Abstract

Dual-wavelength fiber lasers with ultra-narrow linewidth find wide applications in high-speed optical communications, fiber optic sensors, high resolution measurements and medical instruments and microwave or terahertz generation systems. Based on the linewidth compression mechanism due to Rayleigh backscattering, this paper adopts a simple ring structure cooperated with two fiber Bragg gratings centered at 1550 nm and 1530 nm respectively, achieving a dual-wavelength fiber laser with ultra-narrow linewidth, with a 3dB linewidth of ~700 Hz for each wavelength, and the SNR of 60dB. Tuning the center wavelength of one of the two FBGs while the other one keeps unchanged, the fiber laser keeps stable dual-wavelength lasing and the linewidth is still ~700 Hz. It can be seen that the compression for the linewidth based on the Rayleigh backscattering can be used in multi-wavelength laser systems, and because of the characteristic of the Rayleigh backscattering, the method has great potential in the application of wide wavelength range linewidth compression from the ultraviolet to the far infrared.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optically controlled tunable ultra-narrow linewidth fiber laser with Rayleigh backscattering and saturable absorption ring

Yujia Li, Ligang Huang, Lei Gao, Tianyi Lan, Yulong Cao, Iroegbu Paul Ikechukwu, Leilei Shi, Yongfeng Liu, Fuhui Li, and Tao Zhu
Opt. Express 26(21) 26896-26906 (2018)

Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter

Bin Yin, Suchun Feng, Zhibo Liu, Yunlong Bai, and Shuisheng Jian
Opt. Express 22(19) 22528-22533 (2014)

Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method

Ting Feng, Dongliang Ding, Fengping Yan, Ziwei Zhao, Hongxin Su, and X. Steve Yao
Opt. Express 24(17) 19760-19768 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Kim, S. H. Chu, and Y. G. Han, “Stable and widely tunable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for optical beat frequency generation,” IEEE Photonics Technol. Lett. 24(6), 521–523 (2012).
    [Crossref]
  2. L. Jin, Y. N. Tan, Z. Quan, M. P. Li, and B. O. Guan, “Strain-insensitive temperature sensing with a dual polarization fiber grating laser,” Opt. Express 20(6), 6021–6028 (2012).
    [Crossref] [PubMed]
  3. P. Zhang, T. Wang, Q. Jia, H. Sun, K. Dong, X. Liu, M. Kong, and H. Jiang, “Frequency switched narrow linewidth microwave signal photonic generation based on a double-Brillouin-frequency spaced fiber laser,” Appl. Opt. 53(11), 2352–2356 (2014).
    [Crossref] [PubMed]
  4. S. Pan, X. Zhao, and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33(8), 764–766 (2008).
    [Crossref] [PubMed]
  5. Z. J. Yan, C. B. Mou, Z. X. Zhang, X. X. Wang, J. F. Li, K. M. Zhou, and L. Zhang, “Single polarization, dual wavelength fiber laser based on a 3-stage all fiber Lyot filter,” IEEE Photonics Technol. Lett. 26(11), 1085–1088 (2014).
    [Crossref]
  6. B. Yin, S. Feng, Z. Liu, Y. Bai, and S. Jian, “Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter,” Opt. Express 22(19), 22528–22533 (2014).
    [Crossref] [PubMed]
  7. B. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
    [Crossref]
  8. B. Yin, S. C. Feng, Y. L. Bai, and Z. B. Liu, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(12), 1127–1230 (2014).
  9. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
    [Crossref]
  10. T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
    [Crossref]
  11. T. Zhu, F. Y. Chen, S. H. Huang, and X. Y. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
    [Crossref]
  12. T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18(22), 22958–22963 (2010).
    [Crossref] [PubMed]
  13. T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
    [Crossref]
  14. G. Yin, B. Saxena, and X. Bao, “Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber,” Opt. Express 19(27), 25981–25989 (2011).
    [Crossref] [PubMed]

2014 (6)

P. Zhang, T. Wang, Q. Jia, H. Sun, K. Dong, X. Liu, M. Kong, and H. Jiang, “Frequency switched narrow linewidth microwave signal photonic generation based on a double-Brillouin-frequency spaced fiber laser,” Appl. Opt. 53(11), 2352–2356 (2014).
[Crossref] [PubMed]

Z. J. Yan, C. B. Mou, Z. X. Zhang, X. X. Wang, J. F. Li, K. M. Zhou, and L. Zhang, “Single polarization, dual wavelength fiber laser based on a 3-stage all fiber Lyot filter,” IEEE Photonics Technol. Lett. 26(11), 1085–1088 (2014).
[Crossref]

B. Yin, S. Feng, Z. Liu, Y. Bai, and S. Jian, “Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter,” Opt. Express 22(19), 22528–22533 (2014).
[Crossref] [PubMed]

B. Yin, S. C. Feng, Y. L. Bai, and Z. B. Liu, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(12), 1127–1230 (2014).

