T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).

[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).

[Crossref]
[PubMed]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).

[Crossref]
[PubMed]

G.-Z. Li, Q. Li, and L.-J. Wu, “Double fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).

[Crossref]
[PubMed]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, R. C. McPhedran, and C. M. de Sterke, “Fano resonances of dielectric gratings: symmetries and broadband filtering,” Opt. Express 23, A1672–A1686 (2015).

[Crossref]
[PubMed]

J. Lin, L. Huang, Y. Yu, S. He, and L. Cao, “Deterministic phase engineering for optical fano resonances with arbitrary lineshape and frequencies,” Opt. Express 23, 19154–19165 (2015).

[Crossref]
[PubMed]

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).

[Crossref]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).

[Crossref]
[PubMed]

Q. M. Ngo, K. Q. Le, D. L. Vu, and V. H. Pham, “Optical bistability based on fano resonances in single- and double-layer nonlinear slab waveguide gratings,” J. Opt. Soc. Am. B 31, 1054–1061 (2014).

[Crossref]

J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double fano resonances in asymmetric mim waveguide structure,” Opt. Express 22, 14688–14695 (2014).

[Crossref]
[PubMed]

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88, 155411 (2013).

[Crossref]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21, 2236–2244 (2013).

[Crossref]
[PubMed]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).

[Crossref]

A. Artar, A. A. Yanik, and H. Altug, “Directional double fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).

[Crossref]
[PubMed]

B. Gallinet and O. J. F. Martin, “Ab initio theory of fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).

[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).

[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

[Crossref]

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).

[Crossref]
[PubMed]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).

[Crossref]
[PubMed]

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).

[Crossref]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency:sharp fano resonances and slow light,” Opt. Photon. News 20, 22–27 (2009).

[Crossref]

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of fano resonances,” Physica Scripta 74, 259 (2006).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).

[Crossref]

C. Genet, M. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).

[Crossref]

P. Durand, I. Paidarov, and F. X. Gada, “Theory of fano profiles,” J. Phys. B 34, 1953 (2001).

[Crossref]

S. E. Harris, “Lasers without inversion: Interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).

[Crossref]
[PubMed]

A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. i. symmetry analysis of the two-channel coupling,” J. Phys. B 17, 215 (1984).

[Crossref]

F. H. Mies, “Configuration interaction theory. effects of overlapping resonances,” Phys. Rev. 175, 164–175 (1968).

[Crossref]

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).

[Crossref]

H. Feshbach, “Unified theory of nuclear reactions,” Ann. Phys. 5, 357–390 (1958).

[Crossref]

A. Artar, A. A. Yanik, and H. Altug, “Directional double fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).

[Crossref]
[PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional double fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).

[Crossref]
[PubMed]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).

[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).

[Crossref]
[PubMed]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).

[Crossref]
[PubMed]

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).

[Crossref]
[PubMed]

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).

[Crossref]
[PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).

[Crossref]
[PubMed]

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).

[Crossref]

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).

[Crossref]

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).

[Crossref]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).

[Crossref]
[PubMed]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).

[Crossref]
[PubMed]

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).

[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

[Crossref]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).

[Crossref]
[PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).

[Crossref]
[PubMed]

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88, 155411 (2013).

[Crossref]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).

[Crossref]
[PubMed]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).

[Crossref]
[PubMed]

P. Durand, I. Paidarov, and F. X. Gada, “Theory of fano profiles,” J. Phys. B 34, 1953 (2001).

[Crossref]

A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. i. symmetry analysis of the two-channel coupling,” J. Phys. B 17, 215 (1984).

[Crossref]

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).

[Crossref]

H. Feshbach, “Unified theory of nuclear reactions,” Ann. Phys. 5, 357–390 (1958).

[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).

[Crossref]

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88, 155411 (2013).

[Crossref]

P. Durand, I. Paidarov, and F. X. Gada, “Theory of fano profiles,” J. Phys. B 34, 1953 (2001).

[Crossref]

B. Gallinet and O. J. F. Martin, “Ab initio theory of fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).

[Crossref]

B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.

