B. Zhu, N. Zhao, F. Effenberger, R. Amezcua-Correa, and G. Li, “Time-division-multiplexed few-mode passive optical network,” Opt. Express 23(2), 1151–1158 (2015).
    [Crossref] [PubMed]
  22. F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low modal-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903509 (2015).
    [Crossref]
  23. Y. Chen, J. Li, P. Zhu, Z. Wu, P. Zhou, Y. Tian, F. Ren, J. Yu, D. Ge, J. Chen, Y. He, and Z. Chen, “Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks,” Opt. Express 23(25), 32054–32062 (2015).
    [Crossref] [PubMed]
  24. B. Li, J. Li, H. Yang, Y. Wan, Y. He, and Z. Chen, “Comparison of DSB and SSB Transmission for OFDM-PON,” J. Opt. Commun. Netw. 4(11), B94–B100 (2012).
    [Crossref]
  25. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
    [Crossref] [PubMed]
  26. J. D. Love and N. Riesen, “Mode-selective couplers for few-mode optical fiber networks,” Opt. Lett. 37(19), 3990–3992 (2012).
    [Crossref] [PubMed]
  27. C. Xia, N. Chand, A. M. Velázquez-Benítez, Z. Yang, X. Liu, J. E. Antonio-Lopez, H. Wen, B. Zhu, N. Zhao, F. Effenberger, R. Amezcua-Correa, and G. Li, “Time-division-multiplexed few-mode passive optical network,” Opt. Express 23(2), 1151–1158 (2015).
    [Crossref] [PubMed]
  28. Y. Li, N. Hua, X. Zheng, and G. Li, “CapEx advantages of few-mode fiber networks,” in Proc. OFC 2015, Paper Th2A.43.
  29. E. Ip, G. Milione, M. J. Li, N. Cvijetic, K. Kanonakis, J. Stone, G. Peng, X. Prieto, C. Montero, V. Moreno, and J. Liñares, “SDM transmission of real-time 10GbE traffic using commercial SFP + transceivers over 0.5km elliptical-core few-mode fiber,” Opt. Express 23(13), 17120–17126 (2015).
    [Crossref] [PubMed]
  30. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
    [Crossref] [PubMed]
  31. T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
    [Crossref]

2016 (1)

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

2015 (10)

A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things You Should Know about Fronthaul,” J. Lightwave Technol. 33(5), 1077–1083 (2015).
[Crossref]

J. Bartelt, P. Rost, D. Wubben, J. Lessmann, B. Melis, and G. Fettweis, “Fronthaul and Backhaul Requirements of Flexibly Centralized Radio Access Networks,” IEEE Wirel. Commun. 22(5), 105–111 (2015).
[Crossref]

L. Giorgi, A. D’Errico, M. Presi, E. Ciaramella, and F. Testa, “Remote light source for silicon photonic transceivers in mobile fronthaul applications,” IEEE Electron. Lett. 51(4), 355–357 (2015).
[Crossref]

M. Zhu, F. Li, F. Lu, J. Yu, C. Su, G. Gu, and G. Chang, “Wavelength Resource Sharing in Bidirectional Optical Mobile Fronthaul,” J. Lightwave Technol. 33(15), 3182–3188 (2015).
[Crossref]

Y. Ma, Z. Xu, C. Zhang, H. Lin, Q. Wang, M. Zhou, H. Wang, J. Yu, and X. Wang, “Demonstration of digital fronthaul over self-seeded WDM-PON in commercial LTE environment,” Opt. Express 23(9), 11927–11935 (2015).
[Crossref] [PubMed]

C. Xia, N. Chand, A. M. Velázquez-Benítez, Z. Yang, X. Liu, J. E. Antonio-Lopez, H. Wen, B. Zhu, N. Zhao, F. Effenberger, R. Amezcua-Correa, and G. Li, “Time-division-multiplexed few-mode passive optical network,” Opt. Express 23(2), 1151–1158 (2015).
[Crossref] [PubMed]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low modal-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903509 (2015).
[Crossref]

Y. Chen, J. Li, P. Zhu, Z. Wu, P. Zhou, Y. Tian, F. Ren, J. Yu, D. Ge, J. Chen, Y. He, and Z. Chen, “Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks,” Opt. Express 23(25), 32054–32062 (2015).
[Crossref] [PubMed]

C. Xia, N. Chand, A. M. Velázquez-Benítez, Z. Yang, X. Liu, J. E. Antonio-Lopez, H. Wen, B. Zhu, N. Zhao, F. Effenberger, R. Amezcua-Correa, and G. Li, “Time-division-multiplexed few-mode passive optical network,” Opt. Express 23(2), 1151–1158 (2015).
[Crossref] [PubMed]

