Abstract

The detrimental impact of the second echo phenomenon that commonly exists in Brillouin echoes distributed sensing (BEDS) methods is thoroughly investigated by further developing the analytical model of the Brillouin gain on the probe wave. The presented analysis not only points out that the most severe impact imposed by the second echo occurs when the length of the heated/stressed fiber section is exactly equal to the spatial resolution, but also quantifies the systematic error on the estimated Brillouin frequency shift, the maximum of which could reach up to 8.5 MHz. A novel parabolic-amplitude four-section pulse is proposed, which can compensate the impact of the second echo optically, without using extra measurement time and post-processing. The key parameters of the proposed pulse are optimized by combining an upgraded mathematical model and the iterative algorithm. The experimental results show a good agreement with the analysis about the behavior of the second echo, and demonstrate that the proposed technique is capable of providing sub-meter spatial resolution and the natural linewidth of Brillouin gain spectrum simultaneously, while completely eliminating the impact of the second echo.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing

Jean-Charles Beugnot, Moshe Tur, Stella Foaleng Mafang, and Luc Thévenaz
Opt. Express 19(8) 7381-7397 (2011)

Stokes and anti-Stokes differential pulse pair based distributed Brillouin fiber sensor with double-sideband probe wave

Zhisheng Yang, Xiaobin Hong, Hongxiang Guo, Jian Wu, and Jintong Lin
Opt. Express 22(3) 2881-2888 (2014)

Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers

Wenqiao Lin, Zhisheng Yang, Xiaobin Hong, Sheng Wang, and Jian Wu
Opt. Express 25(7) 7604-7615 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
    [Crossref]
  2. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  3. A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of 12th International Conference on Optical Fiber Sensors (OSA, 1997), pp. OWD3.
    [Crossref]
  4. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).
  5. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [Crossref] [PubMed]
  6. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
    [Crossref]
  7. A. Denisov, M. A. Soto, and L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, 87943I (2013).
    [Crossref]
  8. D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
    [Crossref] [PubMed]
  9. A. Denisov, M. Soto, and L. Thévenaz, “1‘000’000 resolved points along a Brillouin distributed fibre sensor,” Proc. SPIE 9157, 9157D2 (2014).
  10. Y. London, Y. Antman, R. Cohen, N. Kimelfeld, N. Levanon, and A. Zadok, “High-resolution long-range distributed Brillouin analysis using dual-layer phase and amplitude coding,” Opt. Express 22(22), 27144–27158 (2014).
    [Crossref] [PubMed]
  11. Y. London, Y. Antman, N. Levanon, and A. Zadok, “Brillouin analysis with 8.8 km range and 2 cm resolution,” Proc. SPIE 9634, 96340G (2015).
    [Crossref]
  12. Y. Koyamada, “Proposal and simulation of double-pulse Brillouin optical time-domain analysis for measuring distributed strain and temperature with cm spatial resolution in km-long fiber,” IEICE Trans. Commun. E90-B(7), 1810–1815 (2007).
    [Crossref]
  13. M. A. Soto, S. Chin, and L. Thévenaz, “Double-pulse Brillouin distributed optical fiber sensors: analytical model and experimental validation,” Proc. SPIE 8421, 842124 (2012).
    [Crossref]
  14. X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24(8), 510–512 (1999).
    [Crossref] [PubMed]
  15. V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett. 25(3), 156–158 (2000).
    [Crossref] [PubMed]
  16. L. Zou, X. Bao, Y. Wan, and L. Chen, “Coherent probe-pump-based Brillouin sensor for centimeter-crack detection,” Opt. Lett. 30(4), 370–372 (2005).
    [Crossref] [PubMed]
  17. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
    [Crossref]
  18. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thévenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
    [Crossref]
  19. J. C. Beugnot, M. Tur, S. F. Mafang, and L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express 19(8), 7381–7397 (2011).
    [Crossref] [PubMed]
  20. T. Sperber, A. Eyal, M. Tur, and L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010).
    [Crossref] [PubMed]
  21. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]

2015 (1)

Y. London, Y. Antman, N. Levanon, and A. Zadok, “Brillouin analysis with 8.8 km range and 2 cm resolution,” Proc. SPIE 9634, 96340G (2015).
[Crossref]

2014 (3)

2013 (2)

A. Denisov, M. A. Soto, and L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, 87943I (2013).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

2012 (2)

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

M. A. Soto, S. Chin, and L. Thévenaz, “Double-pulse Brillouin distributed optical fiber sensors: analytical model and experimental validation,” Proc. SPIE 8421, 842124 (2012).
[Crossref]

2011 (1)

2010 (2)

2008 (1)

2007 (2)

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
[Crossref]

Y. Koyamada, “Proposal and simulation of double-pulse Brillouin optical time-domain analysis for measuring distributed strain and temperature with cm spatial resolution in km-long fiber,” IEICE Trans. Commun. E90-B(7), 1810–1815 (2007).
[Crossref]

2006 (1)

2005 (1)

2000 (2)

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett. 25(3), 156–158 (2000).
[Crossref] [PubMed]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

1999 (1)

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Antman, Y.

