Abstract

The central wavelengths of the resonance bands are critical aspect of the performance of long period gratings (LPGs) as sensors, particularly for devices designed to operate near the phase matching turning point (PMTP), where the sensitivity to measurements can vary rapidly. Generally, LPGs are characterized by their period, but the amplitude of the amplitude of the index modulation is also an important factor in determining the wavelengths of the resonance bands. Variations in fabrication between LPG sensors can increase or decrease the sensitivity of the LPG to strain, temperature or surrounding refractive index. Here, the technique of overwritten UV laser fabrication is demonstrated. It is shown that, on repeated overwriting, the resonance bands of an LPG exhibit significant wavelength shift, which can be monitored and which can be used to tune the resonance bands to the desired wavelengths. This technique is applied to periods in the range 100 to 200 µm, showing the cycle-to-cycle evolution of the resonance bands near the PMTPs of a number of cladding modes. The use of online monitoring is shown to reduce the resonance band sensor-to-sensor central wavelength variation from 10 nm to 3 nm.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

Corrections

22 September 2016: A correction was made to Fig. 6.


OSA Recommended Articles
Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser

Rebecca Y. N. Wong, Edmond Chehura, Stephen E. Staines, Stephen W. James, and Ralph P. Tatam
Appl. Opt. 53(21) 4669-4674 (2014)

Fiber-optic liquid-level sensor using a long-period grating

Sarfraz Khaliq, Stephen W. James, and Ralph P. Tatam
Opt. Lett. 26(16) 1224-1226 (2001)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33(13), 1167–1168 (1997).
    [Crossref]
  2. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4(11), 457–466 (1999).
    [Crossref] [PubMed]
  3. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), 49–62 (2003).
    [Crossref]
  4. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  5. X. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  6. R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt. 53(21), 4669–4674 (2014).
    [Crossref] [PubMed]
  7. S. A. Vasiliev, E. M. Dianov, D. Varelas, H. G. Limberger, and R. P. Salathé, “Postfabrication resonance peak positioning of long-period cladding-mode-coupled gratings,” Opt. Lett. 21(22), 1830–1832 (1996).
    [Crossref] [PubMed]
  8. F. Abrishamian and K. Morishita, “Broadening Adjustable Range on Post-Fabrication Resonance Wavelength Trimming of Long-Period Fiber Gratings and the Mechanisms of Resonance Wavelength Shifts,” IEICE Trans. E94-C(4), 641–647 (2011).
    [Crossref]
  9. B.-O. Guan, H.-Y. Tam, H. L. W. Chan, C.-L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fibre during and after 193 nm UV inscription,” Meas. Sci. Technol. 12(7), 818–823 (2001).
    [Crossref]
  10. X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, “Dual resonant peaks of LP015 cladding mode in long-period gratings,” Electron. Lett. 35(8), 649 (1999).
    [Crossref]
  11. K. C. Byron, P. E. Dyer, R. J. Farley, and R. Giedl, “Amplification of fibre Bragg grating reflectivity by post-writing exposure with a 193 nm ArF laser,” Electron. Lett. 30(14), 1133–1134 (1994).
    [Crossref]
  12. T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE. Conf. Pub. 10, 1449–1451 (1998).
  13. T. Erdogan, T. A. Strasser, M. A. Milbrodt, E. J. Laskowski, C. H. Henry, and G. E. Kohnke, “Integrated-optical Mach-Zehnder add-drop filter fabricated by a single UV-induced grating exposure,” Appl. Opt. 36(30), 7838–7845 (1997).
    [Crossref] [PubMed]
  14. M. Partridge, “Spectrum interrogation run time (Version 1),” figshare (2016) [retrieved 30 June 2016], https://dx.doi.org/10.17862/cranfield.rd.3759471 .
  15. M. Partridge and S. W. James, “Change in long period grating spectra with length,” figshare (2016) [retrieved 26 August 2016], https://dx.doi.org/10.17862/cranfield.rd.3749550 .
  16. M. Partridge, “Repeatability of LPG fixed exposure vs tracked,” figshare (2016) [retrieved 26 August 2016], https://dx.doi.org/10.17862/cranfield.rd.3749583 .
  17. M. Partridge and S. W. James, “Overwrite LPG fabrication data vs model,” figshare (2016) [retrieved 26 August 2016], https://dx.doi.org/10.17862/cranfield.rd.3750465 .
  18. J. Barrington and M. Partridge, “All LPG turning points from 100 to 200um,” figshare (2016) [retrieved 26 August 2016], https://dx.doi.org/10.17862/cranfield.rd.3749580 .
  19. M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sensor. Actuat. Biol. Chem. 203, 621–625 (2014).
  20. S. W. James, I. Ishaq, G. J. Ashwell, and R. P. Tatam, “Cascaded long-period gratings with nanostructured coatings,” Opt. Lett. 30(17), 2197–2199 (2005).
    [Crossref] [PubMed]
  21. M. Partridge, “109.5um Cascade LPG formation,” figshare (2016) [retrieved 26 August 2016], https://dx.doi.org/10.17862/cranfield.rd.3750564 .
  22. M. Partridge, “108.5 LPG with 500 overwrite 5s cycles,” figshare (2016) [retrieved 26 August 2016], https://dx.doi.org/10.17862/cranfield.rd.3750567 .
  23. M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64(14), 144201 (2001).
    [Crossref]