E. Ip, G. Milione, M. J. Li, N. Cvijetic, K. Kanonakis, J. Stone, G. Peng, X. Prieto, C. Montero, V. Moreno, and J. Liñares, “SDM transmission of real-time 10GbE traffic using commercial SFP + transceivers over 0.5km elliptical-core few-mode fiber,” Opt. Express 23(13), 17120–17126 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A Signal Compression on the CPRI Interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

C. Liu, L. Zhang, M. Zhu, J. Wang, L. Cheng, and G. Chang, “A Novel Multi-Service Small-Cell Cloud Radio Access Network for Mobile Backhaul and Computing Based on Radio-Over-Fiber Technologies,” J. Lightwave Technol. 31(17), 2869–2875 (2013).
[Crossref]

D. Richardson, J. Fin, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (3)

Amezcua-Correa, R.

Antonio-Lopez, J. E.

Bartelt, J.

J. Bartelt, P. Rost, D. Wubben, J. Lessmann, B. Melis, and G. Fettweis, “Fronthaul and Backhaul Requirements of Flexibly Centralized Radio Access Networks,” IEEE Wirel. Commun. 22(5), 105–111 (2015).
[Crossref]

Bernardos, C. J.

P. Rost, C. J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder, D. Sabella, and D. Wübben, “Cloud Technologies for Flexible 5G Radio Access Networks,” IEEE Commun. Mag. 52(5), 68–76 (2014).
[Crossref]

Brambilla, G.

Cao, W.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A Signal Compression on the CPRI Interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Chanclou, P.

Chand, N.

Chang, G.

Chen, J.

Chen, Y.

Chen, Z.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low modal-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903509 (2015).
[Crossref]

Y. Chen, J. Li, P. Zhu, Z. Wu, P. Zhou, Y. Tian, F. Ren, J. Yu, D. Ge, J. Chen, Y. He, and Z. Chen, “Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks,” Opt. Express 23(25), 32054–32062 (2015).
[Crossref] [PubMed]

B. Li, J. Li, H. Yang, Y. Wan, Y. He, and Z. Chen, “Comparison of DSB and SSB Transmission for OFDM-PON,” J. Opt. Commun. Netw. 4(11), B94–B100 (2012).
[Crossref]

Cheng, L.

Ciaramella, E.

L. Giorgi, A. D’Errico, M. Presi, E. Ciaramella, and F. Testa, “Remote light source for silicon photonic transceivers in mobile fronthaul applications,” IEEE Electron. Lett. 51(4), 355–357 (2015).
[Crossref]

Cvijetic, N.

D’Errico, A.

L. Giorgi, A. D’Errico, M. Presi, E. Ciaramella, and F. Testa, “Remote light source for silicon photonic transceivers in mobile fronthaul applications,” IEEE Electron. Lett. 51(4), 355–357 (2015).
[Crossref]

De Domenico, A.

P. Rost, C. J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder, D. Sabella, and D. Wübben, “Cloud Technologies for Flexible 5G Radio Access Networks,” IEEE Commun. Mag. 52(5), 68–76 (2014).
[Crossref]

Di Girolamo, M.

P. Rost, C. J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder, D. Sabella, and D. Wübben, “Cloud Technologies for Flexible 5G Radio Access Networks,” IEEE Commun. Mag. 52(5), 68–76 (2014).
[Crossref]

Diallo, T.

Du, C.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

Effenberger, F.

Fettweis, G.

J. Bartelt, P. Rost, D. Wubben, J. Lessmann, B. Melis, and G. Fettweis, “Fronthaul and Backhaul Requirements of Flexibly Centralized Radio Access Networks,” IEEE Wirel. Commun. 22(5), 105–111 (2015).
[Crossref]

Fin, J.

D. Richardson, J. Fin, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ge, D.

Giorgi, L.

L. Giorgi, A. D’Errico, M. Presi, E. Ciaramella, and F. Testa, “Remote light source for silicon photonic transceivers in mobile fronthaul applications,” IEEE Electron. Lett. 51(4), 355–357 (2015).
[Crossref]

Gu, G.

Guo, B.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A Signal Compression on the CPRI Interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Guo, Q.

He, Y.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low modal-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903509 (2015).
[Crossref]

Y. Chen, J. Li, P. Zhu, Z. Wu, P. Zhou, Y. Tian, F. Ren, J. Yu, D. Ge, J. Chen, Y. He, and Z. Chen, “Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks,” Opt. Express 23(25), 32054–32062 (2015).
[Crossref] [PubMed]

B. Li, J. Li, H. Yang, Y. Wan, Y. He, and Z. Chen, “Comparison of DSB and SSB Transmission for OFDM-PON,” J. Opt. Commun. Netw. 4(11), B94–B100 (2012).
[Crossref]

Hu, T.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low modal-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903509 (2015).
[Crossref]

Ip, E.