Bao, X.

Beugnot, J. C.

Beugnot, J.-C.

Brown, A.

Brown, A. W.

Brown, K.

Chen, L.

Chin, S.

M. A. Soto, S. Chin, and L. Thévenaz, “Double-pulse Brillouin distributed optical fiber sensors: analytical model and experimental validation,” Proc. SPIE 8421, 842124 (2012).
[Crossref]

Cohen, R.

Colpitts, B. G.

Demerchant, M.

Denisov, A.

A. Denisov, M. Soto, and L. Thévenaz, “1‘000’000 resolved points along a Brillouin distributed fibre sensor,” Proc. SPIE 9157, 9157D2 (2014).

A. Denisov, M. A. Soto, and L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, 87943I (2013).
[Crossref]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Elooz, D.

Eyal, A.

Facchini, M.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of 12th International Conference on Optical Fiber Sensors (OSA, 1997), pp. OWD3.
[Crossref]

Fellay, A.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of 12th International Conference on Optical Fiber Sensors (OSA, 1997), pp. OWD3.
[Crossref]

Foaleng, S. M.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

He, Z.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Hotate, K.

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[Crossref] [PubMed]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Jackson, D. A.

Kimelfeld, N.

Koyamada, Y.

Y. Koyamada, “Proposal and simulation of double-pulse Brillouin optical time-domain analysis for measuring distributed strain and temperature with cm spatial resolution in km-long fiber,” IEICE Trans. Commun. E90-B(7), 1810–1815 (2007).
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Lecoeuche, V.

Levanon, N.

Li, W.

Li, Y.

London, Y.

Mafang, S. F.

Niklès, M.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of 12th International Conference on Optical Fiber Sensors (OSA, 1997), pp. OWD3.
[Crossref]

Pannell, C. N.

Primerov, N.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Robert, P.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of 12th International Conference on Optical Fiber Sensors (OSA, 1997), pp. OWD3.
[Crossref]

Sancho, J.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Smith, J.

Song, K. Y.

Soto, M.

A. Denisov, M. Soto, and L. Thévenaz, “1‘000’000 resolved points along a Brillouin distributed fibre sensor,” Proc. SPIE 9157, 9157D2 (2014).

Soto, M. A.

A. Denisov, M. A. Soto, and L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, 87943I (2013).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

M. A. Soto, S. Chin, and L. Thévenaz, “Double-pulse Brillouin distributed optical fiber sensors: analytical model and experimental validation,” Proc. SPIE 8421, 842124 (2012).
[Crossref]

Sperber, T.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Thévenaz, L.

A. Denisov, M. Soto, and L. Thévenaz, “1‘000’000 resolved points along a Brillouin distributed fibre sensor,” Proc. SPIE 9157, 9157D2 (2014).

A. Denisov, M. A. Soto, and L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, 87943I (2013).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

M. A. Soto, S. Chin, and L. Thévenaz, “Double-pulse Brillouin distributed optical fiber sensors: analytical model and experimental validation,” Proc. SPIE 8421, 842124 (2012).
[Crossref]

J. C. Beugnot, M. Tur, S. F. Mafang, and L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express 19(8), 7381–7397 (2011).
[Crossref] [PubMed]

T. Sperber, A. Eyal, M. Tur, and L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010).
[Crossref] [PubMed]

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thévenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
[Crossref]

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of 12th International Conference on Optical Fiber Sensors (OSA, 1997), pp. OWD3.
[Crossref]

Tur, M.

Wan, Y.

Webb, D. J.

Zadok, A.

Zou, L.

