Abstract

In this work, we present a study of the nonlinear absorption properties from different gold nanorod (NR) systems in aqueous suspension. The NRs were obtained with the bottom-up protocol by the seed-mediated growth method (SMG), using Ag+ ions at different concentrations, and CTAB as surfactant. By using this method, aspect ratios between 2 and 5 were obtained. The transverse surface plasmons (TSP) are located between 514 – 535 nm, while the longitudinal surface plasmons (LSP) are between 639 – 921 nm, for the different samples studied. The Z-scan technique was implemented for open (OA) and closed (CA) aperture at 532 and 1064 nm, with laser pulses of 26 ps, for vertical and horizontal polarizations, with respect to the incidence plane (horizontal). At 532 nm all samples showed saturable absorption (SA), while for samples with LSP near 1064 nm, such effect was observed only at low-energy pulse experimental conditions. In the high-energy pulse regime, an apparent reverse-saturable absorption (RSA) was observed for both wavelengths. However for 532 nm, it was possible to determine that this effect results from structural changes in the samples, which are manifested through the behavior of nonlinear absorption and refraction curves. These results were used to determine the irradiances to which NRs can be modified by photodegradation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Third order nonlinear optics in Ag nanocubes: local and nonlocal optical responses as a function of excitation wavelength and particle size

E. V. García Ramírez, S. A. Sabinas Hernández, D. Ramírez Martínez, G. Díaz, and J. A. Reyes Esqueda
Opt. Express 25(25) 31064-31076 (2017)

Enhancement of the complex third-order nonlinear optical susceptibility in Au nanorods

Rodrigo Sato, Joel Henzie, Hongpan Rong, Masanobu Naito, and Yoshihiko Takeda
Opt. Express 27(14) 19168-19176 (2019)

Wavelength-varying third-order nonlinear optical response of Ag nanoparticles-Si quantum dots integrated plasmonic system

L. Tamayo-Rivera, R. C. Fernández-Hernández, L. Rodríguez-Fernández, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda
Opt. Mater. Express 1(5) 980-989 (2011)

References

  • View by:
  • |
  • |
  • |

  1. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
    [Crossref] [PubMed]
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [Crossref] [PubMed]
  3. L. François, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters. 1. size effect,” J. Phys. Chem. B 104(26), 6133–6137 (2000).
    [Crossref]
  4. R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107(15), 3419–3426 (2003).
    [Crossref]
  5. A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: a revival in precious metal administration to patients,” Nano Lett. 11(10), 4029–4036 (2011).
    [Crossref] [PubMed]
  6. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Lagmuir 15(3), 701–709 (1999).
    [Crossref]
  7. B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).
    [Crossref]
  8. S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
    [Crossref] [PubMed]
  9. Y. Y. Yun, S. S. Chang, C. L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
    [Crossref]
  10. K. Esumi, K. Matsuhisa, and K. Torigoe, “Preparation of rodlike gold particles by uv irradiation using cationic micelles as a template,” Lagmuir 11(9), 3285–3287 (1995).
    [Crossref]
  11. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
    [Crossref]
  12. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
    [Crossref] [PubMed]
  13. A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
    [Crossref] [PubMed]
  14. S. Link and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 109(20), 10531–10532 (2005).
    [Crossref]
  15. S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photohermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
    [Crossref]
  16. B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111(31), 11516–11527 (2007).
    [Crossref]
  17. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [Crossref] [PubMed]
  18. Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22(27), 275203 (2011).
    [Crossref] [PubMed]
  19. J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
    [Crossref]
  20. H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
    [Crossref]
  21. L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
    [Crossref]
  22. D. Manzani, J. M. P. Almeida, M. Napoli, L. De Boni, M. Nalin, C. R. M. Afonso, S. J. L. Ribeiro, and C. R. Mendonça, “Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles,” Plasmonics 8(4), 1667–1674 (2013).
    [Crossref]
  23. J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
    [Crossref]
  24. N. R. Jana, “Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles,” Small 1(8-9), 875–882 (2005).
    [Crossref] [PubMed]
  25. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [Crossref]
  26. H. L. Fang and R. L. S. Wafford, “The thermal lens in absorption spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. Kliger ed. (Academic Press, 1983), pp 175–232.
  27. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983).
    [Crossref] [PubMed]
  28. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  29. E. V. García Ramírez, M. L. Arroyo Carrasco, M. M. Méndez Otero, E. Reynoso Lara, S. Chávez Cerda, and M. D. Iturbe Castillo, “Z-scan and spatial self-phase modulation of a Gaussian beam in a thin nonlocal nonlinear media,” J. Opt. 13(8), 085203 (2011).
    [Crossref]
  30. J. A. Reyes-Esqueda, V. Rodríguez-Iglesias, H.-G. Silva-Pereyra, C. Torres-Torres, A.-L. Santiago-Ramírez, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, A. López-Suárez, and A. Oliver, “Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites,” Opt. Express 17(15), 12849–12868 (2009).
    [Crossref] [PubMed]
  31. J. M. Gómez-Cervantes and J. A. Reyes-Esqueda, “Presence of Fano-like resonances into the birefringence of plasmonic materials,” in preparation.
  32. Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126(3), 280–284 (1986).
    [Crossref]
  33. G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
    [Crossref]

