Abstract

We studied the chiroptical properties of colloidal solution of CdSe and CdSe/ZnS quantum dots (QDs) with a cubic lattice structure which were initially prepared without use of any chiral molecules and coated with achiral ligands. We demonstrate circular dichroism (CD) activity around first and second excitonic transition of these CdSe based nanocrystals. We consider that this chiroptical activity is caused by imbalance in racemic mixtures of QDs between the left and right handed nanoparticles, which appears as a result of the formation of various defects or incorporation of impurities into crystallographic structure during their synthesis. We demonstrate that optical activity of colloidal solution of CdSe QDs with achiral ligands weakly depends on the QDs size and number of ZnS monolayers, but does not depend on the nature of achiral ligands or polarity of the solution.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots

Dea Uk Lee, Dae Hun Kim, Dong Hyuk Choi, Sang Wook Kim, Hong Seok Lee, Keon-Ho Yoo, and Tae Whan Kim
Opt. Express 24(2) A350-A357 (2016)

Anomalous circular dichroism in high harmonic generation of stereoisomers with two chiral centers

Xiaosong Zhu, Xi Liu, Pengfei Lan, Dian Wang, Qingbin Zhang, Wei Li, and Peixiang Lu
Opt. Express 24(22) 24824-24835 (2016)

Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices

Kyung Kook Jang, Prem Prabhakaran, Deepak Chandran, Jong-Jin Park, and Kwang-Sup Lee
Opt. Mater. Express 2(5) 519-525 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Levi, Imprinting Chirality in Mesoporous Silica Structures, Advanced Topics in Crystallization (InTech, 2015).
  2. Z. Fan and A. O. Govorov, “Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism,” Nano Lett. 12(6), 3283–3289 (2012).
    [Crossref] [PubMed]
  3. D. Melnikau, D. Savateeva, Y. Gun’ko, and Y. Rakovich, “Strong Enhancement of Circular Dichroism in a Hybrid Material Consisting of J-Aggregates and Silver Nanoparticles,” J. Phys. Chem. C 117(26), 13708–13712 (2013).
    [Crossref]
  4. W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials,” Nano Lett. 9(5), 2153–2159 (2009).
    [Crossref] [PubMed]
  5. M. E. Layani, A. Ben Moshe, M. Varenik, O. Regev, H. Zhang, A. O. Govorov, and G. Markovich, “Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies,” J. Phys. Chem. C 117(43), 22240–22244 (2013).
    [Crossref]
  6. J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
    [Crossref] [PubMed]
  7. M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. (Camb.) 383900–3902 (2007).
    [Crossref] [PubMed]
  8. S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral Shells and Achiral Cores in CdS Quantum Dots,” Nano Lett. 8(8), 2452–2457 (2008).
    [Crossref] [PubMed]
  9. Y. Zhou, M. Yang, K. Sun, Z. Tang, and N. A. Kotov, “Similar Topological Origin of Chiral Centers in Organic and Nanoscale Inorganic Structures: Effect of Stabilizer Chirality on Optical Isomerism and Growth of CdTe Nanocrystals,” J. Am. Chem. Soc. 132(17), 6006–6013 (2010).
    [Crossref] [PubMed]
  10. T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical Activity and Chiral Memory of Thiol-Capped CdTe Nanocrystals,” J. Am. Chem. Soc. 131(30), 10342–10343 (2009).
    [Crossref] [PubMed]
  11. A. B. Moshe, D. Szwarcman, and G. Markovich, “Size Dependence of Chiroptical Activity in Colloidal Quantum Dots,” ACS Nano 5(11), 9034–9043 (2011).
    [Crossref] [PubMed]
  12. Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, “Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption,” Angew. Chem. 123(48), 11658–11661 (2011).
    [Crossref] [PubMed]
  13. U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
    [Crossref] [PubMed]
  14. M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, “Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods,” Nano Lett. 15(5), 2844–2851 (2015).
    [Crossref] [PubMed]
  15. A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68(16), 165306 (2003).
    [Crossref]
  16. O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
    [Crossref] [PubMed]
  17. A. Sukhanova, L. Venteo, J. Devy, M. Artemyev, V. Oleinikov, M. Pluot, and I. Nabiev, “Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections,” Lab. Invest. 82(9), 1259–1261 (2002).
    [Crossref] [PubMed]
  18. International Centre for Diffraction Data, http://www.icdd.com (2013).
  19. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chem. Mater. 16(3), 560 (2004).
    [Crossref]
  20. M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
    [Crossref]
  21. M. Böhringer, K. Morgenstern, W.-D. Schneider, and R. Berndt, “Separation of a Racemic Mixture of Two-Dimensional Molecular Clusters by Scanning Tunneling Microscopy,” Angew. Chem. 38(6), 821–823 (1999).
    [Crossref]
  22. Q. Chen, D. J. Frankel, and N. V. Richardson, “Chemisorption induced chirality: glycine on Cu{110},” Surf. Sci. 497(1-3), 37–46 (2002).
    [Crossref]
  23. M. Parschau, S. Romer, and K. H. Ernst, “Induction of homochirality in achiral enantiomorphous monolayers,” J. Am. Chem. Soc. 126(47), 15398–15399 (2004).
    [Crossref] [PubMed]
  24. M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules,” Nature 404(6776), 376–379 (2000).
    [Crossref] [PubMed]
  25. I. Dolamic, S. Knoppe, A. Dass, and T. Bürgi, “First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands,” Nat. Commun. 3, 798 (2012).
    [Crossref] [PubMed]
  26. C. Gautier and T. Bürgi, “Chiral Gold Nanoparticles,” ChemPhysChem 10(3), 483–492 (2009).
    [Crossref] [PubMed]
  27. N. Shukla, M. A. Bartel, and A. J. Gellman, “Enantioselective Separation on Chiral Au Nanoparticles,” J. Am. Chem. Soc. 132(25), 8575–8580 (2010).
    [Crossref] [PubMed]
  28. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
    [Crossref] [PubMed]