IEICE Trans. Commun. (1)

Y. Koyamada, “Proposal and simulation of double-pulse Brillouin optical time-domain analysis for measuring distributed strain and temperature with cm spatial resolution in km-long fiber,” IEICE Trans. Commun. E90-B(7), 1810–1815 (2007).
[Crossref]

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

J. Lightwave Technol. (3)

Laser Photonics Rev. (1)

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Proc. SPIE (4)

A. Denisov, M. A. Soto, and L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, 87943I (2013).
[Crossref]

A. Denisov, M. Soto, and L. Thévenaz, “1‘000’000 resolved points along a Brillouin distributed fibre sensor,” Proc. SPIE 9157, 9157D2 (2014).

Y. London, Y. Antman, N. Levanon, and A. Zadok, “Brillouin analysis with 8.8 km range and 2 cm resolution,” Proc. SPIE 9634, 96340G (2015).
[Crossref]

M. A. Soto, S. Chin, and L. Thévenaz, “Double-pulse Brillouin distributed optical fiber sensors: analytical model and experimental validation,” Proc. SPIE 8421, 842124 (2012).
[Crossref]

Other (1)

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of 12th International Conference on Optical Fiber Sensors (OSA, 1997), pp. OWD3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 The illustration of the concept of three-section pulse in BEDS methods.
Fig. 2
Fig. 2 Three typical pulse configurations in BEDS methods. (a): Bright pulse; (b): Dark pulse; (c) π phase shift pulse.
Fig. 3
Fig. 3 (a):The Brillouin temporal waveforms at position z N obtained at the Brillouin resonance frequency; (b) The illustration of the convolution between the Brillouin waveforms and the fiber impulse response (assuming the fiber is uniform).
Fig. 4
Fig. 4 The simulated BGS in cases of (a): 5 MHz; (b): 15 MHz; (c): 25 MHz; (d): 35 MHz BFS differences between the hot spot and the neighboring unheated segment.
Fig. 5
Fig. 5 Blue curve: the estimated BFS of the hot spot in BEDS methods versus the BFS applied on the hot spot; Green dashed curve: the correct BFS versus the BFS applied on the hot spot; Red curve: the BFS error versus the BFS applied on the hot spot.
Fig. 6
Fig. 6 The proposed four-section pulse configurations for BEDS methods. (a): Bright pulse; (b): Dark pulse; (c) π phase shift pulse.
Fig. 7
Fig. 7 The configuration of the four-section dark pulse with parabolic-amplitude β section.
Fig. 8
Fig. 8 (a): The configuration of the four-section dark pulse with different shapes of β section; (b): The Brillouin gain waveforms at the position of z 0 with the Brillouin resonance frequency by using four-section dark pulse with different shapes of β section; Inset: zoom of the part with maximum difference between 1 and the amplitude of red curve.
Fig. 9
Fig. 9 Experimental setup of the proposed method. EOM: electro-optic modulator. AWG: arbitrary waveform generator; PC: polarization controller; PS: polarization switch; TA: tunable attenuator; EDFA: erbium-doped fiber amplifier, FBG: fiber Bragg grating; PD: photodetector.
Fig. 10
Fig. 10 The Brillouin gain distribution versus position and scanning frequency by using (a) three-section dark pulse and (b) proposed four-section dark pulse.
Fig. 11
Fig. 11 The Brillouin gain traces versus position at the scanning frequency of 10.732 GHz and 10.762 GHz by using (a) three-section dark pulse and (b) proposed four-section dark pulse.
Fig. 12
Fig. 12 The measured Brillouin gain spectra in different scenarios. (a): 1 ns pulse width, 10 cm stressed section with 30 MHz BFS change; (b): 2 ns pulse width, 20 cm stressed section with 30 MHz BFS change; (c): 1 ns pulse width, 10 cm stressed section with 10 MHz BFS change; (d): 2 ns pulse width, 20 cm stressed section with 10 MHz BFS change.
Fig. 13
Fig. 13 The fitted BFS in different scenarios. (a): 1 ns pulse width, 10 cm stressed section with 10 MHz BFS change; (b): 2 ns pulse width, 20 cm stressed section with 10 MHz BFS change.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