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

2013 (1)

T. Zhu, F. Y. Chen, S. H. Huang, and X. Y. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
[Crossref]

2012 (2)

R. K. Kim, S. H. Chu, and Y. G. Han, “Stable and widely tunable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for optical beat frequency generation,” IEEE Photonics Technol. Lett. 24(6), 521–523 (2012).
[Crossref]

L. Jin, Y. N. Tan, Z. Quan, M. P. Li, and B. O. Guan, “Strain-insensitive temperature sensing with a dual polarization fiber grating laser,” Opt. Express 20(6), 6021–6028 (2012).
[Crossref] [PubMed]

2011 (2)

B. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

G. Yin, B. Saxena, and X. Bao, “Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber,” Opt. Express 19(27), 25981–25989 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (2)

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

S. Pan, X. Zhao, and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33(8), 764–766 (2008).
[Crossref] [PubMed]

Bai, Y.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

B. Yin, S. Feng, Z. Liu, Y. Bai, and S. Jian, “Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter,” Opt. Express 22(19), 22528–22533 (2014).
[Crossref] [PubMed]

Bai, Y. L.

B. Yin, S. C. Feng, Y. L. Bai, and Z. B. Liu, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(12), 1127–1230 (2014).

Bao, X.

Bao, X. Y.

T. Zhu, F. Y. Chen, S. H. Huang, and X. Y. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
[Crossref]

Chen, F. Y.

T. Zhu, F. Y. Chen, S. H. Huang, and X. Y. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
[Crossref]

Chen, L.

Cheng, X. P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Chiang, K.

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Chu, S. H.

R. K. Kim, S. H. Chu, and Y. G. Han, “Stable and widely tunable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for optical beat frequency generation,” IEEE Photonics Technol. Lett. 24(6), 521–523 (2012).
[Crossref]

Dong, K.

Dong, Y.

Feng, S.

Feng, S. C.

B. Yin, S. C. Feng, Y. L. Bai, and Z. B. Liu, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(12), 1127–1230 (2014).

Feng, T.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

Guan, B. O.

Han, Y. G.

R. K. Kim, S. H. Chu, and Y. G. Han, “Stable and widely tunable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for optical beat frequency generation,” IEEE Photonics Technol. Lett. 24(6), 521–523 (2012).
[Crossref]

Huang, S. H.

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

T. Zhu, F. Y. Chen, S. H. Huang, and X. Y. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
[Crossref]

Huang, W.

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Jia, Q.

Jian, S.

Jiang, H.

Jiang, M.

B. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Jin, L.

Kim, R. K.

R. K. Kim, S. H. Chu, and Y. G. Han, “Stable and widely tunable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for optical beat frequency generation,” IEEE Photonics Technol. Lett. 24(6), 521–523 (2012).
[Crossref]

Kong, M.

Li, J. F.

Z. J. Yan, C. B. Mou, Z. X. Zhang, X. X. Wang, J. F. Li, K. M. Zhou, and L. Zhang, “Single polarization, dual wavelength fiber laser based on a 3-stage all fiber Lyot filter,” IEEE Photonics Technol. Lett. 26(11), 1085–1088 (2014).
[Crossref]

Li, M. P.

Liang, H.

Lin, B.

B. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Liu, M.

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Liu, S.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

Liu, X.

Liu, Z.

Liu, Z. B.

B. Yin, S. C. Feng, Y. L. Bai, and Z. B. Liu, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(12), 1127–1230 (2014).

Lou, C.

Mou, C. B.

Z. J. Yan, C. B. Mou, Z. X. Zhang, X. X. Wang, J. F. Li, K. M. Zhou, and L. Zhang, “Single polarization, dual wavelength fiber laser based on a 3-stage all fiber Lyot filter,” IEEE Photonics Technol. Lett. 26(11), 1085–1088 (2014).
[Crossref]

Pan, S.

Peng, W.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

Quan, Z.

Saxena, B.

Shi, L. L.

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

Shum, P.

B. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Sun, H.

Tan, S.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

Tan, W. C.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Tan, Y. N.

Tang, M.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Tjin, S. C.

B. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

Tse, C. H.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Wang, T.

Wang, X. X.

Z. J. Yan, C. B. Mou, Z. X. Zhang, X. X. Wang, J. F. Li, K. M. Zhou, and L. Zhang, “Single polarization, dual wavelength fiber laser based on a 3-stage all fiber Lyot filter,” IEEE Photonics Technol. Lett. 26(11), 1085–1088 (2014).
[Crossref]

Wu, R. F.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Yan, F.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

Yan, Z. J.