2015 (1)

M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, “Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods,” Nano Lett. 15(5), 2844–2851 (2015).
[Crossref] [PubMed]

2014 (1)

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

2013 (3)

D. Melnikau, D. Savateeva, Y. Gun’ko, and Y. Rakovich, “Strong Enhancement of Circular Dichroism in a Hybrid Material Consisting of J-Aggregates and Silver Nanoparticles,” J. Phys. Chem. C 117(26), 13708–13712 (2013).
[Crossref]

M. E. Layani, A. Ben Moshe, M. Varenik, O. Regev, H. Zhang, A. O. Govorov, and G. Markovich, “Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies,” J. Phys. Chem. C 117(43), 22240–22244 (2013).
[Crossref]

U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
[Crossref] [PubMed]

2012 (2)

Z. Fan and A. O. Govorov, “Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism,” Nano Lett. 12(6), 3283–3289 (2012).
[Crossref] [PubMed]

I. Dolamic, S. Knoppe, A. Dass, and T. Bürgi, “First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands,” Nat. Commun. 3, 798 (2012).
[Crossref] [PubMed]

2011 (2)

A. B. Moshe, D. Szwarcman, and G. Markovich, “Size Dependence of Chiroptical Activity in Colloidal Quantum Dots,” ACS Nano 5(11), 9034–9043 (2011).
[Crossref] [PubMed]

Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, “Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption,” Angew. Chem. 123(48), 11658–11661 (2011).
[Crossref] [PubMed]

2010 (3)

Y. Zhou, M. Yang, K. Sun, Z. Tang, and N. A. Kotov, “Similar Topological Origin of Chiral Centers in Organic and Nanoscale Inorganic Structures: Effect of Stabilizer Chirality on Optical Isomerism and Growth of CdTe Nanocrystals,” J. Am. Chem. Soc. 132(17), 6006–6013 (2010).
[Crossref] [PubMed]

N. Shukla, M. A. Bartel, and A. J. Gellman, “Enantioselective Separation on Chiral Au Nanoparticles,” J. Am. Chem. Soc. 132(25), 8575–8580 (2010).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

2009 (3)

C. Gautier and T. Bürgi, “Chiral Gold Nanoparticles,” ChemPhysChem 10(3), 483–492 (2009).
[Crossref] [PubMed]

T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical Activity and Chiral Memory of Thiol-Capped CdTe Nanocrystals,” J. Am. Chem. Soc. 131(30), 10342–10343 (2009).
[Crossref] [PubMed]

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

2008 (2)

S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral Shells and Achiral Cores in CdS Quantum Dots,” Nano Lett. 8(8), 2452–2457 (2008).
[Crossref] [PubMed]

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

2007 (1)

M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. (Camb.) 383900–3902 (2007).
[Crossref] [PubMed]

2004 (2)

M. Parschau, S. Romer, and K. H. Ernst, “Induction of homochirality in achiral enantiomorphous monolayers,” J. Am. Chem. Soc. 126(47), 15398–15399 (2004).
[Crossref] [PubMed]

