Abstract

It is shown theoretically and numerically that a simple gratings-based plasmonic structure can support a nearly-degenerate double Fano resonance which can lead to a relatively narrow spectral line shape. The double-resonance spectral location and line-shape are controllable by either adjusting the periodicity and unit-cell of the gratings or by adjusting the angle of incidence of the incoming radiation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides

Ian Breukelaar and Pierre Berini
J. Opt. Soc. Am. A 23(8) 1971-1977 (2006)

Polarization weighting of Fano-type transmission through bi-dimensional metallic gratings

Kevin Tetz, Vitaliy Lomakin, Maziar P. Nezhad, Lin Pang, and Yeshaiahu Fainman
J. Opt. Soc. Am. A 27(4) 911-917 (2010)

High Q-factor multiple Fano resonances for high-sensitivity sensing in all-dielectric metamaterials

Wudeng Wang, Li Zheng, Li Xiong, Jianguang Qi, and Baoying Li
OSA Continuum 2(10) 2818-2825 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
    [Crossref]
  2. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  3. B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.
  4. P. Durand, I. Paidarov, and F. X. Gada, “Theory of fano profiles,” J. Phys. B 34, 1953 (2001).
    [Crossref]
  5. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [Crossref]
  6. H. Feshbach, “Unified theory of nuclear reactions,” Ann. Phys. 5, 357–390 (1958).
    [Crossref]
  7. K. Ueda, “Spectral line shapes of autoionizing rydberg series,” Phys. Rev. A 35, 2484–2492 (1987).
    [Crossref]
  8. A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. i. symmetry analysis of the two-channel coupling,” J. Phys. B 17, 215 (1984).
    [Crossref]
  9. F. H. Mies, “Configuration interaction theory. effects of overlapping resonances,” Phys. Rev. 175, 164–175 (1968).
    [Crossref]
  10. W. Leoński, R. Tanaś, and S. Kielich, “Laser-induced autoionization from a double fano system,” J. Opt. Soc. Am. B 4, 72–77 (1987).
    [Crossref]
  11. S. E. Harris, “Lasers without inversion: Interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
    [Crossref] [PubMed]
  12. N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency:sharp fano resonances and slow light,” Opt. Photon. News 20, 22–27 (2009).
    [Crossref]
  13. C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88, 155411 (2013).
    [Crossref]
  14. J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21, 2236–2244 (2013).
    [Crossref] [PubMed]
  15. J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double fano resonances in asymmetric mim waveguide structure,” Opt. Express 22, 14688–14695 (2014).
    [Crossref] [PubMed]
  16. A. Artar, A. A. Yanik, and H. Altug, “Directional double fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).
    [Crossref] [PubMed]
  17. G.-Z. Li, Q. Li, and L.-J. Wu, “Double fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
    [Crossref] [PubMed]
  18. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
    [Crossref] [PubMed]
  19. T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).
    [Crossref]
  20. Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).
    [Crossref] [PubMed]
  21. Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
    [Crossref] [PubMed]
  22. M. N. Polyanskiy, “Refractive index database,” (2016).
  23. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer tracts in modern physics (Springer, 1988), Vol. 111.
  24. B. Gallinet and O. J. F. Martin, “Ab initio theory of fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
    [Crossref]
  25. Q. M. Ngo, K. Q. Le, D. L. Vu, and V. H. Pham, “Optical bistability based on fano resonances in single- and double-layer nonlinear slab waveguide gratings,” J. Opt. Soc. Am. B 31, 1054–1061 (2014).
    [Crossref]
  26. S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
    [Crossref] [PubMed]
  27. Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
    [Crossref]
  28. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, R. C. McPhedran, and C. M. de Sterke, “Fano resonances of dielectric gratings: symmetries and broadband filtering,” Opt. Express 23, A1672–A1686 (2015).
    [Crossref] [PubMed]
  29. J. Lin, L. Huang, Y. Yu, S. He, and L. Cao, “Deterministic phase engineering for optical fano resonances with arbitrary lineshape and frequencies,” Opt. Express 23, 19154–19165 (2015).
    [Crossref] [PubMed]
  30. Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).
    [Crossref]
  31. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of fano resonances,” Physica Scripta 74, 259 (2006).
    [Crossref]
  32. B. Gallinet, “Fano Resonances in Plasmonic Nanostructures,” Ph.D. thesis, STI, Lausanne (2012).
  33. A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).
    [Crossref] [PubMed]
  34. I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).
    [Crossref]
  35. C. Genet, M. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
    [Crossref]
  36. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]

