Abstract

We propose a new technique to selectively excite the fundamental mode in a few mode fiber (FMF). This method of excitation is made from a single mode fiber (SMF) which is inserted facing the FMF into an air-silica microstructured cane before the assembly is adiabatically tapered. We study theoretically and numerically this method by calculating the effective indices of the propagated modes, their amplitudes along the taper and the adiabaticity criteria, showing the ability to achieve an excellent selective excitation of the fundamental mode in the FMF with negligible loss. We experimentally demonstrate that the proposed solution provides a successful mode conversion and allows an almost excellent fundamental mode excitation in the FMF (representing 99.8% of the total power).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber

Yongmin Jung, Yoonchan Jeong, Gilberto Brambilla, and David J. Richardson
Opt. Lett. 34(15) 2369-2371 (2009)

Adiabatically-tapered fiber mode multiplexers

S. Yerolatsitis, I. Gris-Sánchez, and T. A. Birks
Opt. Express 22(1) 608-617 (2014)

Simple and reliable light launch from a conventional single-mode fiber into a helical-core fiber through an adiabatically tapered splice

Hyuntai Kim, Jongki Kim, Yongmin Jung, Luis Alonso Vazquez-Zuniga, Seung Jong Lee, Geunchang Choi, Kyunghwan Oh, Pu Wang, W. A. Clarkson, and Yoonchan Jeong
Opt. Express 20(23) 25562-25571 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998).
    [Crossref] [PubMed]
  2. H. L. Offerhaus, N. G. Broderick, D. J. Richardson, R. Sammut, J. Caplen, and L. Dong, “High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber,” Opt. Lett. 23(21), 1683–1685 (1998).
    [Crossref] [PubMed]
  3. Y. Jung, Y. Jeong, G. Brambilla, and D. J. Richardson, “Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber,” Opt. Lett. 34(15), 2369–2371 (2009).
    [Crossref] [PubMed]
  4. W. S. Tsai, C. K. Chang, F. W. Sheu, Y. H. Wang, and S. H. Chen, “Refractive index profiling of a few-mode fiber from fundamental mode excitation,” Opt. Commun. 323, 138–142 (2014).
    [Crossref]
  5. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE J. Optoelectron. 138(5), 343–354 (1991).
    [Crossref]
  6. B. T. Kuhlmey, H. C. Nguyen, M. J. Steel, and B. J. Eggleton, “Confinement loss in adiabatic photonic crystal fiber tapers,” J. Opt. Soc. Am. B 23(9), 1965–1974 (2006).
    [Crossref]
  7. R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite-cladding light guides,” IEEE J. Optoelectron. 133(6), 377–384 (1986).
    [Crossref]
  8. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  9. S. Laflamme, S. Lacroix, J. Bures, and X. Daxhelet, “Understanding power leakage in tapered solid core microstructured fibers,” Opt. Express 15(2), 387–396 (2007).
    [Crossref] [PubMed]
  10. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [Crossref] [PubMed]

2014 (1)

W. S. Tsai, C. K. Chang, F. W. Sheu, Y. H. Wang, and S. H. Chen, “Refractive index profiling of a few-mode fiber from fundamental mode excitation,” Opt. Commun. 323, 138–142 (2014).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

1998 (2)

1997 (1)

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE J. Optoelectron. 138(5), 343–354 (1991).
[Crossref]

1986 (1)

R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite-cladding light guides,” IEEE J. Optoelectron. 133(6), 377–384 (1986).
[Crossref]

Birks, T. A.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE J. Optoelectron. 138(5), 343–354 (1991).
[Crossref]

R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite-cladding light guides,” IEEE J. Optoelectron. 133(6), 377–384 (1986).
[Crossref]

Bourbonnais, R.

R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite-cladding light guides,” IEEE J. Optoelectron. 133(6), 377–384 (1986).
[Crossref]

Brambilla, G.

Broderick, N. G.

Bures, J.

Caplen, J.

Chang, C. K.

W. S. Tsai, C. K. Chang, F. W. Sheu, Y. H. Wang, and S. H. Chen, “Refractive index profiling of a few-mode fiber from fundamental mode excitation,” Opt. Commun. 323, 138–142 (2014).
[Crossref]

Chen, S. H.