2014 (2)

R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt. 53(21), 4669–4674 (2014).
[Crossref] [PubMed]

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sensor. Actuat. Biol. Chem. 203, 621–625 (2014).

2011 (1)

F. Abrishamian and K. Morishita, “Broadening Adjustable Range on Post-Fabrication Resonance Wavelength Trimming of Long-Period Fiber Gratings and the Mechanisms of Resonance Wavelength Shifts,” IEICE Trans. E94-C(4), 641–647 (2011).
[Crossref]

2005 (1)

2003 (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), 49–62 (2003).
[Crossref]

2002 (1)

2001 (2)

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64(14), 144201 (2001).
[Crossref]

B.-O. Guan, H.-Y. Tam, H. L. W. Chan, C.-L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fibre during and after 193 nm UV inscription,” Meas. Sci. Technol. 12(7), 818–823 (2001).
[Crossref]

1999 (2)

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, “Dual resonant peaks of LP015 cladding mode in long-period gratings,” Electron. Lett. 35(8), 649 (1999).
[Crossref]

V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4(11), 457–466 (1999).
[Crossref] [PubMed]

1998 (1)

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE. Conf. Pub. 10, 1449–1451 (1998).

1997 (2)

T. Erdogan, T. A. Strasser, M. A. Milbrodt, E. J. Laskowski, C. H. Henry, and G. E. Kohnke, “Integrated-optical Mach-Zehnder add-drop filter fabricated by a single UV-induced grating exposure,” Appl. Opt. 36(30), 7838–7845 (1997).
[Crossref] [PubMed]

H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33(13), 1167–1168 (1997).
[Crossref]

1996 (2)

1994 (1)

K. C. Byron, P. E. Dyer, R. J. Farley, and R. Giedl, “Amplification of fibre Bragg grating reflectivity by post-writing exposure with a 193 nm ArF laser,” Electron. Lett. 30(14), 1133–1134 (1994).
[Crossref]

Abrishamian, F.

F. Abrishamian and K. Morishita, “Broadening Adjustable Range on Post-Fabrication Resonance Wavelength Trimming of Long-Period Fiber Gratings and the Mechanisms of Resonance Wavelength Shifts,” IEICE Trans. E94-C(4), 641–647 (2011).
[Crossref]

Ashwell, G. J.

Askins, C. G.

H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33(13), 1167–1168 (1997).
[Crossref]

Bennion, I.

Bhatia, V.

Byron, K. C.