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chem. Mater. 16(3), 560 (2004).
[Crossref]

2003 (1)

A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68(16), 165306 (2003).
[Crossref]

2002 (2)

A. Sukhanova, L. Venteo, J. Devy, M. Artemyev, V. Oleinikov, M. Pluot, and I. Nabiev, “Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections,” Lab. Invest. 82(9), 1259–1261 (2002).
[Crossref] [PubMed]

Q. Chen, D. J. Frankel, and N. V. Richardson, “Chemisorption induced chirality: glycine on Cu{110},” Surf. Sci. 497(1-3), 37–46 (2002).
[Crossref]

2000 (1)

M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules,” Nature 404(6776), 376–379 (2000).
[Crossref] [PubMed]

1999 (1)

M. Böhringer, K. Morgenstern, W.-D. Schneider, and R. Berndt, “Separation of a Racemic Mixture of Two-Dimensional Molecular Clusters by Scanning Tunneling Microscopy,” Angew. Chem. 38(6), 821–823 (1999).
[Crossref]

1996 (1)

M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[Crossref]

Agarwal, A.

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Artemyev, M.

A. Sukhanova, L. Venteo, J. Devy, M. Artemyev, V. Oleinikov, M. Pluot, and I. Nabiev, “Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections,” Lab. Invest. 82(9), 1259–1261 (2002).
[Crossref] [PubMed]

Baddeley, C. J.

M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules,” Nature 404(6776), 376–379 (2000).
[Crossref] [PubMed]

Bahng, J. H.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Balaz, M.

U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
[Crossref] [PubMed]

Baranov, A. V.

M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, “Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods,” Nano Lett. 15(5), 2844–2851 (2015).
[Crossref] [PubMed]

A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68(16), 165306 (2003).
[Crossref]

Bartel, M. A.

N. Shukla, M. A. Bartel, and A. J. Gellman, “Enantioselective Separation on Chiral Au Nanoparticles,” J. Am. Chem. Soc. 132(25), 8575–8580 (2010).
[Crossref] [PubMed]

Bartko, S. G.

U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
[Crossref] [PubMed]

Ben Moshe, A.

M. E. Layani, A. Ben Moshe, M. Varenik, O. Regev, H. Zhang, A. O. Govorov, and G. Markovich, “Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies,” J. Phys. Chem. C 117(43), 22240–22244 (2013).
[Crossref]

Berndt, R.

M. Böhringer, K. Morgenstern, W.-D. Schneider, and R. Berndt, “Separation of a Racemic Mixture of Two-Dimensional Molecular Clusters by Scanning Tunneling Microscopy,” Angew. Chem. 38(6), 821–823 (1999).
[Crossref]

Bian, A.

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Böhringer, M.

M. Böhringer, K. Morgenstern, W.-D. Schneider, and R. Berndt, “Separation of a Racemic Mixture of Two-Dimensional Molecular Clusters by Scanning Tunneling Microscopy,” Angew. Chem. 38(6), 821–823 (1999).
[Crossref]

Bürgi, T.

I. Dolamic, S. Knoppe, A. Dass, and T. Bürgi, “First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands,” Nat. Commun. 3, 798 (2012).
[Crossref] [PubMed]

C. Gautier and T. Bürgi, “Chiral Gold Nanoparticles,” ChemPhysChem 10(3), 483–492 (2009).
[Crossref] [PubMed]

Cao, Y. C.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Chan, H.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Chang, S. J.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Chang, W. S.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Chen, O.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Chen, Q.

Q. Chen, D. J. Frankel, and N. V. Richardson, “Chemisorption induced chirality: glycine on Cu{110},” Surf. Sci. 497(1-3), 37–46 (2002).
[Crossref]

Chen, W.

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Chen, X.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Choi, J. K.

U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
[Crossref] [PubMed]

Chuvilin, A.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Dass, A.

I. Dolamic, S. Knoppe, A. Dass, and T. Bürgi, “First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands,” Nat. Commun. 3, 798 (2012).
[Crossref] [PubMed]

Deol, K. K.

U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
[Crossref] [PubMed]

Devy, J.

A. Sukhanova, L. Venteo, J. Devy, M. Artemyev, V. Oleinikov, M. Pluot, and I. Nabiev, “Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections,” Lab. Invest. 82(9), 1259–1261 (2002).
[Crossref] [PubMed]

Dolamic, I.