2016 (1)

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).
[Crossref]

2015 (5)

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref] [PubMed]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref] [PubMed]

G.-Z. Li, Q. Li, and L.-J. Wu, “Double fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
[Crossref] [PubMed]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, R. C. McPhedran, and C. M. de Sterke, “Fano resonances of dielectric gratings: symmetries and broadband filtering,” Opt. Express 23, A1672–A1686 (2015).
[Crossref] [PubMed]

J. Lin, L. Huang, Y. Yu, S. He, and L. Cao, “Deterministic phase engineering for optical fano resonances with arbitrary lineshape and frequencies,” Opt. Express 23, 19154–19165 (2015).
[Crossref] [PubMed]

2014 (4)

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).
[Crossref]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Q. M. Ngo, K. Q. Le, D. L. Vu, and V. H. Pham, “Optical bistability based on fano resonances in single- and double-layer nonlinear slab waveguide gratings,” J. Opt. Soc. Am. B 31, 1054–1061 (2014).
[Crossref]

J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double fano resonances in asymmetric mim waveguide structure,” Opt. Express 22, 14688–14695 (2014).
[Crossref] [PubMed]

2013 (3)

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88, 155411 (2013).
[Crossref]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21, 2236–2244 (2013).
[Crossref] [PubMed]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).
[Crossref]

2011 (2)

A. Artar, A. A. Yanik, and H. Altug, “Directional double fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).
[Crossref] [PubMed]

B. Gallinet and O. J. F. Martin, “Ab initio theory of fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[Crossref]

2010 (4)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).
[Crossref] [PubMed]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref] [PubMed]

2009 (2)

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency:sharp fano resonances and slow light,” Opt. Photon. News 20, 22–27 (2009).
[Crossref]

2006 (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of fano resonances,” Physica Scripta 74, 259 (2006).
[Crossref]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

2003 (1)

C. Genet, M. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[Crossref]

2001 (1)

P. Durand, I. Paidarov, and F. X. Gada, “Theory of fano profiles,” J. Phys. B 34, 1953 (2001).
[Crossref]

1989 (1)

S. E. Harris, “Lasers without inversion: Interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
[Crossref] [PubMed]

1987 (2)

W. Leoński, R. Tanaś, and S. Kielich, “Laser-induced autoionization from a double fano system,” J. Opt. Soc. Am. B 4, 72–77 (1987).
[Crossref]

K. Ueda, “Spectral line shapes of autoionizing rydberg series,” Phys. Rev. A 35, 2484–2492 (1987).
[Crossref]

1984 (1)

A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. i. symmetry analysis of the two-channel coupling,” J. Phys. B 17, 215 (1984).
[Crossref]

1968 (1)

F. H. Mies, “Configuration interaction theory. effects of overlapping resonances,” Phys. Rev. 175, 164–175 (1968).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

1958 (1)

H. Feshbach, “Unified theory of nuclear reactions,” Ann. Phys. 5, 357–390 (1958).
[Crossref]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Directional double fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).
[Crossref] [PubMed]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Directional double fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).
[Crossref] [PubMed]

Avrutsky, I.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).
[Crossref]

Azad, A. K.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref] [PubMed]

Bardou, N.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref] [PubMed]

Bärnthaler, A.

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).
[Crossref] [PubMed]

Botten, L. C.

Burgdörfer, J.

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).
[Crossref] [PubMed]

Cao, L.

Cao, T.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Chang-Hasnain, C.

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

Chase, C.

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

Chen, J.

Chen, J.-h.

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).
[Crossref]

Chen, W.-J.

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref] [PubMed]

Chen, X.-D.

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref] [PubMed]

Chen, Z.

Chen, Z.-x.