K. C. Byron, P. E. Dyer, R. J. Farley, and R. Giedl, “Amplification of fibre Bragg grating reflectivity by post-writing exposure with a 193 nm ArF laser,” Electron. Lett. 30(14), 1133–1134 (1994).
[Crossref]

Chan, H. L. W.

B.-O. Guan, H.-Y. Tam, H. L. W. Chan, C.-L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fibre during and after 193 nm UV inscription,” Meas. Sci. Technol. 12(7), 818–823 (2001).
[Crossref]

Chehura, E.

Choy, C.-L.

B.-O. Guan, H.-Y. Tam, H. L. W. Chan, C.-L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fibre during and after 193 nm UV inscription,” Meas. Sci. Technol. 12(7), 818–823 (2001).
[Crossref]

Davis, F.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sensor. Actuat. Biol. Chem. 203, 621–625 (2014).

Demokan, M. S.

B.-O. Guan, H.-Y. Tam, H. L. W. Chan, C.-L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fibre during and after 193 nm UV inscription,” Meas. Sci. Technol. 12(7), 818–823 (2001).
[Crossref]

Dianov, E. M.

Dyer, P. E.

K. C. Byron, P. E. Dyer, R. J. Farley, and R. Giedl, “Amplification of fibre Bragg grating reflectivity by post-writing exposure with a 193 nm ArF laser,” Electron. Lett. 30(14), 1133–1134 (1994).
[Crossref]

Erdogan, T.

Farley, R. J.

K. C. Byron, P. E. Dyer, R. J. Farley, and R. Giedl, “Amplification of fibre Bragg grating reflectivity by post-writing exposure with a 193 nm ArF laser,” Electron. Lett. 30(14), 1133–1134 (1994).
[Crossref]

Friebele, E. J.

H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33(13), 1167–1168 (1997).
[Crossref]

Giedl, R.

K. C. Byron, P. E. Dyer, R. J. Farley, and R. Giedl, “Amplification of fibre Bragg grating reflectivity by post-writing exposure with a 193 nm ArF laser,” Electron. Lett. 30(14), 1133–1134 (1994).
[Crossref]

Guan, B.-O.

B.-O. Guan, H.-Y. Tam, H. L. W. Chan, C.-L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fibre during and after 193 nm UV inscription,” Meas. Sci. Technol. 12(7), 818–823 (2001).
[Crossref]

Haggans, C. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE. Conf. Pub. 10, 1449–1451 (1998).

Henry, C. H.

Higson, S. P. J.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sensor. Actuat. Biol. Chem. 203, 621–625 (2014).

Huang, D.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, “Dual resonant peaks of LP015 cladding mode in long-period gratings,” Electron. Lett. 35(8), 649 (1999).
[Crossref]

Huang, Z.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, “Dual resonant peaks of LP015 cladding mode in long-period gratings,” Electron. Lett. 35(8), 649 (1999).
[Crossref]

Ishaq, I.

Jackson, M. A.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE. Conf. Pub. 10, 1449–1451 (1998).

James, S. W.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sensor. Actuat. Biol. Chem. 203, 621–625 (2014).

R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt. 53(21), 4669–4674 (2014).
[Crossref] [PubMed]

S. W. James, I. Ishaq, G. J. Ashwell, and R. P. Tatam, “Cascaded long-period gratings with nanostructured coatings,” Opt. Lett. 30(17), 2197–2199 (2005).
[Crossref] [PubMed]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), 49–62 (2003).
[Crossref]

Jiang, S.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, “Dual resonant peaks of LP015 cladding mode in long-period gratings,” Electron. Lett. 35(8), 649 (1999).
[Crossref]

Kohnke, G. E.

Kristensen, M.

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64(14), 144201 (2001).
[Crossref]

Laskowski, E. J.

Limberger, H. G.

MacDougall, T. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE. Conf. Pub. 10, 1449–1451 (1998).

McElhanon, R. W.

H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33(13), 1167–1168 (1997).
[Crossref]

Milbrodt, M. A.