I. Dolamic, S. Knoppe, A. Dass, and T. Bürgi, “First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands,” Nat. Commun. 3, 798 (2012).
[Crossref] [PubMed]

Dominguez-Medina, S.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Donegan, J. F.

A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68(16), 165306 (2003).
[Crossref]

Elliott, S. D.

S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral Shells and Achiral Cores in CdS Quantum Dots,” Nano Lett. 8(8), 2452–2457 (2008).
[Crossref] [PubMed]

Ernst, K. H.

M. Parschau, S. Romer, and K. H. Ernst, “Induction of homochirality in achiral enantiomorphous monolayers,” J. Am. Chem. Soc. 126(47), 15398–15399 (2004).
[Crossref] [PubMed]

Fan, Z.

Z. Fan and A. O. Govorov, “Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism,” Nano Lett. 12(6), 3283–3289 (2012).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Fedorov, A. V.

M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, “Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods,” Nano Lett. 15(5), 2844–2851 (2015).
[Crossref] [PubMed]

Frankel, D. J.

Q. Chen, D. J. Frankel, and N. V. Richardson, “Chemisorption induced chirality: glycine on Cu{110},” Surf. Sci. 497(1-3), 37–46 (2002).
[Crossref]

Gao, Y.

Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, “Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption,” Angew. Chem. 123(48), 11658–11661 (2011).
[Crossref] [PubMed]

Gautier, C.

C. Gautier and T. Bürgi, “Chiral Gold Nanoparticles,” ChemPhysChem 10(3), 483–492 (2009).
[Crossref] [PubMed]

Gellman, A. J.

N. Shukla, M. A. Bartel, and A. J. Gellman, “Enantioselective Separation on Chiral Au Nanoparticles,” J. Am. Chem. Soc. 132(25), 8575–8580 (2010).
[Crossref] [PubMed]

Govan, J.

M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, “Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods,” Nano Lett. 15(5), 2844–2851 (2015).
[Crossref] [PubMed]

Govorov, A. O.

M. E. Layani, A. Ben Moshe, M. Varenik, O. Regev, H. Zhang, A. O. Govorov, and G. Markovich, “Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies,” J. Phys. Chem. C 117(43), 22240–22244 (2013).
[Crossref]

Z. Fan and A. O. Govorov, “Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism,” Nano Lett. 12(6), 3283–3289 (2012).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Gun’ko, Y.

D. Melnikau, D. Savateeva, Y. Gun’ko, and Y. Rakovich, “Strong Enhancement of Circular Dichroism in a Hybrid Material Consisting of J-Aggregates and Silver Nanoparticles,” J. Phys. Chem. C 117(26), 13708–13712 (2013).
[Crossref]

Gun’ko, Y. K.

M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, “Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods,” Nano Lett. 15(5), 2844–2851 (2015).
[Crossref] [PubMed]

S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral Shells and Achiral Cores in CdS Quantum Dots,” Nano Lett. 8(8), 2452–2457 (2008).
[Crossref] [PubMed]

M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. (Camb.) 383900–3902 (2007).
[Crossref] [PubMed]

Guo, W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chem. Mater. 16(3), 560 (2004).
[Crossref]

Guyot-Sionnest, P.

M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[Crossref]

Hernandez, P.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Hines, M. A.

M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[Crossref]

Huang, W.

Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, “Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption,” Angew. Chem. 123(48), 11658–11661 (2011).
[Crossref] [PubMed]

Kawai, T.

T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical Activity and Chiral Memory of Thiol-Capped CdTe Nanocrystals,” J. Am. Chem. Soc. 131(30), 10342–10343 (2009).
[Crossref] [PubMed]

Kelly, J. M.

M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. (Camb.) 383900–3902 (2007).
[Crossref] [PubMed]

Knoppe, S.

I. Dolamic, S. Knoppe, A. Dass, and T. Bürgi, “First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands,” Nat. Commun. 3, 798 (2012).
[Crossref] [PubMed]

Kobayashi, Y.

T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical Activity and Chiral Memory of Thiol-Capped CdTe Nanocrystals,” J. Am. Chem. Soc. 131(30), 10342–10343 (2009).
[Crossref] [PubMed]

Kotov, N. A.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Y. Zhou, M. Yang, K. Sun, Z. Tang, and N. A. Kotov, “Similar Topological Origin of Chiral Centers in Organic and Nanoscale Inorganic Structures: Effect of Stabilizer Chirality on Optical Isomerism and Growth of CdTe Nanocrystals,” J. Am. Chem. Soc. 132(17), 6006–6013 (2010).
[Crossref] [PubMed]

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Král, P.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Kubelka, J.