2013 (1)

D. Manzani, J. M. P. Almeida, M. Napoli, L. De Boni, M. Nalin, C. R. M. Afonso, S. J. L. Ribeiro, and C. R. Mendonça, “Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles,” Plasmonics 8(4), 1667–1674 (2013).
[Crossref]

2012 (1)

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

2011 (3)

E. V. García Ramírez, M. L. Arroyo Carrasco, M. M. Méndez Otero, E. Reynoso Lara, S. Chávez Cerda, and M. D. Iturbe Castillo, “Z-scan and spatial self-phase modulation of a Gaussian beam in a thin nonlocal nonlinear media,” J. Opt. 13(8), 085203 (2011).
[Crossref]

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: a revival in precious metal administration to patients,” Nano Lett. 11(10), 4029–4036 (2011).
[Crossref] [PubMed]

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22(27), 275203 (2011).
[Crossref] [PubMed]

2010 (1)

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

2009 (2)

2008 (1)

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

2007 (1)

B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111(31), 11516–11527 (2007).
[Crossref]

2006 (2)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

2005 (4)

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 109(20), 10531–10532 (2005).
[Crossref]

N. R. Jana, “Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles,” Small 1(8-9), 875–882 (2005).
[Crossref] [PubMed]

2003 (3)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107(15), 3419–3426 (2003).
[Crossref]

2001 (2)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

2000 (2)

L. François, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters. 1. size effect,” J. Phys. Chem. B 104(26), 6133–6137 (2000).
[Crossref]

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photohermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[Crossref]

1999 (1)

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Lagmuir 15(3), 701–709 (1999).
[Crossref]

1997 (2)

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).
[Crossref]

Y. Y. Yun, S. S. Chang, C. L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

1995 (1)

K. Esumi, K. Matsuhisa, and K. Torigoe, “Preparation of rodlike gold particles by uv irradiation using cationic micelles as a template,” Lagmuir 11(9), 3285–3287 (1995).
[Crossref]

1993 (1)

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1986 (1)

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126(3), 280–284 (1986).
[Crossref]

1983 (1)

Afonso, C. R. M.

D. Manzani, J. M. P. Almeida, M. Napoli, L. De Boni, M. Nalin, C. R. M. Afonso, S. J. L. Ribeiro, and C. R. Mendonça, “Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles,” Plasmonics 8(4), 1667–1674 (2013).
[Crossref]

Almeida, J. M. P.