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Collin, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref] [PubMed]

Cryan, M. J.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Dal Negro, L.

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88, 155411 (2013).
[Crossref]

de Sterke, C. M.

Deng, Z.-L.

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref] [PubMed]

Ding, P.

Dong, J.-W.

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref] [PubMed]

Dossou, K. B.

Durand, P.

P. Durand, I. Paidarov, and F. X. Gada, “Theory of fano profiles,” J. Phys. B 34, 1953 (2001).
[Crossref]

Fan, C.

Fano, U.

A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. i. symmetry analysis of the two-channel coupling,” J. Phys. B 17, 215 (1984).
[Crossref]

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

Feshbach, H.

H. Feshbach, “Unified theory of nuclear reactions,” Ann. Phys. 5, 357–390 (1958).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Forestiere, C.

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88, 155411 (2013).
[Crossref]

Gada, F. X.

P. Durand, I. Paidarov, and F. X. Gada, “Theory of fano profiles,” J. Phys. B 34, 1953 (2001).
[Crossref]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Ab initio theory of fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[Crossref]

B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.

B. Gallinet, “Fano Resonances in Plasmonic Nanostructures,” Ph.D. thesis, STI, Lausanne (2012).

Gehler, S.

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).
[Crossref] [PubMed]

Genet, C.

C. Genet, M. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[Crossref]

Gibbs, H. M.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).
[Crossref]

Gibson, R.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Giusti-Suzor, A.

A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. i. symmetry analysis of the two-channel coupling,” J. Phys. B 17, 215 (1984).
[Crossref]

Haïdar, R.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Harris, S. E.

S. E. Harris, “Lasers without inversion: Interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
[Crossref] [PubMed]

He, J.

He, S.

Hendrickson, J.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).
[Crossref]

Hu, W.

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).
[Crossref]

Huang, L.

Huang, M.

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

Huang, X.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Joe, Y. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of fano resonances,” Physica Scripta 74, 259 (2006).
[Crossref]

Karagodsky, V.

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

Khitrova, G.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).
[Crossref]

Kielich, S.

Kim, C. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of fano resonances,” Physica Scripta 74, 259 (2006).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Kuhl, U.

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).
[Crossref] [PubMed]

Le, K. Q.

Leonski, W.

Li, G.-Z.

G.-Z. Li, Q. Li, and L.-J. Wu, “Double fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
[Crossref] [PubMed]

Li, Q.

G.-Z. Li, Q. Li, and L.-J. Wu, “Double fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
[Crossref] [PubMed]

Li, T.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref] [PubMed]

Li, Y.

Liang, E.

Libisch, F.

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).
[Crossref] [PubMed]

Lin, J.

Lovera, A.

B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.

Lu, Y.-q.

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Lv, H.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Martin, O. J. F.

B. Gallinet and O. J. F. Martin, “Ab initio theory of fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[Crossref]

B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.

McPhedran, R. C.

Miano, G.

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88, 155411 (2013).
[Crossref]

Mies, F. H.

F. H. Mies, “Configuration interaction theory. effects of overlapping resonances,” Phys. Rev. 175, 164–175 (1968).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Miyamaru, F.

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).
[Crossref]

Moewe, M.

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

Nakanishi, T.

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).
[Crossref]

Nakata, Y.

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).
[Crossref]

Ngo, Q. M.

Nishida, T.

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Ouyang, Z.

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref] [PubMed]

Paidarov, I.

P. Durand, I. Paidarov, and F. X. Gada, “Theory of fano profiles,” J. Phys. B 34, 1953 (2001).
[Crossref]

Papasimakis, N.

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency:sharp fano resonances and slow light,” Opt. Photon. News 20, 22–27 (2009).
[Crossref]

Pelouard, J.-L.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref] [PubMed]

Pesala, B.

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

Pham, V. H.

Polyanskiy, M. N.

M. N. Polyanskiy, “Refractive index database,” (2016).

Qi, J.

Qiang, W.

Raether, H.

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer tracts in modern physics (Springer, 1988), Vol. 111.

Rommeluère, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref] [PubMed]

Rotter, S.