Z. J. Yan, C. B. Mou, Z. X. Zhang, X. X. Wang, J. F. Li, K. M. Zhou, and L. Zhang, “Single polarization, dual wavelength fiber laser based on a 3-stage all fiber Lyot filter,” IEEE Photonics Technol. Lett. 26(11), 1085–1088 (2014).
[Crossref]

Yin, B.

B. Yin, S. C. Feng, Y. L. Bai, and Z. B. Liu, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(12), 1127–1230 (2014).

B. Yin, S. Feng, Z. Liu, Y. Bai, and S. Jian, “Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter,” Opt. Express 22(19), 22528–22533 (2014).
[Crossref] [PubMed]

Yin, G.

Zhang, J.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Zhang, L.

Z. J. Yan, C. B. Mou, Z. X. Zhang, X. X. Wang, J. F. Li, K. M. Zhou, and L. Zhang, “Single polarization, dual wavelength fiber laser based on a 3-stage all fiber Lyot filter,” IEEE Photonics Technol. Lett. 26(11), 1085–1088 (2014).
[Crossref]

Zhang, P.

Zhang, Z. X.

Z. J. Yan, C. B. Mou, Z. X. Zhang, X. X. Wang, J. F. Li, K. M. Zhou, and L. Zhang, “Single polarization, dual wavelength fiber laser based on a 3-stage all fiber Lyot filter,” IEEE Photonics Technol. Lett. 26(11), 1085–1088 (2014).
[Crossref]

Zhao, X.

Zhou, J. L.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Zhou, K. M.

Z. J. Yan, C. B. Mou, Z. X. Zhang, X. X. Wang, J. F. Li, K. M. Zhou, and L. Zhang, “Single polarization, dual wavelength fiber laser based on a 3-stage all fiber Lyot filter,” IEEE Photonics Technol. Lett. 26(11), 1085–1088 (2014).
[Crossref]

Zhu, T.

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

T. Zhu, F. Y. Chen, S. H. Huang, and X. Y. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
[Crossref]

T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18(22), 22958–22963 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Chin. Sci. Bull. (1)

T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth,” Chin. Sci. Bull. 59(33), 4631–4636 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (5)

Z. J. Yan, C. B. Mou, Z. X. Zhang, X. X. Wang, J. F. Li, K. M. Zhou, and L. Zhang, “Single polarization, dual wavelength fiber laser based on a 3-stage all fiber Lyot filter,” IEEE Photonics Technol. Lett. 26(11), 1085–1088 (2014).
[Crossref]

R. K. Kim, S. H. Chu, and Y. G. Han, “Stable and widely tunable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for optical beat frequency generation,” IEEE Photonics Technol. Lett. 24(6), 521–523 (2012).
[Crossref]

B. Lin, M. Jiang, S. C. Tjin, and P. Shum, “Tunable microwave generation using a phase-shifted chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 23(18), 1292–1294 (2011).
[Crossref]

B. Yin, S. C. Feng, Y. L. Bai, and Z. B. Liu, “Switchable single-polarization dual-wavelength ring laser based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(12), 1127–1230 (2014).

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Laser Phys. Lett. (2)

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

T. Zhu, F. Y. Chen, S. H. Huang, and X. Y. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber,” Laser Phys. Lett. 10(5), 055110 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The experimental setup. WDM: wavelength division multiplexing device; EDF: erbium-doped fiber; FBG1: fiber Bragg grating centered at 1530nm; FBG2: fiber Bragg grating centered at 1550nm; OC: optical circulator; PC: polarization controller; VOA: variable optical attenuator; C1, C2, C3: optical couplers; CWDM: coarse wavelength division multiplexing device; AOM: acoustic optic modulator.
Fig. 2
Fig. 2 Optical spectrum of the dual-wavelength laser.
Fig. 3
Fig. 3 The electrical spectrum and their Lorentz fit of each wavelength with Rayleigh compression. (a) The electrical spectrum of 1530 nm laser. (b) The electrical spectrum of 1550 nm laser. (c) The Lorentz fit of the 1530 nm laser. (d) The Lorentz fit of the 1550 nm laser.
Fig. 4
Fig. 4 The electrical spectrum and their Lorentz fit of each wavelength without Rayleigh compression. (a) The electrical spectrum of 1530 nm laser. (b) The electrical spectrum of 1550 nm laser. (c) The linewidth of the two wavelength lasers changed along with the pump power.
Fig. 5
Fig. 5 (a). The linewidth of the two wavelength lasers changed along with the pump power. (b) The optical spectrum with repeated scans at 3 minutes intervals.
Fig. 6
Fig. 6 (a) The optical spectrum of the tunable dual-wavelength fiber laser. (b) The optical spectrum of the tunable laser. (c) The electric spectrum of the tunable laser. (d) The linewidth of the two wavelength while changing the micro-strain on the 1550 nm FBG.

Metrics