D. Manzani, J. M. P. Almeida, M. Napoli, L. De Boni, M. Nalin, C. R. M. Afonso, S. J. L. Ribeiro, and C. R. Mendonça, “Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles,” Plasmonics 8(4), 1667–1674 (2013).
[Crossref]

Arroyo Carrasco, M. L.

E. V. García Ramírez, M. L. Arroyo Carrasco, M. M. Méndez Otero, E. Reynoso Lara, S. Chávez Cerda, and M. D. Iturbe Castillo, “Z-scan and spatial self-phase modulation of a Gaussian beam in a thin nonlocal nonlinear media,” J. Opt. 13(8), 085203 (2011).
[Crossref]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Band, Y. B.

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126(3), 280–284 (1986).
[Crossref]

Bavli, R.

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126(3), 280–284 (1986).
[Crossref]

Belloni, J.

L. François, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters. 1. size effect,” J. Phys. Chem. B 104(26), 6133–6137 (2000).
[Crossref]

Böhmer, M. R.

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).
[Crossref]

Brioude, A.

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

Chang, S. S.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Lagmuir 15(3), 701–709 (1999).
[Crossref]

Y. Y. Yun, S. S. Chang, C. L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

Chávez Cerda, S.

E. V. García Ramírez, M. L. Arroyo Carrasco, M. M. Méndez Otero, E. Reynoso Lara, S. Chávez Cerda, and M. D. Iturbe Castillo, “Z-scan and spatial self-phase modulation of a Gaussian beam in a thin nonlocal nonlinear media,” J. Opt. 13(8), 085203 (2011).
[Crossref]

Cheang-Wong, J. C.

Chen, C. D.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Lagmuir 15(3), 701–709 (1999).
[Crossref]

Crespo-Sosa, A.

Cromer, R.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

De Boni, L.

D. Manzani, J. M. P. Almeida, M. Napoli, L. De Boni, M. Nalin, C. R. M. Afonso, S. J. L. Ribeiro, and C. R. Mendonça, “Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles,” Plasmonics 8(4), 1667–1674 (2013).
[Crossref]

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Delaire, J.

L. François, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters. 1. size effect,” J. Phys. Chem. B 104(26), 6133–6137 (2000).
[Crossref]

Delouis, J. F.

L. François, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters. 1. size effect,” J. Phys. Chem. B 104(26), 6133–6137 (2000).
[Crossref]

Elim, H. I.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 109(20), 10531–10532 (2005).
[Crossref]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photohermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[Crossref]

Esumi, K.

K. Esumi, K. Matsuhisa, and K. Torigoe, “Preparation of rodlike gold particles by uv irradiation using cationic micelles as a template,” Lagmuir 11(9), 3285–3287 (1995).
[Crossref]

Feneyrou, P.

L. François, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters. 1. size effect,” J. Phys. Chem. B 104(26), 6133–6137 (2000).
[Crossref]

Fokkink, L. G. J.

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).
[Crossref]

François, L.

L. François, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters. 1. size effect,” J. Phys. Chem. B 104(26), 6133–6137 (2000).
[Crossref]

Freeman, R. G.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Gambhir, S. S.

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: a revival in precious metal administration to patients,” Nano Lett. 11(10), 4029–4036 (2011).
[Crossref] [PubMed]

García Ramírez, E. V.

E. V. García Ramírez, M. L. Arroyo Carrasco, M. M. Méndez Otero, E. Reynoso Lara, S. Chávez Cerda, and M. D. Iturbe Castillo, “Z-scan and spatial self-phase modulation of a Gaussian beam in a thin nonlocal nonlinear media,” J. Opt. 13(8), 085203 (2011).
[Crossref]

Garetz, B. A.

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

Gómez-Cervantes, J. M.

J. M. Gómez-Cervantes and J. A. Reyes-Esqueda, “Presence of Fano-like resonances into the birefringence of plasmonic materials,” in preparation.

Goodson, T.