U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
[Crossref] [PubMed]

Layani, M. E.

M. E. Layani, A. Ben Moshe, M. Varenik, O. Regev, H. Zhang, A. O. Govorov, and G. Markovich, “Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies,” J. Phys. Chem. C 117(43), 22240–22244 (2013).
[Crossref]

Leonard, B. M.

U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
[Crossref] [PubMed]

Link, S.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Liu, L.

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Liu, W.

Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, “Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption,” Angew. Chem. 123(48), 11658–11661 (2011).
[Crossref] [PubMed]

Liu, X.

Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, “Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption,” Angew. Chem. 123(48), 11658–11661 (2011).
[Crossref] [PubMed]

Lorenzo, M. O.

M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules,” Nature 404(6776), 376–379 (2000).
[Crossref] [PubMed]

Lynch, J.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Markovich, G.

M. E. Layani, A. Ben Moshe, M. Varenik, O. Regev, H. Zhang, A. O. Govorov, and G. Markovich, “Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies,” J. Phys. Chem. C 117(43), 22240–22244 (2013).
[Crossref]

A. B. Moshe, D. Szwarcman, and G. Markovich, “Size Dependence of Chiroptical Activity in Colloidal Quantum Dots,” ACS Nano 5(11), 9034–9043 (2011).
[Crossref] [PubMed]

Maslov, V. G.

M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, “Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods,” Nano Lett. 15(5), 2844–2851 (2015).
[Crossref] [PubMed]

Masumoto, Y.

A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68(16), 165306 (2003).
[Crossref]

Melnikau, D.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

D. Melnikau, D. Savateeva, Y. Gun’ko, and Y. Rakovich, “Strong Enhancement of Circular Dichroism in a Hybrid Material Consisting of J-Aggregates and Silver Nanoparticles,” J. Phys. Chem. C 117(26), 13708–13712 (2013).
[Crossref]

Moloney, M. P.

S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral Shells and Achiral Cores in CdS Quantum Dots,” Nano Lett. 8(8), 2452–2457 (2008).
[Crossref] [PubMed]

M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. (Camb.) 383900–3902 (2007).
[Crossref] [PubMed]

Moore, R. A.

A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68(16), 165306 (2003).
[Crossref]

Morgenstern, K.

M. Böhringer, K. Morgenstern, W.-D. Schneider, and R. Berndt, “Separation of a Racemic Mixture of Two-Dimensional Molecular Clusters by Scanning Tunneling Microscopy,” Angew. Chem. 38(6), 821–823 (1999).
[Crossref]

Moshe, A. B.

A. B. Moshe, D. Szwarcman, and G. Markovich, “Size Dependence of Chiroptical Activity in Colloidal Quantum Dots,” ACS Nano 5(11), 9034–9043 (2011).
[Crossref] [PubMed]

Mukhina, M. V.

M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, “Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods,” Nano Lett. 15(5), 2844–2851 (2015).
[Crossref] [PubMed]

Muller, G.

U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
[Crossref] [PubMed]

Muryn, C.

M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules,” Nature 404(6776), 376–379 (2000).
[Crossref] [PubMed]

Nabiev, I.

A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68(16), 165306 (2003).
[Crossref]

A. Sukhanova, L. Venteo, J. Devy, M. Artemyev, V. Oleinikov, M. Pluot, and I. Nabiev, “Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections,” Lab. Invest. 82(9), 1259–1261 (2002).
[Crossref] [PubMed]

Naik, R. R.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Nakashima, T.

T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical Activity and Chiral Memory of Thiol-Capped CdTe Nanocrystals,” J. Am. Chem. Soc. 131(30), 10342–10343 (2009).
[Crossref] [PubMed]

Oleinikov, V.

A. Sukhanova, L. Venteo, J. Devy, M. Artemyev, V. Oleinikov, M. Pluot, and I. Nabiev, “Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections,” Lab. Invest. 82(9), 1259–1261 (2002).
[Crossref] [PubMed]

Orlova, A. O.

M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, “Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods,” Nano Lett. 15(5), 2844–2851 (2015).
[Crossref] [PubMed]

Parschau, M.

M. Parschau, S. Romer, and K. H. Ernst, “Induction of homochirality in achiral enantiomorphous monolayers,” J. Am. Chem. Soc. 126(47), 15398–15399 (2004).
[Crossref] [PubMed]

Peng, X.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chem. Mater. 16(3), 560 (2004).
[Crossref]

Perova, T. S.

A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68(16), 165306 (2003).
[Crossref]

Pluot, M.