B. Gallinet, “Fano Resonances in Plasmonic Nanostructures,” Ph.D. thesis, STI, Lausanne (2012).

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).

[Crossref]
[PubMed]

C. Genet, M. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).

[Crossref]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).

[Crossref]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).

[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

[Crossref]

A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. i. symmetry analysis of the two-channel coupling,” J. Phys. B 17, 215 (1984).

[Crossref]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).

[Crossref]
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

[Crossref]

S. E. Harris, “Lasers without inversion: Interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).

[Crossref]
[PubMed]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).

[Crossref]

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).

[Crossref]

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).

[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).

[Crossref]
[PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).

[Crossref]

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of fano resonances,” Physica Scripta 74, 259 (2006).

[Crossref]

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).

[Crossref]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).

[Crossref]

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of fano resonances,” Physica Scripta 74, 259 (2006).

[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).

[Crossref]

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).

[Crossref]
[PubMed]

G.-Z. Li, Q. Li, and L.-J. Wu, “Double fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).

[Crossref]
[PubMed]

G.-Z. Li, Q. Li, and L.-J. Wu, “Double fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).

[Crossref]
[PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).

[Crossref]
[PubMed]

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).

[Crossref]
[PubMed]

B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).

[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).

[Crossref]
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).

[Crossref]

B. Gallinet and O. J. F. Martin, “Ab initio theory of fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).

[Crossref]

B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88, 155411 (2013).

[Crossref]

F. H. Mies, “Configuration interaction theory. effects of overlapping resonances,” Phys. Rev. 175, 164–175 (1968).

[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).

[Crossref]

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).

[Crossref]

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).

[Crossref]

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).

[Crossref]

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).

[Crossref]

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).

[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

[Crossref]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).

[Crossref]
[PubMed]

P. Durand, I. Paidarov, and F. X. Gada, “Theory of fano profiles,” J. Phys. B 34, 1953 (2001).

[Crossref]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency:sharp fano resonances and slow light,” Opt. Photon. News 20, 22–27 (2009).

[Crossref]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).

[Crossref]
[PubMed]

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).

[Crossref]

M. N. Polyanskiy, “Refractive index database,” (2016).

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer tracts in modern physics (Springer, 1988), Vol. 111.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).

[Crossref]
[PubMed]

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).

[Crossref]
[PubMed]

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of fano resonances,” Physica Scripta 74, 259 (2006).

[Crossref]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).

[Crossref]

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).

[Crossref]

B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.

B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).

[Crossref]
[PubMed]

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).

[Crossref]
[PubMed]

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).

[Crossref]

K. Ueda, “Spectral line shapes of autoionizing rydberg series,” Phys. Rev. A 35, 2484–2492 (1987).

[Crossref]

C. Genet, M. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).

[Crossref]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).

[Crossref]
[PubMed]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).

[Crossref]
[PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).

[Crossref]
[PubMed]

C. Genet, M. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).

[Crossref]

G.-Z. Li, Q. Li, and L.-J. Wu, “Double fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).

[Crossref]
[PubMed]

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).

[Crossref]

A. Artar, A. A. Yanik, and H. Altug, “Directional double fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).

[Crossref]
[PubMed]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).

[Crossref]
[PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).

[Crossref]
[PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).

[Crossref]
[PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).

[Crossref]
[PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).

[Crossref]
[PubMed]

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).

[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).

[Crossref]
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

[Crossref]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency:sharp fano resonances and slow light,” Opt. Photon. News 20, 22–27 (2009).

[Crossref]

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).

[Crossref]

H. Feshbach, “Unified theory of nuclear reactions,” Ann. Phys. 5, 357–390 (1958).

[Crossref]

T. Nishida, Y. Nakata, F. Miyamaru, T. Nakanishi, and M. W. Takeda, “Observation of fano resonance using a coupled resonator metamaterial composed of meta-atoms arranged by double periodicity,” Appl. Phys. Express 9, 012201 (2016).