R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107(15), 3419–3426 (2003).
[Crossref]

Gordel, M.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Harter, D. J.

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126(3), 280–284 (1986).
[Crossref]

Hayakawa, T.

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22(27), 275203 (2011).
[Crossref] [PubMed]

He, L.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Hernandez, F. E.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Iturbe Castillo, M. D.

E. V. García Ramírez, M. L. Arroyo Carrasco, M. M. Méndez Otero, E. Reynoso Lara, S. Chávez Cerda, and M. D. Iturbe Castillo, “Z-scan and spatial self-phase modulation of a Gaussian beam in a thin nonlocal nonlinear media,” J. Opt. 13(8), 085203 (2011).
[Crossref]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

Jana, N. R.

N. R. Jana, “Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles,” Small 1(8-9), 875–882 (2005).
[Crossref] [PubMed]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

Ji, W.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Jiang, X. C.

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

Jokerst, J.

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: a revival in precious metal administration to patients,” Nano Lett. 11(10), 4029–4036 (2011).
[Crossref] [PubMed]

Kawamura, G.

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22(27), 275203 (2011).
[Crossref] [PubMed]

Keating, C. D.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Khlebtsov, B. N.

B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111(31), 11516–11527 (2007).
[Crossref]

Khlebtsov, N. G.

B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111(31), 11516–11527 (2007).
[Crossref]

Khosrofian, J. M.

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Kolkowski, R.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Lai, W. C.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Lagmuir 15(3), 701–709 (1999).
[Crossref]

Lee, C. L.

Y. Y. Yun, S. S. Chang, C. L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

Lee, J.-Y.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

Li, J.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

Li, Z.-Y.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 109(20), 10531–10532 (2005).
[Crossref]

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photohermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[Crossref]

Liu, S.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

Liu, Y.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

López-Suárez, A.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Manzani, D.

D. Manzani, J. M. P. Almeida, M. Napoli, L. De Boni, M. Nalin, C. R. M. Afonso, S. J. L. Ribeiro, and C. R. Mendonça, “Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles,” Plasmonics 8(4), 1667–1674 (2013).
[Crossref]

Massoud, T. F.

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: a revival in precious metal administration to patients,” Nano Lett. 11(10), 4029–4036 (2011).
[Crossref] [PubMed]

Matczyszyn, K.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Matsuhisa, K.

K. Esumi, K. Matsuhisa, and K. Torigoe, “Preparation of rodlike gold particles by uv irradiation using cationic micelles as a template,” Lagmuir 11(9), 3285–3287 (1995).
[Crossref]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Méndez Otero, M. M.

E. V. García Ramírez, M. L. Arroyo Carrasco, M. M. Méndez Otero, E. Reynoso Lara, S. Chávez Cerda, and M. D. Iturbe Castillo, “Z-scan and spatial self-phase modulation of a Gaussian beam in a thin nonlocal nonlinear media,” J. Opt. 13(8), 085203 (2011).
[Crossref]

Mendonça, C. R.

D. Manzani, J. M. P. Almeida, M. Napoli, L. De Boni, M. Nalin, C. R. M. Afonso, S. J. L. Ribeiro, and C. R. Mendonça, “Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles,” Plasmonics 8(4), 1667–1674 (2013).
[Crossref]

Mi, J.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Mostafavi, M.

L. François, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters. 1. size effect,” J. Phys. Chem. B 104(26), 6133–6137 (2000).
[Crossref]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

Nalin, M.

D. Manzani, J. M. P. Almeida, M. Napoli, L. De Boni, M. Nalin, C. R. M. Afonso, S. J. L. Ribeiro, and C. R. Mendonça, “Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles,” Plasmonics 8(4), 1667–1674 (2013).
[Crossref]

Napoli, M.