Morishita, K.

F. Abrishamian and K. Morishita, “Broadening Adjustable Range on Post-Fabrication Resonance Wavelength Trimming of Long-Period Fiber Gratings and the Mechanisms of Resonance Wavelength Shifts,” IEICE Trans. E94-C(4), 641–647 (2011).
[Crossref]

Partridge, M.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sensor. Actuat. Biol. Chem. 203, 621–625 (2014).

Patrick, H. J.

H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33(13), 1167–1168 (1997).
[Crossref]

Pilevar, S.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE. Conf. Pub. 10, 1449–1451 (1998).

Salathé, R. P.

Shi, W.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, “Dual resonant peaks of LP015 cladding mode in long-period gratings,” Electron. Lett. 35(8), 649 (1999).
[Crossref]

Shu, X.

X. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, “Dual resonant peaks of LP015 cladding mode in long-period gratings,” Electron. Lett. 35(8), 649 (1999).
[Crossref]

Staines, S. E.

Strasser, T. A.

Tam, H.-Y.

B.-O. Guan, H.-Y. Tam, H. L. W. Chan, C.-L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fibre during and after 193 nm UV inscription,” Meas. Sci. Technol. 12(7), 818–823 (2001).
[Crossref]

Tatam, R. P.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sensor. Actuat. Biol. Chem. 203, 621–625 (2014).

R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt. 53(21), 4669–4674 (2014).
[Crossref] [PubMed]

S. W. James, I. Ishaq, G. J. Ashwell, and R. P. Tatam, “Cascaded long-period gratings with nanostructured coatings,” Opt. Lett. 30(17), 2197–2199 (2005).
[Crossref] [PubMed]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), 49–62 (2003).
[Crossref]

Varelas, D.

Vasiliev, S. A.

Vengsarkar, A. M.

Wang, Q.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, “Dual resonant peaks of LP015 cladding mode in long-period gratings,” Electron. Lett. 35(8), 649 (1999).
[Crossref]

Wong, R. Y. N.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sensor. Actuat. Biol. Chem. 203, 621–625 (2014).

R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt. 53(21), 4669–4674 (2014).
[Crossref] [PubMed]

Zhang, L.

Zhu, X.

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, “Dual resonant peaks of LP015 cladding mode in long-period gratings,” Electron. Lett. 35(8), 649 (1999).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (3)

X. Shu, X. Zhu, Q. Wang, S. Jiang, W. Shi, Z. Huang, and D. Huang, “Dual resonant peaks of LP015 cladding mode in long-period gratings,” Electron. Lett. 35(8), 649 (1999).
[Crossref]

K. C. Byron, P. E. Dyer, R. J. Farley, and R. Giedl, “Amplification of fibre Bragg grating reflectivity by post-writing exposure with a 193 nm ArF laser,” Electron. Lett. 30(14), 1133–1134 (1994).
[Crossref]

H. J. Patrick, C. G. Askins, R. W. McElhanon, and E. J. Friebele, “Amplitude mask patterned on an excimer laser mirror for high intensity writing of long period fibre gratings,” Electron. Lett. 33(13), 1167–1168 (1997).
[Crossref]

IEEE. Conf. Pub. (1)

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized expression for the growth of long period gratings,” IEEE. Conf. Pub. 10, 1449–1451 (1998).

IEICE Trans. (1)

F. Abrishamian and K. Morishita, “Broadening Adjustable Range on Post-Fabrication Resonance Wavelength Trimming of Long-Period Fiber Gratings and the Mechanisms of Resonance Wavelength Shifts,” IEICE Trans. E94-C(4), 641–647 (2011).
[Crossref]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (2)

B.-O. Guan, H.-Y. Tam, H. L. W. Chan, C.-L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fibre during and after 193 nm UV inscription,” Meas. Sci. Technol. 12(7), 818–823 (2001).
[Crossref]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), 49–62 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64(14), 144201 (2001).
[Crossref]

Sensor. Actuat. Biol. Chem. (1)

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sensor. Actuat. Biol. Chem. 203, 621–625 (2014).