[Crossref]

Z.-x. Chen, J.-h. Chen, Z.-j. Wu, W. Hu, X.-j. Zhang, and Y.-q. Lu, “Tunable fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104, 161114 (2014).

[Crossref]

Y. Zhou, M. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. Sedgwick, and C. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).

[Crossref]

Q. M. Ngo, K. Q. Le, D. L. Vu, and V. H. Pham, “Optical bistability based on fano resonances in single- and double-layer nonlinear slab waveguide gratings,” J. Opt. Soc. Am. B 31, 1054–1061 (2014).

[Crossref]

W. Leoński, R. Tanaś, and S. Kielich, “Laser-induced autoionization from a double fano system,” J. Opt. Soc. Am. B 4, 72–77 (1987).

[Crossref]

A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. i. symmetry analysis of the two-channel coupling,” J. Phys. B 17, 215 (1984).

[Crossref]

P. Durand, I. Paidarov, and F. X. Gada, “Theory of fano profiles,” J. Phys. B 34, 1953 (2001).

[Crossref]

A. Artar, A. A. Yanik, and H. Altug, “Directional double fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).

[Crossref]
[PubMed]

G.-Z. Li, Q. Li, and L.-J. Wu, “Double fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).

[Crossref]
[PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double fano resonances,” Nanoscale 7, 12682–12688 (2015).

[Crossref]
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

[Crossref]

C. Genet, M. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).

[Crossref]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, R. C. McPhedran, and C. M. de Sterke, “Fano resonances of dielectric gratings: symmetries and broadband filtering,” Opt. Express 23, A1672–A1686 (2015).

[Crossref]
[PubMed]

J. Lin, L. Huang, Y. Yu, S. He, and L. Cao, “Deterministic phase engineering for optical fano resonances with arbitrary lineshape and frequencies,” Opt. Express 23, 19154–19165 (2015).

[Crossref]
[PubMed]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21, 2236–2244 (2013).

[Crossref]
[PubMed]

J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double fano resonances in asymmetric mim waveguide structure,” Opt. Express 22, 14688–14695 (2014).

[Crossref]
[PubMed]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency:sharp fano resonances and slow light,” Opt. Photon. News 20, 22–27 (2009).

[Crossref]

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).

[Crossref]

F. H. Mies, “Configuration interaction theory. effects of overlapping resonances,” Phys. Rev. 175, 164–175 (1968).

[Crossref]

K. Ueda, “Spectral line shapes of autoionizing rydberg series,” Phys. Rev. A 35, 2484–2492 (1987).

[Crossref]

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and fano-like resonances in subwavelength metal structures,” Phys. Rev. B 88, 155411 (2013).

[Crossref]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying fano resonances,” Phys. Rev. B 87, 125118 (2013).

[Crossref]

B. Gallinet and O. J. F. Martin, “Ab initio theory of fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).

[Crossref]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).

[Crossref]
[PubMed]

A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, “Probing decoherence through fano resonances,” Phys. Rev. Lett. 105, 056801 (2010).

[Crossref]
[PubMed]

S. E. Harris, “Lasers without inversion: Interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989).

[Crossref]
[PubMed]

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of fano resonances,” Physica Scripta 74, 259 (2006).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).

[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).

[Crossref]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).

[Crossref]
[PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).

[Crossref]
[PubMed]

B. Gallinet, A. Lovera, T. Siegfried, H. Sigg, and O. J. F. Martin, “Fano resonant plasmonic systems: Functioning principles and applications,” in AIP Conference Proceedings of the Fifth International Workshop on Theoretical and Computational Nano-Photonics (2012), Vol. 1475, pp. 18–20.

M. N. Polyanskiy, “Refractive index database,” (2016).

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer tracts in modern physics (Springer, 1988), Vol. 111.

B. Gallinet, “Fano Resonances in Plasmonic Nanostructures,” Ph.D. thesis, STI, Lausanne (2012).