D. Manzani, J. M. P. Almeida, M. Napoli, L. De Boni, M. Nalin, C. R. M. Afonso, S. J. L. Ribeiro, and C. R. Mendonça, “Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles,” Plasmonics 8(4), 1667–1674 (2013).
[Crossref]

Natan, M. J.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Nicewarner-Pena, S. R.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Nogami, M.

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22(27), 275203 (2011).
[Crossref] [PubMed]

Olesiak-Banska, J.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Oliver, A.

Peña, D. J.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Pileni, M. P.

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

Reiss, B. D.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Reyes-Esqueda, J. A.

Reynoso Lara, E.

E. V. García Ramírez, M. L. Arroyo Carrasco, M. M. Méndez Otero, E. Reynoso Lara, S. Chávez Cerda, and M. D. Iturbe Castillo, “Z-scan and spatial self-phase modulation of a Gaussian beam in a thin nonlocal nonlinear media,” J. Opt. 13(8), 085203 (2011).
[Crossref]

Ribeiro, S. J. L.

D. Manzani, J. M. P. Almeida, M. Napoli, L. De Boni, M. Nalin, C. R. M. Afonso, S. J. L. Ribeiro, and C. R. Mendonça, “Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles,” Plasmonics 8(4), 1667–1674 (2013).
[Crossref]

Rodríguez-Fernández, L.

Rodríguez-Iglesias, V.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Samoc, M.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Santiago-Ramírez, A.-L.

Schönenberger, C.

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shih, C. W.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Lagmuir 15(3), 701–709 (1999).
[Crossref]

Silva-Pereyra, H.-G.

Stegeman, G. I.

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

Thakor, A. S.

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: a revival in precious metal administration to patients,” Nano Lett. 11(10), 4029–4036 (2011).
[Crossref] [PubMed]

Torigoe, K.

K. Esumi, K. Matsuhisa, and K. Torigoe, “Preparation of rodlike gold particles by uv irradiation using cationic micelles as a template,” Lagmuir 11(9), 3285–3287 (1995).
[Crossref]

Toro, C.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Torres-Torres, C.

Tsutsui, Y.

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22(27), 275203 (2011).
[Crossref] [PubMed]

van der Zande, B. M. I.

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Walton, I. D.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Wang, C. R. C.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Lagmuir 15(3), 701–709 (1999).
[Crossref]

Y. Y. Yun, S. S. Chang, C. L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

Wang, Y.

R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107(15), 3419–3426 (2003).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

West, R.

R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107(15), 3419–3426 (2003).
[Crossref]

Wood, E. L.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Yang, J.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Yun, Y. Y.

Y. Y. Yun, S. S. Chang, C. L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

Zavaleta, C.

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: a revival in precious metal administration to patients,” Nano Lett. 11(10), 4029–4036 (2011).
[Crossref] [PubMed]

Zhou, F.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

Adv. Mater. (1)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold Nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96(26), 263103 (2010).
[Crossref]

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Chem. Phys. Lett. (1)

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126(3), 280–284 (1986).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Int. Rev. Phys. Chem. (1)

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photohermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
[Crossref]

J. Opt. (1)

E. V. García Ramírez, M. L. Arroyo Carrasco, M. M. Méndez Otero, E. Reynoso Lara, S. Chávez Cerda, and M. D. Iturbe Castillo, “Z-scan and spatial self-phase modulation of a Gaussian beam in a thin nonlocal nonlinear media,” J. Opt. 13(8), 085203 (2011).
[Crossref]

J. Phys. Chem. B (9)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. B 105(19), 4065–4067 (2001).
[Crossref]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 109(20), 10531–10532 (2005).
[Crossref]

L. François, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters. 1. size effect,” J. Phys. Chem. B 104(26), 6133–6137 (2000).
[Crossref]

R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107(15), 3419–3426 (2003).
[Crossref]

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).
[Crossref]

Y. Y. Yun, S. S. Chang, C. L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101(34), 6661–6664 (1997).
[Crossref]

J. Phys. Chem. C (2)

B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111(31), 11516–11527 (2007).
[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Lagmuir (2)