Ismaeel, R.

Jung, Y.

Kanonakis, K.

Ke, Y.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

Lalam, M.

P. Rost, C. J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder, D. Sabella, and D. Wübben, “Cloud Technologies for Flexible 5G Radio Access Networks,” IEEE Commun. Mag. 52(5), 68–76 (2014).
[Crossref]

Lee, T.

Lessmann, J.

J. Bartelt, P. Rost, D. Wubben, J. Lessmann, B. Melis, and G. Fettweis, “Fronthaul and Backhaul Requirements of Flexibly Centralized Radio Access Networks,” IEEE Wirel. Commun. 22(5), 105–111 (2015).
[Crossref]

Li, B.

Li, F.

Li, G.

Li, J.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low modal-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903509 (2015).
[Crossref]

Y. Chen, J. Li, P. Zhu, Z. Wu, P. Zhou, Y. Tian, F. Ren, J. Yu, D. Ge, J. Chen, Y. He, and Z. Chen, “Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks,” Opt. Express 23(25), 32054–32062 (2015).
[Crossref] [PubMed]

B. Li, J. Li, H. Yang, Y. Wan, Y. He, and Z. Chen, “Comparison of DSB and SSB Transmission for OFDM-PON,” J. Opt. Commun. Netw. 4(11), B94–B100 (2012).
[Crossref]

Li, M. J.

Li, Z.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low modal-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903509 (2015).
[Crossref]

Lin, H.

Liñares, J.

Liu, C.

Liu, X.

Liu, Z.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

Love, J. D.

Lu, F.

Ma, Y.

Maeder, A.

P. Rost, C. J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder, D. Sabella, and D. Wübben, “Cloud Technologies for Flexible 5G Radio Access Networks,” IEEE Commun. Mag. 52(5), 68–76 (2014).
[Crossref]

Melis, B.

J. Bartelt, P. Rost, D. Wubben, J. Lessmann, B. Melis, and G. Fettweis, “Fronthaul and Backhaul Requirements of Flexibly Centralized Radio Access Networks,” IEEE Wirel. Commun. 22(5), 105–111 (2015).
[Crossref]

Milione, G.

Mo, Q.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low modal-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903509 (2015).
[Crossref]

Montero, C.

Moreno, V.

Nelson, L.

D. Richardson, J. Fin, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Oduro, B.

Peng, G.

Pizzinat, A.

Presi, M.

L. Giorgi, A. D’Errico, M. Presi, E. Ciaramella, and F. Testa, “Remote light source for silicon photonic transceivers in mobile fronthaul applications,” IEEE Electron. Lett. 51(4), 355–357 (2015).
[Crossref]

Prieto, X.

Ren, F.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low modal-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903509 (2015).
[Crossref]

Y. Chen, J. Li, P. Zhu, Z. Wu, P. Zhou, Y. Tian, F. Ren, J. Yu, D. Ge, J. Chen, Y. He, and Z. Chen, “Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks,” Opt. Express 23(25), 32054–32062 (2015).
[Crossref] [PubMed]

Richardson, D.

D. Richardson, J. Fin, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Riesen, N.

Rost, P.

J. Bartelt, P. Rost, D. Wubben, J. Lessmann, B. Melis, and G. Fettweis, “Fronthaul and Backhaul Requirements of Flexibly Centralized Radio Access Networks,” IEEE Wirel. Commun. 22(5), 105–111 (2015).
[Crossref]

P. Rost, C. J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder, D. Sabella, and D. Wübben, “Cloud Technologies for Flexible 5G Radio Access Networks,” IEEE Commun. Mag. 52(5), 68–76 (2014).
[Crossref]

Sabella, D.

P. Rost, C. J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder, D. Sabella, and D. Wübben, “Cloud Technologies for Flexible 5G Radio Access Networks,” IEEE Commun. Mag. 52(5), 68–76 (2014).
[Crossref]

Saliou, F.

Samardzija, D.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A Signal Compression on the CPRI Interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Stone, J.

Su, C.

Tang, R.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low modal-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903509 (2015).
[Crossref]

Tao, A.

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A Signal Compression on the CPRI Interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

Testa, F.

L. Giorgi, A. D’Errico, M. Presi, E. Ciaramella, and F. Testa, “Remote light source for silicon photonic transceivers in mobile fronthaul applications,” IEEE Electron. Lett. 51(4), 355–357 (2015).
[Crossref]

Tian, Y.