A p (z,t) z + 1 V g A p (z,t) t =i 1 2 g 2 A s (z,t)Q(z,t),
A s (z,t) z 1 V g A s (z,t) t =i 1 2 g 2 A p (z,t) Q * (z,t),
Q(z,t) t + Γ A Q(z,t)=i g 1 A p (z,t) A s * (z,t),
a s bright (z=0, z N ,t)= g( z N ) I p 0 A s 0 Δz 2 Γ A * × { u( t 1 )u( t 2 )+[ 42exp( Γ A * t 2 ) ][ u( t 2 )u( t 3 ) ]+[ 1[ 1exp( Γ A * T) ]exp( Γ A * t 2 ) ]u( t 3 ) },
a s dark (z=0, z N ,t)= g( z N ) I p 0 A s 0 Δz 2 Γ A * × { u( t 1 )u( t 2 )+[ 1+[ 1exp( Γ A * T) ]exp( Γ A * t 2 ) ]u( t 3 ) },
a s π (z=0, z N ,t)= g( z N ) I p 0 A s 0 Δz 2 Γ A * × { u( t 1 )u( t 2 )+[ 12exp( Γ A * t 2 ) ][ u( t 2 )u( t 3 ) ]+[ 1+2[ 1exp( Γ A * T) ]exp( Γ A * t 2 ) ]u( t 3 ) },
a s (z=0,t)= N=0 L a s (z=0, z N ,t) ,
A correct bright A unwanted bright = t 2 t 3 [ a s bright (0, z N ,t)1 ]dt t 3 [ a s bright (0, z N ,t)1 ]dt = [ 3T+ 2 Γ A * ( exp[ Γ A * T ]1 ) ] [ 1 Γ A * ( 1exp[ Γ A * T ] ) ] T T ,
A correct dark A unwanted dark = t 2 t 3 [ a s dark (0, z N ,t)1 ]dt t 3 [ a s dark (0, z N ,t)1 ]dt = T [ 1 Γ A * ( exp[ Γ A * T ]1 ) ] T T ,
A correct π A unwanted π = t 2 t 3 [ a s π (0, z N ,t)1 ]dt t 3 [ a s π (0, z N ,t)1 ]dt = [ 2 Γ A * ( exp[ Γ A * T ]1 ) ] [ 2 Γ A * ( exp[ Γ A * T ]1 ) ] 2T 2T .
g BEDS (Ω)= ( Γ B /2) 2 (Ω Ω B ) 2 + ( Γ B /2) 2 + ( Γ B /2) 2 [ Ω( Ω B +Δ Ω B ) ] 2 + ( Γ B /2) 2 ,
g BEDS (Ω)= 2 Γ B 2 (Ω Ω B ) [ 4 (Ω Ω B ) 2 + Γ B 2 ] 2 + 2 Γ B 2 (Ω Ω B Δ Ω B ) [ 4 (Ω Ω B Δ Ω B ) 2 + Γ B 2 ] 2 =0,
2 (Ω Ω B ) 5 5Δ Ω B (Ω Ω B ) 4 +(6Δ Ω B 2 + Γ B 2 ) (Ω Ω B ) 3 (6Δ Ω B 3 + 3 2 Γ B 2 Δ Ω B ) (Ω Ω B ) 2 +(Δ Ω B 4 + 1 2 Γ B 2 Δ Ω B 2 + 1 8 Γ B 4 )(Ω Ω B ) 1 16 Γ B 4 Δ Ω B =0.
Ω i = Ω B + 1 2 ( Δ Ω B ± Δ Ω B 2 Γ B 2 +2 Δ Ω B 2 (Δ Ω B 2 + Γ B 2 ) ),i=1,2,
Ω 3 = Ω B + 1 2 Δ Ω B ,
Ω 1 = Ω B + 1 2 Δ Ω B ,
α×Q( z 0 , t 0 )={ β ( t 0 +t)×Q( z 0 , t 0 +t),TtT+ T γ×Q( z 0 , t 0 +t),t>T+ T
A P (z,t)=u(tz/ v g )u(t t 0 z/ v g ) +[ c1 T 2 ( t t 0 T T z/ v g ) 2 +1 ]×[ u(t t 0 Tz/ v g )u(t t 0 T T z/ v g ) ] +u(t t 0 T T z/ v g ).
a s (0, z N ,t)= g( z N ) I p 0 A s 0 Δz 2 Γ A * ×{ u( t 1 )u( t 2 )+[ 1+exp( Γ A * t 2 )exp( Γ A * t 3 ) ][ (k+1)u( t 3 )ku( t 4 ) ] + c1 T 2 { t 3 2 2+2 T Γ A * Γ A * × t 3 +( 2+2 T Γ A * Γ A * 2 + T 2 )[ 1exp( Γ A * t 3 ) ] }[ (k+1)u( t 3 )ku( t 4 ) ] + 1c T 2 { t 4 2 2 Γ A * × t 4 + 2 Γ A * 2 [ 1exp( Γ A * t 4 ) ] }u( t 4 ) },

Metrics