A. Sukhanova, L. Venteo, J. Devy, M. Artemyev, V. Oleinikov, M. Pluot, and I. Nabiev, “Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections,” Lab. Invest. 82(9), 1259–1261 (2002).
[Crossref] [PubMed]

Porter, A. G.

U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
[Crossref] [PubMed]

Purcell-Milton, F.

M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, “Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods,” Nano Lett. 15(5), 2844–2851 (2015).
[Crossref] [PubMed]

Qu, L.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chem. Mater. 16(3), 560 (2004).
[Crossref]

Rakovich, Y.

D. Melnikau, D. Savateeva, Y. Gun’ko, and Y. Rakovich, “Strong Enhancement of Circular Dichroism in a Hybrid Material Consisting of J-Aggregates and Silver Nanoparticles,” J. Phys. Chem. C 117(26), 13708–13712 (2013).
[Crossref]

Rakovich, Yu. P.

A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68(16), 165306 (2003).
[Crossref]

Raval, R.

M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules,” Nature 404(6776), 376–379 (2000).
[Crossref] [PubMed]

Regev, O.

M. E. Layani, A. Ben Moshe, M. Varenik, O. Regev, H. Zhang, A. O. Govorov, and G. Markovich, “Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies,” J. Phys. Chem. C 117(43), 22240–22244 (2013).
[Crossref]

Richardson, N. V.

Q. Chen, D. J. Frankel, and N. V. Richardson, “Chemisorption induced chirality: glycine on Cu{110},” Surf. Sci. 497(1-3), 37–46 (2002).
[Crossref]

Rogach, A. L.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68(16), 165306 (2003).
[Crossref]

Romer, S.

M. Parschau, S. Romer, and K. H. Ernst, “Induction of homochirality in achiral enantiomorphous monolayers,” J. Am. Chem. Soc. 126(47), 15398–15399 (2004).
[Crossref] [PubMed]

Savateeva, D.

D. Melnikau, D. Savateeva, Y. Gun’ko, and Y. Rakovich, “Strong Enhancement of Circular Dichroism in a Hybrid Material Consisting of J-Aggregates and Silver Nanoparticles,” J. Phys. Chem. C 117(26), 13708–13712 (2013).
[Crossref]

Schneider, W.-D.

M. Böhringer, K. Morgenstern, W.-D. Schneider, and R. Berndt, “Separation of a Racemic Mixture of Two-Dimensional Molecular Clusters by Scanning Tunneling Microscopy,” Angew. Chem. 38(6), 821–823 (1999).
[Crossref]

Shen, H.

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Shukla, N.

N. Shukla, M. A. Bartel, and A. J. Gellman, “Enantioselective Separation on Chiral Au Nanoparticles,” J. Am. Chem. Soc. 132(25), 8575–8580 (2010).
[Crossref] [PubMed]

Slocik, J. M.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Smith, K. W.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Sukhanova, A.

A. Sukhanova, L. Venteo, J. Devy, M. Artemyev, V. Oleinikov, M. Pluot, and I. Nabiev, “Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections,” Lab. Invest. 82(9), 1259–1261 (2002).
[Crossref] [PubMed]

Sun, K.

Y. Zhou, M. Yang, K. Sun, Z. Tang, and N. A. Kotov, “Similar Topological Origin of Chiral Centers in Organic and Nanoscale Inorganic Structures: Effect of Stabilizer Chirality on Optical Isomerism and Growth of CdTe Nanocrystals,” J. Am. Chem. Soc. 132(17), 6006–6013 (2010).
[Crossref] [PubMed]

Szwarcman, D.

A. B. Moshe, D. Szwarcman, and G. Markovich, “Size Dependence of Chiroptical Activity in Colloidal Quantum Dots,” ACS Nano 5(11), 9034–9043 (2011).
[Crossref] [PubMed]

Talapin, D. V.

A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68(16), 165306 (2003).
[Crossref]

Tang, Z.

Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, “Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption,” Angew. Chem. 123(48), 11658–11661 (2011).
[Crossref] [PubMed]

Y. Zhou, M. Yang, K. Sun, Z. Tang, and N. A. Kotov, “Similar Topological Origin of Chiral Centers in Organic and Nanoscale Inorganic Structures: Effect of Stabilizer Chirality on Optical Isomerism and Growth of CdTe Nanocrystals,” J. Am. Chem. Soc. 132(17), 6006–6013 (2010).
[Crossref] [PubMed]

Tohgha, U.