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).
[Crossref] [PubMed]

Satanin, A. M.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of fano resonances,” Physica Scripta 74, 259 (2006).
[Crossref]

Sears, J.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).
[Crossref]

Sedgwick, F.

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

Siegfried, T.

B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.

Sigg, H.

B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.

Simpson, R. E.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Stöckmann, H.-J.

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).
[Crossref] [PubMed]

Sturmberg, B. C. P.

Sun, Q.

Takeda, M. W.

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).
[Crossref]

Tanas, R.

Ueda, K.

K. Ueda, “Spectral line shapes of autoionizing rydberg series,” Phys. Rev. A 35, 2484–2492 (1987).
[Crossref]

van Exter, M.

C. Genet, M. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[Crossref]

Vincent, G.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref] [PubMed]

Vu, D. L.

Wang, G. P.

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref] [PubMed]

Wang, J.

Wei, C.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Woerdman, J.

C. Genet, M. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[Crossref]

Wu, L.-J.

G.-Z. Li, Q. Li, and L.-J. Wu, “Double fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
[Crossref] [PubMed]

Wu, Z.-j.

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).
[Crossref]

Xu, J.

Xue, Q.

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Directional double fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).
[Crossref] [PubMed]

Yogesh, N.

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref] [PubMed]

Yu, Y.

Zeng, B.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, H.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, L.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Zhang, W.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, X.-j.

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency:sharp fano resonances and slow light,” Opt. Photon. News 20, 22–27 (2009).
[Crossref]

Zhou, Y.

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

Ann. Phys. (1)

H. Feshbach, “Unified theory of nuclear reactions,” Ann. Phys. 5, 357–390 (1958).
[Crossref]

Appl. Phys. Express (1)

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).
[Crossref]

Appl. Phys. Lett. (1)

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. B (2)

A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. i. symmetry analysis of the two-channel coupling,” J. Phys. B 17, 215 (1984).
[Crossref]

P. Durand, I. Paidarov, and F. X. Gada, “Theory of fano profiles,” J. Phys. B 34, 1953 (2001).
[Crossref]

Nano Lett. (1)

A. Artar, A. A. Yanik, and H. Altug, “Directional double fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).
[Crossref] [PubMed]

Nanoscale (2)

G.-Z. Li, Q. Li, and L.-J. Wu, “Double fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Opt. Commun. (1)

C. Genet, M. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[Crossref]

Opt. Express (4)

Opt. Photon. News (1)

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency:sharp fano resonances and slow light,” Opt. Photon. News 20, 22–27 (2009).
[Crossref]

Phys. Rev. (2)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

F. H. Mies, “Configuration interaction theory. effects of overlapping resonances,” Phys. Rev. 175, 164–175 (1968).
[Crossref]

Phys. Rev. A (1)

K. Ueda, “Spectral line shapes of autoionizing rydberg series,” Phys. Rev. A 35, 2484–2492 (1987).
[Crossref]

Phys. Rev. B (3)

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88, 155411 (2013).
[Crossref]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).
[Crossref]

B. Gallinet and O. J. F. Martin, “Ab initio theory of fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[Crossref]

Phys. Rev. Lett. (3)

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[Crossref] [PubMed]

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).
[Crossref] [PubMed]

S. E. Harris, “Lasers without inversion: Interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).
[Crossref] [PubMed]

Physica Scripta (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of fano resonances,” Physica Scripta 74, 259 (2006).
[Crossref]

Rev. Mod. Phys. (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Sci. Rep. (2)

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Other (4)

B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.

M. N. Polyanskiy, “Refractive index database,” (2016).

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer tracts in modern physics (Springer, 1988), Vol. 111.