Tran, A. V.

Velázquez-Benítez, A. M.

Wan, Y.

Wang, H.

Wang, J.

Wang, Q.

Wang, X.

Wen, H.

Wu, Z.

Wubben, D.

J. Bartelt, P. Rost, D. Wubben, J. Lessmann, B. Melis, and G. Fettweis, “Fronthaul and Backhaul Requirements of Flexibly Centralized Radio Access Networks,” IEEE Wirel. Commun. 22(5), 105–111 (2015).
[Crossref]

Wübben, D.

P. Rost, C. J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder, D. Sabella, and D. Wübben, “Cloud Technologies for Flexible 5G Radio Access Networks,” IEEE Commun. Mag. 52(5), 68–76 (2014).
[Crossref]

Xia, C.

Xu, Z.

Yang, H.

Yang, Z.

Yu, J.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low modal-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903509 (2015).
[Crossref]

Y. Ma, Z. Xu, C. Zhang, H. Lin, Q. Wang, M. Zhou, H. Wang, J. Yu, and X. Wang, “Demonstration of digital fronthaul over self-seeded WDM-PON in commercial LTE environment,” Opt. Express 23(9), 11927–11935 (2015).
[Crossref] [PubMed]

Y. Chen, J. Li, P. Zhu, Z. Wu, P. Zhou, Y. Tian, F. Ren, J. Yu, D. Ge, J. Chen, Y. He, and Z. Chen, “Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks,” Opt. Express 23(25), 32054–32062 (2015).
[Crossref] [PubMed]

M. Zhu, F. Li, F. Lu, J. Yu, C. Su, G. Gu, and G. Chang, “Wavelength Resource Sharing in Bidirectional Optical Mobile Fronthaul,” J. Lightwave Technol. 33(15), 3182–3188 (2015).
[Crossref]

Zhang, C.

Zhang, L.

Zhao, N.

Zhou, M.

Zhou, P.

Zhu, B.

Zhu, M.

Zhu, P.

Bell Labs Tech. J. (1)

B. Guo, W. Cao, A. Tao, and D. Samardzija, “LTE/LTE-A Signal Compression on the CPRI Interface,” Bell Labs Tech. J. 18(2), 117–133 (2013).
[Crossref]

IEEE Commun. Mag. (1)

P. Rost, C. J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder, D. Sabella, and D. Wübben, “Cloud Technologies for Flexible 5G Radio Access Networks,” IEEE Commun. Mag. 52(5), 68–76 (2014).
[Crossref]

IEEE Electron. Lett. (1)

L. Giorgi, A. D’Errico, M. Presi, E. Ciaramella, and F. Testa, “Remote light source for silicon photonic transceivers in mobile fronthaul applications,” IEEE Electron. Lett. 51(4), 355–357 (2015).
[Crossref]

IEEE Photonics J. (1)

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low modal-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903509 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON Based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

IEEE Wirel. Commun. (1)

J. Bartelt, P. Rost, D. Wubben, J. Lessmann, B. Melis, and G. Fettweis, “Fronthaul and Backhaul Requirements of Flexibly Centralized Radio Access Networks,” IEEE Wirel. Commun. 22(5), 105–111 (2015).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (2)

Nat. Photonics (1)

D. Richardson, J. Fin, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (7)

C. Xia, N. Chand, A. M. Velázquez-Benítez, Z. Yang, X. Liu, J. E. Antonio-Lopez, H. Wen, B. Zhu, N. Zhao, F. Effenberger, R. Amezcua-Correa, and G. Li, “Time-division-multiplexed few-mode passive optical network,” Opt. Express 23(2), 1151–1158 (2015).
[Crossref] [PubMed]

Y. Chen, J. Li, P. Zhu, Z. Wu, P. Zhou, Y. Tian, F. Ren, J. Yu, D. Ge, J. Chen, Y. He, and Z. Chen, “Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks,” Opt. Express 23(25), 32054–32062 (2015).
[Crossref] [PubMed]

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

C. Xia, N. Chand, A. M. Velázquez-Benítez, Z. Yang, X. Liu, J. E. Antonio-Lopez, H. Wen, B. Zhu, N. Zhao, F. Effenberger, R. Amezcua-Correa, and G. Li, “Time-division-multiplexed few-mode passive optical network,” Opt. Express 23(2), 1151–1158 (2015).
[Crossref] [PubMed]