U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
[Crossref] [PubMed]

Varenik, M.

M. E. Layani, A. Ben Moshe, M. Varenik, O. Regev, H. Zhang, A. O. Govorov, and G. Markovich, “Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies,” J. Phys. Chem. C 117(43), 22240–22244 (2013).
[Crossref]

Varga, K.

U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
[Crossref] [PubMed]

Venteo, L.

A. Sukhanova, L. Venteo, J. Devy, M. Artemyev, V. Oleinikov, M. Pluot, and I. Nabiev, “Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections,” Lab. Invest. 82(9), 1259–1261 (2002).
[Crossref] [PubMed]

Wang, L.

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Wu, H.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Wu, S.

Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, “Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption,” Angew. Chem. 123(48), 11658–11661 (2011).
[Crossref] [PubMed]

Xu, C.

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Yang, M.

Y. Zhou, M. Yang, K. Sun, Z. Tang, and N. A. Kotov, “Similar Topological Origin of Chiral Centers in Organic and Nanoscale Inorganic Structures: Effect of Stabilizer Chirality on Optical Isomerism and Growth of CdTe Nanocrystals,” J. Am. Chem. Soc. 132(17), 6006–6013 (2010).
[Crossref] [PubMed]

Yang, Y.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Yeom, B.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Yeom, J.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Yu, W. W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chem. Mater. 16(3), 560 (2004).
[Crossref]

Zhang, H.

M. E. Layani, A. Ben Moshe, M. Varenik, O. Regev, H. Zhang, A. O. Govorov, and G. Markovich, “Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies,” J. Phys. Chem. C 117(43), 22240–22244 (2013).
[Crossref]

Zhang, P.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Zhang, W.

Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, “Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption,” Angew. Chem. 123(48), 11658–11661 (2011).
[Crossref] [PubMed]

Zhao, G.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, “Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption,” Angew. Chem. 123(48), 11658–11661 (2011).
[Crossref] [PubMed]

Y. Zhou, M. Yang, K. Sun, Z. Tang, and N. A. Kotov, “Similar Topological Origin of Chiral Centers in Organic and Nanoscale Inorganic Structures: Effect of Stabilizer Chirality on Optical Isomerism and Growth of CdTe Nanocrystals,” J. Am. Chem. Soc. 132(17), 6006–6013 (2010).
[Crossref] [PubMed]

Zhu, Z.

Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, “Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption,” Angew. Chem. 123(48), 11658–11661 (2011).
[Crossref] [PubMed]

Zhuang, J.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

ACS Nano (2)

A. B. Moshe, D. Szwarcman, and G. Markovich, “Size Dependence of Chiroptical Activity in Colloidal Quantum Dots,” ACS Nano 5(11), 9034–9043 (2011).
[Crossref] [PubMed]

U. Tohgha, K. K. Deol, A. G. Porter, S. G. Bartko, J. K. Choi, B. M. Leonard, K. Varga, J. Kubelka, G. Muller, and M. Balaz, “Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots,” ACS Nano 7(12), 11094–11102 (2013).
[Crossref] [PubMed]

Angew. Chem. (2)

Y. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, and Z. Tang, “Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption,” Angew. Chem. 123(48), 11658–11661 (2011).
[Crossref] [PubMed]

M. Böhringer, K. Morgenstern, W.-D. Schneider, and R. Berndt, “Separation of a Racemic Mixture of Two-Dimensional Molecular Clusters by Scanning Tunneling Microscopy,” Angew. Chem. 38(6), 821–823 (1999).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

M. P. Moloney, Y. K. Gun’ko, and J. M. Kelly, “Chiral highly luminescent CdS quantum dots,” Chem. Commun. (Camb.) 383900–3902 (2007).
[Crossref] [PubMed]

Chem. Mater. (1)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chem. Mater. 16(3), 560 (2004).
[Crossref]

ChemPhysChem (1)

C. Gautier and T. Bürgi, “Chiral Gold Nanoparticles,” ChemPhysChem 10(3), 483–492 (2009).
[Crossref] [PubMed]

J. Am. Chem. Soc. (4)

N. Shukla, M. A. Bartel, and A. J. Gellman, “Enantioselective Separation on Chiral Au Nanoparticles,” J. Am. Chem. Soc. 132(25), 8575–8580 (2010).
[Crossref] [PubMed]

M. Parschau, S. Romer, and K. H. Ernst, “Induction of homochirality in achiral enantiomorphous monolayers,” J. Am. Chem. Soc. 126(47), 15398–15399 (2004).
[Crossref] [PubMed]