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Lagmuir 15(3), 701–709 (1999).
[Crossref]

K. Esumi, K. Matsuhisa, and K. Torigoe, “Preparation of rodlike gold particles by uv irradiation using cationic micelles as a template,” Lagmuir 11(9), 3285–3287 (1995).
[Crossref]

Nano Lett. (1)

A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: a revival in precious metal administration to patients,” Nano Lett. 11(10), 4029–4036 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

Y. Tsutsui, T. Hayakawa, G. Kawamura, and M. Nogami, “Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods,” Nanotechnology 22(27), 275203 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Plasmonics (2)

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

D. Manzani, J. M. P. Almeida, M. Napoli, L. De Boni, M. Nalin, C. R. M. Afonso, S. J. L. Ribeiro, and C. R. Mendonça, “Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles,” Plasmonics 8(4), 1667–1674 (2013).
[Crossref]

Proc. SPIE (1)

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

Science (1)

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Peña, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Small (1)

N. R. Jana, “Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles,” Small 1(8-9), 875–882 (2005).
[Crossref] [PubMed]

Other (2)

H. L. Fang and R. L. S. Wafford, “The thermal lens in absorption spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. Kliger ed. (Academic Press, 1983), pp 175–232.

J. M. Gómez-Cervantes and J. A. Reyes-Esqueda, “Presence of Fano-like resonances into the birefringence of plasmonic materials,” in preparation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 TEM images of Au nanorods corresponding to sample a) 1 ml, b) 2 ml, c) 3 ml, d) 4 ml of AgNO3 concentration, bar scale of 20 nm.
Fig. 2
Fig. 2 Histograms corresponding to the Au NRs TEM micrographs. They show the distribution of Au NRs’ aspect ratio as a function of the different concentrations of AgNO3.
Fig. 3
Fig. 3 Optical absorption spectra for Au NRs at different concentrations of AgNO3.
Fig. 4
Fig. 4 NLO responses at λ = 532 nm for colloidal Au NRs. a) Nonlinear absorption and b) nonlinear refraction for horizontal polarization. c) and d) similar to a) and b) for vertical polarization.
Fig. 5
Fig. 5 NLO responses at λ = 1064 nm for colloidal Au NRs. a) Nonlinear absorption and b) nonlinear refraction for horizontal polarization. c) and d) similar to a) and b) for vertical polarization.
Fig. 6
Fig. 6 Nonlinear absorptive response at several irradiances for 532 nm. Samples a) 1 ml and b) 2 ml.
Fig. 7
Fig. 7 Nonlinear absorption response for sample 2 ml. a) after several measurements at 532 nm with I0 = 4.991 GW/cm2. b) Response at I0 = 0.896 GW/cm2, after of 4th scan at I0 = 4.991 GW/cm2.
Fig. 8
Fig. 8 Electron microscopy analysis of 2 ml sample, a) before z-scan at 532 nm, and b) after of 4th scan at I0 = 4.991 GW/cm2.
Fig. 9
Fig. 9 TEM microscopy of sample 2 ml, a), b), c) before z-scan measurements at scale 0.1 μm; d), e) and f) after z-scan. e) and f) with scale 50 nm.
Fig. 10
Fig. 10 Optical absorption spectra for sample 2 ml before and after z-scan
Fig. 11
Fig. 11 NLA for sample 4 ml for several irradiances at 1064 nm.

Tables (3)

Tables Icon

Table 1 Dimensions of Au NRs.

Tables Icon

Table 2 Nonlinear coefficients β for λ = 532 nm.

Tables Icon

Table 3 Nonlinear coefficients β for λ = 1064 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T(z,S=1)= m=0 [ q 0 (z,0)] m (m+1) 3/2 ,
W= | n 2 | I s λ α 0 ,T=λ| β n 2 |

Metrics