Other (7)

M. Partridge, “Spectrum interrogation run time (Version 1),” figshare (2016) [retrieved 30 June 2016], https://dx.doi.org/10.17862/cranfield.rd.3759471 .

M. Partridge and S. W. James, “Change in long period grating spectra with length,” figshare (2016) [retrieved 26 August 2016], https://dx.doi.org/10.17862/cranfield.rd.3749550 .

M. Partridge, “Repeatability of LPG fixed exposure vs tracked,” figshare (2016) [retrieved 26 August 2016], https://dx.doi.org/10.17862/cranfield.rd.3749583 .

M. Partridge and S. W. James, “Overwrite LPG fabrication data vs model,” figshare (2016) [retrieved 26 August 2016], https://dx.doi.org/10.17862/cranfield.rd.3750465 .

J. Barrington and M. Partridge, “All LPG turning points from 100 to 200um,” figshare (2016) [retrieved 26 August 2016], https://dx.doi.org/10.17862/cranfield.rd.3749580 .

M. Partridge, “109.5um Cascade LPG formation,” figshare (2016) [retrieved 26 August 2016], https://dx.doi.org/10.17862/cranfield.rd.3750564 .

M. Partridge, “108.5 LPG with 500 overwrite 5s cycles,” figshare (2016) [retrieved 26 August 2016], https://dx.doi.org/10.17862/cranfield.rd.3750567 .

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (179 KB)      A series of 6 intensity plots formed from the spectra of a number of LPGs during fabrication

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 LPG fabrication setup viewed from above.
Fig. 2
Fig. 2 (a) The transmission spectra of a 109.5 µm period LPG during fabrication, recorded after 10, 20, 30, and 40 mm of the LPG had been written. LP18 at ~680 nm is expanded for clarity. (b) numerical model of LPG spectra, where the value of length varies (see Ref [15]. for underlying values).
Fig. 3
Fig. 3 Transmission spectra of 5 LPGs of period 174 µm fabricated on consecutive days using nominally identical irradiation conditions. (see Ref [16]. for underlying values).
Fig. 4
Fig. 4 (a) 40 mm LPG with 109.5 µm period fabricated using the overwrite method. LP18 at ~680 nm is expanded for clarity. (b) numerical model of LPG spectra, where the value of δncore varies from 2x10−6 to 3x10−5 in steps of 4x10−6. (see Ref [17]. for underlying values).
Fig. 5
Fig. 5 Intensity (a) and wavelength position (b) of LP18 during the fabrication of a 109.5 µm period LPG. (see Ref [17]. for underlying values).
Fig. 6
Fig. 6 Spectral response of 5 LPGs with a period of 174 µm fabricated with the overwrite method using varying exposure times. (see Ref [16]. for underlying values).
Fig. 7
Fig. 7 Schematic of a cascaded LPG sensor showing the left (LPG-L) and right LPGs (LPG-R) and the coupling of the core propagating modes, represented by the arrows, into and out of the cladding.
Fig. 8
Fig. 8 Formation of a cascade LPG during the writing of LPG-R. The spectra are offset in intensity to show the progression of LP18 every ten cycles (denoted as cxx). (see Ref [21]. for underlying values).
Fig. 9
Fig. 9 Spectra from 100 to 500 cycle overwrite exposure of a 108.5 µm period LPG. LP18 at ~680 nm is expanded for clarity. (see Ref [22]. for underlying values).
Fig. 10
Fig. 10 Intensity (a) and wavelength position (b) of LP16, LP17, LP18, and LP19 during the fabrication of a 109.5 µm LPG. The dashed line is to highlight a 40 second exposure. (see Ref [22]. for underlying values).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ x = ( n c o r e n c l a d ( x ) ) Λ
λ x = ( n c o r e + δ n c o r e n c l a d ( x ) δ n c l a d ) Λ

Metrics