Y. Zhou, M. Yang, K. Sun, Z. Tang, and N. A. Kotov, “Similar Topological Origin of Chiral Centers in Organic and Nanoscale Inorganic Structures: Effect of Stabilizer Chirality on Optical Isomerism and Growth of CdTe Nanocrystals,” J. Am. Chem. Soc. 132(17), 6006–6013 (2010).
[Crossref] [PubMed]

T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical Activity and Chiral Memory of Thiol-Capped CdTe Nanocrystals,” J. Am. Chem. Soc. 131(30), 10342–10343 (2009).
[Crossref] [PubMed]

J. Phys. Chem. (1)

M. A. Hines and P. Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100(2), 468–471 (1996).
[Crossref]

J. Phys. Chem. C (2)

M. E. Layani, A. Ben Moshe, M. Varenik, O. Regev, H. Zhang, A. O. Govorov, and G. Markovich, “Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies,” J. Phys. Chem. C 117(43), 22240–22244 (2013).
[Crossref]

D. Melnikau, D. Savateeva, Y. Gun’ko, and Y. Rakovich, “Strong Enhancement of Circular Dichroism in a Hybrid Material Consisting of J-Aggregates and Silver Nanoparticles,” J. Phys. Chem. C 117(26), 13708–13712 (2013).
[Crossref]

Lab. Invest. (1)

A. Sukhanova, L. Venteo, J. Devy, M. Artemyev, V. Oleinikov, M. Pluot, and I. Nabiev, “Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections,” Lab. Invest. 82(9), 1259–1261 (2002).
[Crossref] [PubMed]

Nano Lett. (5)

M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, “Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods,” Nano Lett. 15(5), 2844–2851 (2015).
[Crossref] [PubMed]

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism,” Nano Lett. 12(6), 3283–3289 (2012).
[Crossref] [PubMed]

S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral Shells and Achiral Cores in CdS Quantum Dots,” Nano Lett. 8(8), 2452–2457 (2008).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

I. Dolamic, S. Knoppe, A. Dass, and T. Bürgi, “First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands,” Nat. Commun. 3, 798 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W. S. Chang, S. J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2014).
[Crossref] [PubMed]

Nature (1)

M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, “Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules,” Nature 404(6776), 376–379 (2000).
[Crossref] [PubMed]

Phys. Rev. B (1)

A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, and I. Nabiev, “Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots,” Phys. Rev. B 68(16), 165306 (2003).
[Crossref]

Surf. Sci. (1)

Q. Chen, D. J. Frankel, and N. V. Richardson, “Chemisorption induced chirality: glycine on Cu{110},” Surf. Sci. 497(1-3), 37–46 (2002).
[Crossref]

Other (2)

International Centre for Diffraction Data, http://www.icdd.com (2013).

G. Levi, Imprinting Chirality in Mesoporous Silica Structures, Advanced Topics in Crystallization (InTech, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 X-ray Diffraction spectra of CdSe QDs. The stick pattern shows the positions of standard XRD peaks for bulk zinc blende CdSe with cubic lattice structure [18].
Fig. 2
Fig. 2 Absorption (solid lines) and PL (dashed lines) spectra of toluene colloidal solutions of CdSe QDs of different sizes ranging from 2.7 to 4.5 nm solubilized with TOPO. (The PL excitation wavelength λexc = 450 nm).
Fig. 3
Fig. 3 CD spectra of toluene colloidal solutions of CdSe QDs of different sizes ranging from 2.7 to 4.5 nm. Inset represents the size dependence of molar CD extinction coefficient (black triangle) and g-factor of dissymmetry (red foursquare) of CdSe QDs.
Fig. 4
Fig. 4 a) Absorption (solid lines) and PL (dashed lines) spectra of CdSe QDs 4.1 nm size in water solution coated with DL-cysteine (blue) and in toluene coated with TOPO (red). PL excitation wavelength λexc = 450 nm. b) CD spectra of CdSe QDs 4.1 nm size in water solution coated with DL-cysteine (blue) and in toluene coated with TOPO (red).
Fig. 5
Fig. 5 a) Absorption (solid lines) and PL (dashed lines) spectra of CdSe and CdSe(ZnS) QDs (with different number of ZnS layers ranging from 1 to 5) in toluene b) CD spectra of CdSe and CdSe(ZnS)n, n = 1-5 QDs 3.4 nm size in toluene.
Fig. 6
Fig. 6 Dependence of dissymmetry g-factor on the number of ZnS monolayers for CdSe QDs.

Metrics