W. S. Tsai, C. K. Chang, F. W. Sheu, Y. H. Wang, and S. H. Chen, “Refractive index profiling of a few-mode fiber from fundamental mode excitation,” Opt. Commun. 323, 138–142 (2014).
[Crossref]

Daxhelet, X.

Dong, L.

Eggleton, B. J.

Fermann, M. E.

Ghalmi, S.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE J. Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE J. Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Jeong, Y.

Jung, Y.

Knight, J. C.

Kuhlmey, B. T.

Lacroix, S.

S. Laflamme, S. Lacroix, J. Bures, and X. Daxhelet, “Understanding power leakage in tapered solid core microstructured fibers,” Opt. Express 15(2), 387–396 (2007).
[Crossref] [PubMed]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE J. Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Laflamme, S.

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE J. Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Nguyen, H. C.

Nicholson, J. W.

Offerhaus, H. L.

Ramachandran, S.

Richardson, D. J.

Russell, P. St. J.

Sammut, R.

Sheu, F. W.

W. S. Tsai, C. K. Chang, F. W. Sheu, Y. H. Wang, and S. H. Chen, “Refractive index profiling of a few-mode fiber from fundamental mode excitation,” Opt. Commun. 323, 138–142 (2014).
[Crossref]

Steel, M. J.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE J. Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Tsai, W. S.

W. S. Tsai, C. K. Chang, F. W. Sheu, Y. H. Wang, and S. H. Chen, “Refractive index profiling of a few-mode fiber from fundamental mode excitation,” Opt. Commun. 323, 138–142 (2014).
[Crossref]

Wang, Y. H.

W. S. Tsai, C. K. Chang, F. W. Sheu, Y. H. Wang, and S. H. Chen, “Refractive index profiling of a few-mode fiber from fundamental mode excitation,” Opt. Commun. 323, 138–142 (2014).
[Crossref]

Yablon, A. D.

IEEE J. Optoelectron. (2)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices. Part 1: Adiabaticity criteria,” IEEE J. Optoelectron. 138(5), 343–354 (1991).
[Crossref]

R. J. Black and R. Bourbonnais, “Core-mode cutoff for finite-cladding light guides,” IEEE J. Optoelectron. 133(6), 377–384 (1986).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

W. S. Tsai, C. K. Chang, F. W. Sheu, Y. H. Wang, and S. H. Chen, “Refractive index profiling of a few-mode fiber from fundamental mode excitation,” Opt. Commun. 323, 138–142 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Diagram of the proposed solution.
Fig. 2
Fig. 2 Distributions of the intensity along the structure (L = 30mm and RC = 0.1).
Fig. 3
Fig. 3 Effective indices versus coefficient of reduction RC for a) SMF taper and b) FMF taper.
Fig. 4
Fig. 4 Adiabaticity criteria versus length for a) SMF taper and b) FMF taper.
Fig. 5
Fig. 5 Amplitude variation of the modes along the component length.
Fig. 6
Fig. 6 Experimental tapering setup.
Fig. 7
Fig. 7 a) Longitudinal section of the cane with two inserted fibers and b) the cross-section of the cane before tapering.
Fig. 8
Fig. 8 a) Illustration of the cane after the tapering process, showing the input SMF and output FMF b) the profile of a real biconical taper versus the distance along the component.
Fig. 9
Fig. 9 Fundamental mode profiles of a) SMF (component input) and b) the FMF (output of the component).
Fig. 10
Fig. 10 The Fourier transform of the optical spectra showing the beat frequencies of interest.
Fig. 11
Fig. 11 Beam profiles obtained by integrating the optical spectrum at each pixel a) the total beam resembling the LP01 mode intensity distribution b) The LP11 image and MPI level.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α 2 = | + ψ 1 ψ 2 *   dxdy | 2 + | ψ 1 | 2   dxdy + | ψ 2 | 2   dxdy .
C ¯ i j = k 2 2 | β i β j | ( β i β j ) A ( n 2 x x + n 2 y y ) φ ^ i * φ ^ j   d A .
1 r d r d z β i β j C ¯ i j .

Metrics