B. Gallinet, “Fano Resonances in Plasmonic Nanostructures,” Ph.D. thesis, STI, Lausanne (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A simple scheme for generating a double Fano-Feshbach resonance (double FFR). An asymmetric IMI structure, whose metallic layer is shown in the inset, is characterized by two dispersion curves (continuous and dashed lines) for the two metal-dielectric interfaces of the structure. For nearly energy-degenerate double FFR line shape, two gratings are etched into the interfaces allowing mode coupling of two nearly degenerate radiation modes (whose dispersion line is denoted with a dot-dash line) to corresponding plasmonic modes at the two interfaces. The gratings have periodicities which are inversely proportional to the momentum mismatch denoted with a continuous and a dashed double-arrow lines. (b) The structure geometry. The double gratings geomtery is characterized with periodicties Λ1, Λ2, duty cycles F1, F2 and thicknesses h1, h2. An intermediate metallic layer of thickness h3 between the gratings serves as a backbone. Indices of refarction of the two dielectric materials are n1 and n2. The structure is designed for incoming (outgoing) radiation at an angle θ1 (θ2).
Fig. 2
Fig. 2 Single FFR and double FFR resonances for the lossless case. Numerical simulations of the transmission profile (continuous line) and best-fit FFR line-shapes (dashed line) for: (a) a single FFR for a device with a bottom corrugation having a periodicity of Λ2 = 500[nm] (b) a single FFR for a device with a top corrugation having a periodicity of Λ1 = 630[nm] (c) a double FFR for a double-grating device with periodicities of Λ1 = 630[nm] (Λ2 = 500[nm]) at the top (bottom) side. The dotted line represnts Eq. (3) with the parameters that fits the two seperate single FFR devices.
Fig. 3
Fig. 3 Single FFR and double FFR resonances for the lossy case. Numerical simulations of the transmission profile (continuous line) and best-fit FFR line-shapes (dashed line) for: (a) a single FFR for a device with a bottom corrugation having a periodicity of Λ2 = 500[nm] (b) a single FFR for a device with a top corrugation having a periodicity of Λ1 = 630[nm] (c) a double FFR for a double-grating device with periodicities of Λ1 = 630[nm] (Λ2 = 500[nm]) at the top (bottom) side. The dotted line represents Eq. (3) with the parameters that fits the two separate single FFR devices.
Fig. 4
Fig. 4 Relative shift of resonances. Numerical simulations (continuous line) of the double FFR line-shape (including losses) when the location of top SPP resonance is scanned over the position of the bottom SPP resonance by changing the top corrugation periodicity to be: (a) Λ = 510 nm (b) Λ = 530 nm (c) Λ = 560 nm (d) Λ = 580 nm (e) Λ = 600 nm (f) Λ = 620 nm. The dashed line represents the simulated single FFR line shape for a structure containing only the top corrugation. The vertical red (blue) dashed line marks the wavelength at which Eq. (1) is satisfied for the different grating periods for the structure containing only the top (bottom) corrugation.
Fig. 5
Fig. 5 The effect the incidence angle have on the double FFR line-shape for different incident angles for a structure with Λ1 = 630[nm] at the top side and Λ2 = 500[nm] at the bottom side (a) θinc = 14 ° (b) θinc = 15 ° (c) θinc = 16 ° (d) θinc = 17 °. The vertical red (blue) dashed line marks the wavelength at which Eq. (1) is satisfied for the different grating periods for the structure containing only the top (bottom) corrugation.

Tables (4)

Tables Icon

Table 1 FFR Profile Parameters For The Lossless Model Of Two Different Structures Having A Single Gratinga

Tables Icon

Table 2 Double FFR Profile Parameters For The Lossless Model For The Double-Grating Structureb

Tables Icon

Table 3 FFR Profile Parameters For The Lossy Model Of Two Different Structures Having A Single Gratingc

Tables Icon

Table 4 Double FFR Profile Parameters For The Lossy Model For The Double-Grating Structured

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 π n 1 sin ( θ 1 ) λ + m 2 π Λ i = ± 2 π λ ϵ m ϵ i ϵ m + ϵ i i = 1 , 2 m = 0 , ± 1 , ± 2 . .
T ( κ ) = | S 21 | 2 ( κ + q r ) 2 + q i 2 1 + κ 2
T ( ω ) ( 1 + q 1 r Γ 1 ω ω R 1 + q 2 r Γ 2 ω ω R 2 ) 2 + ( q 1 i Γ 1 ω ω R 1 + q 2 i Γ 2 ω ω R 2 ) 1 + ( Γ 1 ω ω R 1 + Γ 2 ω ω R 2 ) 2 2

Metrics