E. Ip, G. Milione, M. J. Li, N. Cvijetic, K. Kanonakis, J. Stone, G. Peng, X. Prieto, C. Montero, V. Moreno, and J. Liñares, “SDM transmission of real-time 10GbE traffic using commercial SFP + transceivers over 0.5km elliptical-core few-mode fiber,” Opt. Express 23(13), 17120–17126 (2015).
[Crossref] [PubMed]

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

Y. Ma, Z. Xu, C. Zhang, H. Lin, Q. Wang, M. Zhou, H. Wang, J. Yu, and X. Wang, “Demonstration of digital fronthaul over self-seeded WDM-PON in commercial LTE environment,” Opt. Express 23(9), 11927–11935 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (11)

Y. Li, N. Hua, X. Zheng, and G. Li, “CapEx advantages of few-mode fiber networks,” in Proc. OFC 2015, Paper Th2A.43.

F. Saliou, G. Simon, P. Chanclou, M. Brunero, L. Marazzi, P. Parolari, M. Martinelli, R. Brenot, A. Maho, S. Barbet, G. Gavioli, G. Parladori, S. Gebrewold, and J. Leuthold, “Self-Seeded RSOAs WDM PON Field Trial for Business and Mobile Fronthaul Applications,” in Proc. OFC 2015, Paper M2A.2.
[Crossref]

X. Zhou and N. Deng, “A 25-Gb/s 20-km Wavelength Reused WDM System for Mobile Fronthaul Applications,” in Proc. ECOC 2015, paper We.3.4.3.
[Crossref]

F. Lu, Y. Chi, M. Xu, L. Cheng, J. Wang, C. Tsai, G. Lin, and G. Chang, “Cost-Effective Bi-Directional Mobile Fronthaul Employing WRC-FPLD for beyond LTE-Advanced Services,” in Proc. OFC 2016, Paper Tu2B.5.
[Crossref]

P. Chanclou, A. Pizzinat, F. L. Clech, T. Reedeker, Y. Lagadec, F. Saliou, B. L. Guyader, L. Guillo, Q. Deniel, S. Gosselin, S. D. Le, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O’Dull, S. A. Gebrewold, D. Hillerkuss, J. Leuthold, G. Gavioli, and P. Galli, “Optical Fiber Solution for Mobile Fronthaul to Achieve Cloud Radio Access Network,” in Proc. Future Network and Mobile Summit 2013, Paper 1–11.

C. Han, S. Cho, H. S. Chung, and J. H. Lee, “Linearity Improvement of Directly-Modulated Multi-IF-over-Fibre LTE-A Mobile Fronthaul Link Using Shunt Diode Predistorter,” in Proc. ECOC 2015, Paper We 4.4.4.
[Crossref]

F. Saliou, P. Chanclou, B. Charbonnier, B. L. Guyader, Q. Deniel, A. Pizzinat, N. Genay, Z. Xu, and H. Lin, “Up to 15km Cavity Self Seeded WDM-PON System with 90km Maximum Reach and up to 4.9Gbit/s CPRI Links,” in Proc. ECOC 2012, Paper We.1.B.6.
[Crossref]

S. Cho, H. S. Chung, C. Han, S. Lee, and J. Hyun Lee, “Experimental demonstrations of next generation cost effective mobile fronthaul with IFoF technique,” in Proc. OFC 2015, Paper M2J.5.
[Crossref]

J. Kani, “Solutions for future mobile fronthaul access network convergence,” in Proc. OFC 2016, Paper W1H.1.
[Crossref]

K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Proc. OFC 2015, Paper Tu2E.1.

CPRI Interface Specification, v. 6.1, July 1st (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Wavelength reused MDM architecture for bidirectional mobile fronthaul.
Fig. 2
Fig. 2 Operating principle of proposed Rayleigh backscattering noise mitigation scheme.
Fig. 3
Fig. 3 Experimental setup of wavelength reused MDM system.
Fig. 4
Fig. 4 Optical spectra for (a) carrier branch of downstream (b) signal branch of downstream (c) carrier branch of upstream (d) and signal branch of upstream.
Fig. 5
Fig. 5 Output mode intensity profiles for (a) LP01 input FMF (b) LP01 output FMF (c) LP11 input FMF (d) LP11 output FMF.
Fig. 6
Fig. 6 BER characteristics versus the received power of (a) downstream and (b) upstream.
Fig. 7
Fig. 7 (a) Optical spectra of upstream and downstream with frequency shift (b) Electrical spectra of upstream and downstream with frequency shift.
Fig. 8
Fig. 8 BER characteristics versus the received power of upstream with different downstream RF.
Fig. 9
Fig. 9 BER characteristics versus the received power of downstream with different up-converted RF and downstream power.
Fig. 10
Fig. 10 Upstream receiver sensitivity versus different downstream power.

Metrics